DEFINABLE G-FIBER BUNDLES AND DEFINABLE C^rG -FIBER BUNDLES

TOMOHIRO KAWAKAMI 川上智博 (和歌山大学)

ABSTRACT. Let G be a compact definable group and $f,h:X\to Y$ definable G-maps between definable G-sets. We prove that if X is compact, η is a definable G-fiber bundle over Y and f and h are G-homotopic, then $f^*(\eta)$ and $h^*(\eta)$ are definably G-isomorphic. Let G be a compact subgroup of $GL_n(\mathbb{R})$ and $f,h:X\to Y$ definable C^rG maps between definable C^rG manifolds. We show that if X is compact and affine, η is a definable C^rG -fiber bundle over Y and f and h are definably C^rG -homotopic, then $f^*(\eta)$ and $h^*(\eta)$ are definably C^rG -isomorphic.

1. Introduction

Let \mathcal{M} denote an o-minimal expansion of the standard structure $\mathcal{R} = (\mathbb{R}, +, \cdot, <)$ of the field of real numbers. The term "definable" means "definable with parameters in \mathcal{M} ". In this paper, we are concerned with homotopy property of definable G-fiber bundles and definable C^rG -fiber bundles when $1 \leq r < \infty$. General references on o-minimal structures are [6], [8], see also [18]. Further properties and constructions of them are studied in [7], [9], [17]. Every definable category is a generalization of the semialgebraic category and the definable category on \mathcal{R} coincides the semialgebraic one.

A group G is a definable group if G is a definable set and the group operations $G \times G \to G$ and $G \to G$ are definable. A definable G-set means a G-invariant definable subset of some representation of G. We use a definable space as in the sense of [6], and every definable set is a definable space in this sense. Throughout this paper, definable maps between definable spaces are assumed to be continuous.

Theorem 1.1. Let G be a compact definable group. Suppose that $\eta = (E, p, Y, F, K)$ is a definable G-fiber bundle over a definable G set Y and $f, h: X \to Y$ are definable G-maps between definable G-sets. If X is compact and f and h are G-homotopic, then $f^*(\eta)$ and $h^*(\eta)$ are definably G-isomorphic.

Two definable G-maps $f, h: X \to Y$ between definable G-sets are definably G-homotopic if there exists a definable G-map $H: X \times [0,1] \to Y$ such that H(x,0) = f(x) and H(x,1) = h(x) for all $x \in X$, where the action on [0,1] is trivial. By 1.2 [11], two definable G-maps in Theorem 1.1 are definably G-homotopic.

²⁰⁰⁰ Mathematics Subject Classification. 14P10, 14P20, 57R22, 57R35, 57S10, 57S15, 58A05, 58A07, 03C64.

Keywords and Phrases. Definable G-sets, definable G-fiber bundles, definable G-vector bundles, o-minimal, compact definable groups, definable C^rG -manifolds, definable C^rG -fiber bundles. definable C^rG -vector bundles.

In the rest of this paper except section 2, G and K denote compact subgroups of $GL_n(\mathbb{R})$. It is known that they are compact algebraic subgroups of $GL_n(\mathbb{R})$ (e.g. 2.2 [16]).

Let Ω be a representation of G and $k \in \mathbb{N}$. Then we can consider the universal G-vector bundle $\gamma(\Omega, k)$ associated with Ω and k (see Definition 3.1). A definable G-vector bundle $\eta = (E, p, X)$ over a definable G-set X is called strongly definable if there exist a representation Ω of G and a definable G-map $f: X \to G(\Omega, k)$ such that η is definably G-isomorphic to $f^*(\gamma(\Omega, k))$, where k denotes the rank of η . The following result is a definable version of 1.1 [3].

Theorem 1.2. Every definable G-vector bundle over a definable G-set is strongly definable.

Let X be a definable G-set. Let $Vect_{def}^G(X)$ (respectively $Vect^G(X)$) denote the set of definable G-isomorphism (respectively G-isomorphism) classes of definable G-vector bundles (respectively G-vector bundles) over X. Then there is a canonical map κ : $Vect_{def}^G(X) \to Vect^G(X)$ which sends the definable G-isomorphism class $[\eta]_{def}^G$ of a definable G-vector bundle η over X to the G-isomorphism class $[\eta]_{def}^G$ of η .

Theorem 1.3. Let X be a definable G-set. Then the map $\kappa : Vect_{def}^G(X) \to Vect^G(X)$ defined by $\kappa([\eta]_{def}^G) = [\eta]^G$ is bijective.

As a corollary of Theorem 1.3, we have the following.

Corollary 1.4. Let $\eta = (E, p, Y)$ be a definable G-vector bundle over a definable G-set Y and $f, h: X \to Y$ definable G-maps between definable G-sets. If f and h are G-homotopic, then $f^*(\eta)$ and $h^*(\eta)$ are definably G-isomorphic.

Let $1 \le r \le \omega$. A definable C^rG -manifold is a pair (X, θ) consisting of a definable C^r -manifold X and a group action $\theta: G \times X \to X$ which is a definable C^r -map. We simply write X for (X, θ) . A definable C^rG -manifold is affine if it is definably C^rG -diffeomorphic to a G-invariant definable C^r -submanifold of some representation of G.

Two definable C^rG -maps $f, h: X \to Y$ between definable C^rG -manifolds are definably C^rG -homotopic if there exists a definable C^rG -map $H: X \times [0,1] \to Y$ such that H(x,0) = f(x) and H(x,1) = h(x) for all $x \in X$, where G acts on [0,1] trivially.

The following result is a definable C^rG -version of Theorem 1.1.

