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Classification of compact transformation
groups on complex quadric with codimension
one orbits

RERTISERE  BAEAKRS (Shintaré Kuroki),
Osaka city University

Abstract

We classify compact connected Lie transformation groups on co-
homology complex quadrics with codimension one orbits.

1 Introduction

1.1 Motivation

In 1960, H.C. Wang([8]) investigated compact transformation groups on
spheres with codimension one orbits, after (in 1979) the classification of com-
pact connected Lie groups on rational cohomology projective spaces with
codimension one orbits was done completely by F. Uchida([6]). Similar prob-
lems were studied by T. Asoh([1] on Z,-cohomology spheres) and K.Iwata([4]
on rational cohomology Cayley projective planes).

In this paper we shall study the similar classification problem of ratio-
nal cohomology complex quadrics. The author is grateful to F. Uchda, M.
Masuda and S. Kikuchi for their hertful help.

1.2 Problem setting, Method and Result

Let G be a compact connected Lie group and let M be a compact con-
nected manifold with the rational cohomology ring of a complex quadric.

Definition (complex quadric Qs, (n # 1))

Qm = {2€Ppun(O)z+21+---+22,,, =0}
~ SO(2n + 2)/SO(2n) x SO(2).
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It is well known that the rational cohomology ring of complex quadric.
That is

H*(Q20; Q) = Qle, z]/(c™* — ez, 2%, c™ )

where deg(z) = 2n, deg(c) = 2.

G acts on M smoothly with codimension one orbits. The purpose of this
paper is to classify such pairs denoted by (G, M) up to essentially isomorphic.
Here we say that (G, M) is essentially isomorphic to (G’, M") if their induced
effective actions are isomorphic. This notion is defined precisely. :

To classify such pairs we use the similar method of Uchida([6]). First
we calculate the Poincaré polynominals of the singular orbits. Second we
determine the transformation groups G from the Poincaré polynominals using
well known fact of Lie theory([5]). Finally we classify (G, M) by making use
of the differentiable slice theorem.

Theorem 1.1 (G,M) is essentially isomorphic to one of the pairs in follow-
ing list

n (G,M) action
n > 2 (SO(2n +1),Qs,) canonical
n>2 (Un+1),Qa) U(n+1) = SO(2n + 2)
n>2 (SU(n +1),Qa,) SU(n+1) —» SO(2n + 2)
3 (G2, Qs) G, = SO(7)
2 | (Sp(2),5" xsp1) P2(0)) canonical

2 Preliminary
Let us first recall some basic facts about the structure of (G, M).

Theorem 2.1 (Uchida[6]) Let G be a compact connected Lie group. Let
M be a compact connected manifold without boundary and assume

HI(M; Zz) = (.

Assume that G acts smoothly on M with an orbit G(x) of codimension one.
Then G(x) = G/K is a principal orbit and (G,M) has just two singular orbits
G(z:1) = G/ K, and G(z;) = G/K,. Moreover there ezists a closed invariant
tubular neighborhood X, of G(z,) such that

M=X,UX, and X;NX,=0X, =0X,.



3 Poincaré polynominal

Let M be a compact connected manifold with the same cohomology ring
as @an, and G be a compact connected Lie group which acts on M with
codimension one orbits. Then the pair (G, M) satisfies Theorem 2.1.

Hence we can show the following theorem.

Theorem 3.1 If the two orbits are both orientable,

(1) G/K, ~ P,(C); k1 = 2n = kyy,ny =n = na.

(2) G/K1 ~ P2n_1(C),G/K2 ~ 52",
ki=2k=2nn=2n—1,n,=0.

(3) P(G/K, : t) = (1 +t*)a(n),
ki+k=2n+1,n =n=ny,s+r=3.

(4) P(G/Ky:t) = (L+ ) (L+ 4" 1)1+ £2 4+ 770),
P(G/K, : t) = (1 +t*)(1 + ™),
k1 =2,k =n(odd),n; =2n —1,n, = 0.

(5) P(G/K1:t) = 1+ ") (1 + " )1+ +--- +t71),
P(G/Ky:t)=(1+t)Q+t"+ ) (1 + 2 +--- +t771),
n=2n+1,n, =3n; + 1.

If G/K; is orientable and G/ K, non-orientable,

o G/K; ~ Py,_1(C),
P(G/Ky:t) = (1+¢"), P(G/K3 : t) = (L +t")(1 + ™),
G/Ko ~ 54"‘1,71,1 =2n — 1,n2 = O,kl = 2,]62 =n.

If the two orbits are both non-orientable,

¢ P(G/Ks:t) =1+t +t4, P(G/K?:t) = (L +t3)(1 + 2 + 1),
P(G/K :t)=P(G/K°:t) = (1 +t3)(1 + t* + t),

n=n1=n2=k1=k2=2.
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4 Examples

4.1 G=850(2n+1)

M = Q. SO(2n + 1) acts through the canonical representation to
SO(2n + 2). Then there are two singular orbits, 5*" and Py,_;(C). The
principal orbit type is SO(2n +1)/SO(2n — 1).

4.2 (G = SU(n+ 1)
M = Qan. SU(n + 1) acts through the representation to SO(2n + 2);

A -B

SU(n+1)5A+Bl-—>(B A

) € 50(2n +2).

Then there two singular orbits, both orbit types are P,(C). The principal
orbit type is SU(n +1)/(SO(2) x SU(n — 1)).
For G = U(n + 1) we get the same result.

4.3 G=G,

M = Qs. The exceptional Lie group G, acts through the canonical
representation to SO(7). Then there are two singular orbits, G,/SU(3) ~
5% G2/U(2). The principal orbit type is G5/SU(2).

4.4 G=5p(2)

M = 5" xgp1) Po(C). H*(M; Q) ~ H*(Q4; Q). Sp(2) acts canonically on
87 ~ 8p(2)/Sp(1). Sp(1) acts right side product on Sp(2)/Sp(1). Sp(1) acts
on P;(C) = P(R®*®R C) through double covering 7 : Sp(1) —» SO(3). Then
there are two singular isotropy groups, Sp(1) x U(1), Sp(1) x 7~1(S(0(2) x
O(1))). The principal isotropy group is Sp(1) x {1, -1, i, —i}.

5 Preliminary of classification
In this section we put H = N cpG,.

Definition (essentially isomorphic) If the induced effective actions (G/H, M)
and (G'/H', M") are egivalent diffeomorphic, then we call (G, M) and (G, M )
are essentially isormorphic.



Because we classify up to essentilly isomorpic, we can assume that
G=G x--+xGyxT
for some simply connected simple Lie groups G; and some toral group 7.

Lemma 5.1 ([5]) IfG = G; X ---X Gy x T then the mazimal rank subgroup
of GisG' =Gy x---xG), xT. Here G, is G; or the mazimal rank subgroup
Of G.,;.

To classify such a pairs (G, M) up to essentially isomorphic, we can as-
sume that G acts almost effectively on M. Here we say that G acts almost
effectively on M, if H = N, G: is a finite group. In this case G acts almost
effectively on the principal orbit G/K, and hence

(*) K dose not contain any positive dimensional
closed normal subgroup of G.

Lemma 5.2 ([6]) Let f, f' : 0X1 — 0X, be G-equivariant diffeomorphisms.
Then M(f) is equivariantly diffeomorphic to M(f') as G-manifolds, if one
of the following conditions is satisfied:

1. f is G-diffeotopic to f’
2. f~1f" is extendable to a G-equivariant diffeomorphism on X;
3. f'f! is extendable to a G-equivariant diffeomorphism on X,
Lemma 5.3 ([6]) If ki =2, then
H*(G/KJ; Q) = G H*(G/K,; Q) + Ker(p')
Here p? : G/K° -+ G/K?2,¢s : G/K? = G/K,.

Lemma 5.4 ([6]) Write J = @®xJy = ®rgtH*(G/Ky; Q), and denote by
e(p3) the rational Euler class of the orientable (ky—1)-sphere bundle K3/ K° —
G/K° - G/K3. Then

Ker(pg) = J - e(pg) + J - e(p)".

Next we compute the Poincaré polynomial P(G/U;t). Here G is compact
connected simple Lie group and U is its closed connected subgroup, with
rankG = rankU. All pairs (G,U) are known if U is maximal([5]) or if G
is classical([7]). So we can compute P(G/U;t) by making use of [5] Section
7,Theorem 3.21. We have the following propositions
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Proposition 5.1 ([6]) If P(G/U;t) = 1+ t%, then the pair (G,U) is pair-
wise locally isomorphic to

(SO(2a+1),80(2a)) or (Gz,SU(3)),a=3.

Proposition 5.2 ([6]) If P(G/U;t) = 1+ +---+12, then the pair (G, U)
18 pairwise locally isomorphic to

(SU®+1),5U®b) x U(1))),
(SO(b+2),S0(b) x SO(2)),b=2m +1,

(59252, 595 ) x U@ b =2m 41,

(G2,U(2)),b=5.

Proposition 5.3 ([6]) If P(G/U;t) = (1 +t%)(1 + > +--- +t®), then the
pair (G,U) is pairwise locally isomorphic to

(SO(2t +2),50(2t) x SO(2)),a=b=t,
(SO(2t + 3),50(2t) x SO(2)),a =t,b=2t+1,
(SO(7),U(3)),a=b=3,
(S0(9),U(4)),a=3,b=1,
(SU@3),T%),a=1,b=2,
(SO(10),U(5)),a=3,b=7,

(SU(5), S(U(2) x U(3))),a = 2,b =4,
(Sp(3), Sp(1) x Sp(1) x U(1)),a =2,b =5,
(5p(3),U(3)),a=b=3,
(5p(4),U(4)),a=3,b=7,

(G2, T?),a =1,b=15,

(Fy, Spin(7) -_Tl), a=4,b=11,

(Fy, Sp(3) - T'),a =4,b=11.

Proposition 5.4 If P(G/U;t) = 1 + t* + t® + t'2, then the pair (G,U) is
patrwise locally isomorphic to

(Sp(4), Sp(1) x Sp(3)).

By Theorem 3.1, only these four Poincaré polynominals are possible.



6 The two singular orbits are non-orientable

In this section we shall prove that this case is not occur. By Theorem 3.1
P(G/Kgt) =1+t +t*, P(G/K%t) = (1+t3)(1+t +1%).
So rankG = rankK?.

6.1 G/K? is indecomposable

A manifold is called decomposable if it is a product of positive dimensional
manifolds. By Proposition 5.3, this case is

G = SU@B)xG xT™,
K° = T°x G xT"

s

Here T? is a maximal torus of SU(3) and G’ is a product of compact simply
connected simple Lie groups. }

Now k, = 2, hence K2/K° ~ S'. Therefore K° acts on S? through
the representation p : K2 — SO(2). So Ker(p) = K° 4 K°. Consequently
G' = {e},h=00r 1 by (¥).

We consider the slice representation o, : K, — O(2). Since G/K, is
non-orientable, there is the element g, € K; — K? with

04(9s) = ((1) _01 )

The centralizer of 0,(g,) in O(2) is a finite group, hence h = 0. Then we know
N(K?;G)/K? ~ S;, where S5 is the symmetric group of degree 3. Because
G/K, is non-orientable, K,/K? ~ Z,, so we can put

100
gi=| 0 01 ]ek, —K°cSO®).
0 10

We can assume that

uv
Ke={| 0
0

0

U

0
The centralizer of g; in K is

0

0

U

@ 0 -z 0 0
{(O u ),( 0 0 u)|v€U(1)}.
0 0 0 « 0

S OO

) € SU3)|u,v e U(1)} > (u,v).

(-]
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However by the slice representation

o1 (,0) ( cos(ab)  sin(af) ) ,

—sin(af) cos(ab)
we see that

ooty - (el st )

This gives a = 0. This contradicts of a # 0.

6.2 G/K? is decomposable
By Theorem 5.1(a=1), 5.2(b=2), we know that

G=S8U(2)x SU(3) x &' x T*,
K{=T'x S(U@2)xU(Q1)) x G' x T".

Now we can prove easily G/K, is decomposable. Hence K° ~ K.

Now k, = 2, hence G’ = {e},h = 0 by a proof similar that when G/K?
is indecomposable. Since G/K, is non-orientable, K, ~ N(T%; SU(2)) x
S(U(2) x U(1)). For the slice representation o; : K; — 0O(2), there exists

91 € K; — K? such that
1 0
0'1(g1)= <0 -1 )

Here the centralizer of o,(g;) in O(2) is finite group. So the slice representa-
tion o, : K; — O(2) can be composable

os : K, = N(S0(2); SO(3)) = 0(2).
Therefore there is an equivariant decomposition
M ~ Pg(C) X (SU(Z) xN(Tl) S2)

Here N(T') = N(T';SU(2)). This contradicts the assumption that M is
indecomposable.
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7 One singular orbit is orientable, the other
is non-orientable

We can assume G/ K is orientable, G/ K, is non-orientable.
By Theorem 3.1

G/K; ~ P,_1(C), P(G/KZ;t) = (1+t")(1 +1t2).

In this case G/ K is indecomposable. We see that K? = K. Since k; = 2, we
can assume that G = H x T", K, = H(z) x T* (h = 0 or 1). By Proposition
5.2, 5.3, 5.4, we know that n = 2 or 4 and

(G,K2) ~ (SU(4),S{UB)xU(1)) (n=2)or
(5p(2), Sp(1) x U(1)) (n=2) or
(50(5), 50(3) x 50(2)) ~ (Sp(2),U(2)) (n=2),
(G,K1,K3) ~ (Sp(4),Sp(3) x U(1),Sp(1) x Sp(3)) (n = 4).

Since G/K, is non-orientable, G = SU(4), Sp(4) is not occur (so h = 0).
Consequently G/K? is indecomposable.

7.1 G=5p(2),K?~ Sp(l) x U(1)

Since G/ K is orientable and G/ K is non-orientable, K; = Sp(1)xU(1) =
K? and K, = N(K3;G). Since K,/K ~ S*, we have K = Sp(1) x F
(where F is a finite subgroup of U(1)). If K3 = K; = Sp(1) x U(1), then
K;/K ~ N(U(1);Sp(1))/F ~ S* @ S'. This contradicts of Ky/K ~ S*.
So (in particular) we can put Ky = Sp(1) x U(1);, where U(1); = {a +
bjla® + b = 1}. If K3 = Sp(1) x U(1);, then K, = Sp(1) x (U(1); UU(1);i).
KN K, = Sp(1) x {1,-1,i,—-i}. Since K;/K ~ K;/K ~ S, we have
F={1,-1,i,—i,}.

The slice representation o has a following decomposition
o,: K1 = U(1) B 502).

Here we can put

.p1(ezxp(if)) = ( sin(46)  cos(46)

since Ker(p,) = F. So the slice representation p; is uniquely up to equiva-

cos(46) —sin(46) )
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The slice representation o, has a following decomposition
o3 : Ky — N(U(1);; 8p(1)) = U(1); UU(1);i B 0(2).
Since Ky/K ~ S' and Ker(paluqy,) = Za,

pa2(t) = pa(—i) = ( (1) (1) ) :

So the slice representation p, is uniquely up to equivalence.

Now N(K;G)/K ~ Sp(1) x Sp(1) is connected. So this case is satisfied
the assumption of Lemma 5.2 1. Hence (G, M) is unique up to essentially
isomorphic. Such an example of (G, M) was constructed by in Section 4.4.

7.2 G =Sp(2),K°=U(2)

Since G/ K is orientable, K; = U(2). So K° = SU(2) because K;/K ~
§'. Since G/K, is non-orientable, K, ~ N(U(2); Sp(2)) (K has two compo-
nents). If K; = K3, then K, /K ~ S* @ S*. This contradicts of Kp/K ~ S'.
However K C K; N K, so K; = K3. Hence this case does not occur.

8 The two singular orbits are orientable

8.1 G/Kj~ P, 1(C),G/Ky ~ S

In this case G/K;,G/K, are indecomposable. Since k; = 2 and k, = 2n
(n>2),G=HxT"and K{ = K; = H, x T" (h =0 or 1). By Proposition
5.2,

(H,Hy) ~ (SU(2n),S{U(2n—1) x U(1))) or
(SO(2n+1),80(2n — 1) x SO(2)) or
(Sp(n), Sp(n — 1) x U()) or
(G2,U(2)): n=3.
By Lemma 5.3 and Lemma 5.4, we can easily show that
P(G/K;t) = P(G/Kt).
We can put K = H, x T". By Proposition 5.1,
(H,Hy) ~ (SO(2n+1),50(2n)) or
(G2,SU(3)) : n = 3.
Since K3/K° ~ S?*~!  we have h = 0. Hence
G=S8pin(2n+1) or Gy:n=3.
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8.1.1 G = Spin(2n+1)
In this case K; = Spin(2n — 1) - T, K3 = Spin(2n), K° = Spin(2n — 1).
Since G/Kj is orientable, K; = K§. So K = K°. Hence the slice repre-
sentation oy : Ky — SO(2) is decomposed

o1 : Ky = Spin(2n — 1) - T 7§ T' 5 S0O(2).

Since Ker(o1) = K, p is an isomorphism. So the slice representation o is
uniquely up to equivalence.

Next we consider the slice representation o, : K» — SO(2n).

Since Z; C Ker(o;) C 05(SO(2n — 1)) = K, 0, is decomposed

oy : Ko = Spin(2n) 2% SO(2n) 5 SO(2n).

Since SO(2n) acts transitively on S 2n—1" 5 is an isomorphism by making use
of [3]. Hence the slice representation o5 is uniquely up to equivalence.
Now we show that

any equivariant diffeomorphism of G/K = 8(G xk, D) is ex-
tendable to an equivariant diffeomorphism of G X, D*".

proof In this case N(K, G) has two components. So we can assume N(K,G)/N(K,G)° ~
Z, =<y > (y € Spin(2n + 1)) such that

py) = ( I )

Here p: Spin(2n + 1) — SO(2n + 1) is the natural projection. It suffices to
prove that the right translation R, on G/K is extendable. Because y is in
the center of K, we have the following commutative diagram:

Gxk,K:/JK - G/K
LR, x1 LR,
G XK, Kz/K — G/K
Here G xx, K2/ K = 8(G Xk, D*™). It is clear that R, x 1 is extendable. W

Consequently (G, M) is unique up to essentially isomorphic. Such an
example of (G, M) was constructed in Section 4.1.



8.1.2 G=0G,

In this case K; ~ U(2), K3 ~ SU(3), K° ~ SU(2),n = 3.

The exceptional Lie group G, = Aut(Cay). Here Cay is a Cayley number
generated by R-basis {1,e,---,e7}. It is well known that G, C SO(7), G,
acts on Cay which fix the R-basis 1.

Now we can consider that K = {A € G|A(e;) = e;} ~ SU(3). Then
N(K3,G) has two components. Since G/K; is orientable, K = KJ. So
K = K°.

We denote the slice representation o, : K, — SO(6). Because K,
acts transitively on K,/K =~ S5 via o3, so the slice representation o, is
uniquely determined up to equivalence. Then we see that o;1(SO(5)) =
{B € Kg]B(ez) = 62} =K~ SU(2)

Next we denote the slice representation o, : K; — SO(2). Since Ker(a,) =
K ~ SU(2), 0, is decomposed that

o1: Ky = UQ1) 5 50(2).

Here p is an isomorphism. So the slice representation o, is uniquely deter-
mined up to equivalence.

This implies N(K,G)/K ~ SO(3). Consequently (G, M) is unique up
to essentially isomorphism by Lemma 5.2. Such an example of (G, M) was
constructed in Section 4.3.

8.2 G/K,~ P,(C)

In this case we can compute similary. We see this case is Section 4.2.

8.3 P(G/Ki;t) =a(2n —1) +¢71 4 ¢3n-1

This case is Theorem 3.1 (5),(6). We can easily see that this case does
not occur.

8.4 P(G/Kj;t) = (1+thVa(n):k, is odd.
In this case we see K; = K7 by ky > 2. We can assume that G = &' x G”,
K=K xG".

8.4.1 G/K; is decomposable

In this case we can assume that

G=H; x H, x G, Ky = H(1) X H(g) x G”.
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Here H,/H(;) ~ S*~!, Hy/H(9) ~ P,(C). By Proposition 5.2,5.3.

(Hi,Hpy) = (Spin(kz), Spin(ky — 1)) or
= (G2,SU(3)) (ke =1T),
(Hz, H) = (SU(n+1),S(U(n) x U(1))) or
= (Spin(n +2), Spin(n) - T) (n: odd) or

_ (sp(”; L), sp(™ - L) x U)) (n : odd) or

= (G5, U(2) (n=5).

By lemma 8.1, H(;) X H() acts transitively on K;/K =~ Ski-1,
Lemma 8.1 H; = SU(2), Hy = SU(3), or H(y) acts transitively on K1/K.
If Hyy does not act transitively on Ky/K. Then k; = 2,ky = 3,n =2

G = SU(2)xSU(3) xG”,
K, = T'xS{U@2)xU(1)) x G".

Then we see G” = {e} by G” acting non-transitively on K;/K ~ S'. Since
Ky/K ~ 8% K¢g=A-N,K°= A"-N. Here (A, A') ~ (SU(2),T"). Consider
the slice representation oy : Ky = T" x S(U(2) x U(1)) = SO(2).

By Ker(o,) = K, K° > 1x SU(2) x 1. So K° = (1 x SU(2) x 1) - T".
Hence K3 = (1 x SU(2) x 1) - SU(2),K° = T* x SU(2). But this is a
contradiction. So we see H(s) acts transitively on K, /K.

Let p; : G — Hg,p, : G — H; x G” be the natural projection, and let
h:s : H, = G, h} : H, x G” = G be the natural inclusion. Put

Ly = pi(K,), Ly = p(K), Ly, = pi(K,), L = pj(K),
Na = b (K,), Ny = b {(K), N, = 7' (K,), Ny = By (K).

Since H(;y x G” C K, we have L} = Lj; = Hy) x G” and H(z)/NQ ~
Ki/K ~ S%1~!. We see easily that Ly/N; acts freely on Hy)/N, ~ S*1~1 by
right translation, and Ly/N; ~ L /N]. Here we have from [2]

dim(Ly/N}) < 3. (1)
We can prove

L21 = Hl, (2)
N1 # Hpy. (3)
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By Proposition 5.1

(Hy1,Huyy) = (Spin(ks), Spin(ky —1))) or
(GQ,SU(B)) : k2 =

If k; > 5, then H;) is simple Lie group. Since N] <L} = H(y x N” and the
equation (1), So N; = Sp(1) and dim(N;) > 0. Hence we get Noy = Loy = H,
and K, = H; X Nj,.

Therefore Ny = L; = Hyy. This contradicts of (3). Consequantly k; = 3.
Hence (Hy, Hpyy) = (SU(2), TY).

This gives k; = 2n — 2. So H(y) acts transitively $"3.

By Proposition 5.2 and making use of [3], we have k; = 2n — 2, k, = 3,

n+1

G = SU@ xS x @,

K = T'x SpZ )xU(l)xG”,

and n =9, G = SU(2) x Spin(11) x G".
These cases we can easily see that G” = {e}. and K, = K3.
If G = SU(2) x Sp(24*), the slice representation

oy : K1 = SO(2n — 2)

is unique up to equivalence and Ker(o;) D> T* x {e} x U(1). So K =
T* x Sp(%52) x U(1). Since K,/K =~ S? and P(G/K,;t), we get

= 5U(2) x Sp("=2) x v(1).

Hence the slice representation o5 : Ky — SO( ) is unique up to equivalence.

N(K;G)/K = N(T';SU(2))/T* x Sp(1) x N(U(1);Sp(1))/U(1). If
N(U(1);8p(1))/U(1) =~ Zy =< a >, then za = aF for all z € U(1). We
consider the next diagram

Gxx, Ko)K 5 G/K
Ry x1 I R,
Gxx, Kb2JK L G/K

Here f([g, kK]) = gkK. We have tK = K for all t € {e} x {e} x U(1) C K.
So this diagram is commutative. Hence any eqivalent diffeomorphism on
G/K is extendable to an equivalent diffeomorphism on X; = G x Ks D"”.
In this case we can put M = Sp(k + 1)/U(1) X spy S*+2, with k = 251,
However we can prove H*(M) # H*(Qux+2). This is a contradiction.

If G = SU(2) x Spin(11), then we see similary this case does not occur.



8.4.2 G/K; is indecomposable

Also we can prove this case is not occur.
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