Theorem 1.5. Suppose that $\eta = (E, p, Y, F, K)$ is a definable C^rG -fiber bundle over a definable C^rG -manifold Y and $1 \le r < \infty$. Let f, h be definable C^rG -maps from a compact affine definable C^rG -manifold X to Y. If f and h are definably C^rG -homotopic and F is affine, then $f^*(\eta)$ and $h^*(\eta)$ are definably C^rG -isomorphic.

Corollary 1.6. Let $f, h: X \to Y$ be definable C^rG -maps between definable C^rG -manifolds and $1 \le r < \infty$. If X is compact and affine, η is a definable C^rG -vector bundle over Y and f is definably C^rG -homotopic to h, then $f^*(\eta)$ and $h^*(\eta)$ are definably C^rG -isomorphic.

Let $1 \leq r \leq \omega$. A definable C^rG -vector bundle $\eta = (E, p, X)$ over an affine definable C^rG -manifold X is called $strongly\ definable$ if then there exist a representation Ω of G and a definable C^rG -map $f: X \to G(\Omega, k)$ such that η is definably C^rG -isomorphic to $f^*(\gamma(\Omega, k))$, where k denotes the rank of η .

Theorem 1.7. Let η be a definable C^rG -vector bundle over an affine definable C^rG manifold X. If X is compact and $1 \leq r < \infty$, then η is strongly definable. Moreover if $r = \infty$ or ω , then η is strongly definable if and only if the total space of η is affine.

This paper is organized as follows. In section 2, we give a definition of definable G fiber bundles and prove Theorem 1.1. We prove Theorem 1.2, 1.3 and Corollary 1.4 in section 3 and Theorem 1.5 and 1.7 in section 4.

2. Definable G-fiber bundles

A group homomorphism between definable groups is a definable group homomorphism if it is a definable map. An n-dimensional representation of a definable group G means \mathbb{R}^n with the linear action induced by a definable group homomorphism from G to $O_n(\mathbb{R})$. A subgroup of a definable group G is a definable subgroup of G if it is a definable subset of G. A definable map (respectively A definable homeomorphism) between definable G-sets is a definable G-map (respectively a definable G-homeomorphism) if it is a G-map.

Let G be a definable group. A definable set with a definable G-action is a pair (X, θ) consisting of a definable set X and a group action $\theta: G \times X \to X$ such that θ is a definable map. We simply write X instead of (X, θ) . This action is not necessarily linear (orthogonal). Definable G-maps and definable G-homeomorphisms between definable sets with definable G-actions are defined similarly.

A definable space is an object obtained by pasting finitely many definable sets together along open definable subsets, and definable maps between definable spaces are defined similarly (see Chapter 10 [6]). Definable spaces are generalizations of semialgebraic spaces in the sense of [4].

Definition 2.1. Let G be a definable group.

- (1) A definable G-space is a pair (X, θ) consisting of a definable space X and a group action $\theta: G \times X \to X$ which is definable. For simplicity of notation, we write X for (X, θ) .
- (2) Let X and Y be definable G-spaces. A definable map $f: X \to Y$ is called a definable G-map if it is a G-map. We say that X and Y are definably G-homeomorphic if there exist definable G-maps $h: X \to Y$ and $k: Y \to X$ such that $h \circ k = id$ and $k \circ h = id$.

Note that clearly an implication "a definable G-set" \Rightarrow "a definable set with a definable G-action" \Rightarrow "a definable G-space" holds.

- **Definition 2.2.** (1) A topological fiber bundle $\eta = (E, p, X, F, K)$ is called a *definable fiber bundle* over X with fiber F and structure group K if the following two conditions are satisfied:
 - (a) The total space E is a definable space, the base space X is a definable set, the structure group K is a definable group, the fiber F is a definable set with an effective definable K action, and the projection $p: E \to X$ is a definable map.
 - (b) There exists a finite family of local trivializations $\{U_i, \phi_i : p^{-1}(U_i) \to U_i \times F\}_i$ of η such that each U_i is a definable open subset of X, $\{U_i\}_i$ is a finite open covering of X. For any $x \in U_i$, let $\phi_{i,x} : p^{-1}(x) \to F$, $\phi_{i,x}(z) = \pi_i \circ \phi_i(z)$, where

 π_i stands for the projection $U_i \times F \to F$. For any i and j with $U_i \cap U_j \neq \emptyset$, the transition function $\theta_{ij} := \phi_{j,x} \circ \phi_{i,x}^{-1} : U_i \cap U_j \to K$ is a definable map. We call these trivializations definable.

Definable fiber bundles with compatible definable local trivializations are identified.

- (2) Let $\eta = (E, p, X, F, K)$ and $\zeta = (E', p', X', F, K)$ be definable fiber bundles whose definable local trivializations are $\{U_i, \phi_i\}_i$ and $\{V_j, \psi_j\}_j$, respectively. A definable map $\overline{f}: E \to E'$ is said to be a definable morphism if the following two conditions are satisfied:
 - (a) The map \overline{f} covers a definable map, namely there exists a definable map $f: X \to X'$ such that $f \circ p = p' \circ \overline{f}$.
 - (b) For any i, j such that $U_i \cap f^{-1}(V_j) \neq \emptyset$ and for any $x \in U_i \cap f^{-1}(V_j)$, the map $f_{ij}(x) := \psi_{j,f(x)} \circ \overline{f} \circ \phi_{i,x}^{-1} : F \to F$ lies in K, and $f_{ij} : U_i \cap f^{-1}(V_j) \to K$ is a definable map.

We say that a bijective definable morphism $\overline{f}: E \to E'$ is a definable equivalence if it covers a definable homeomorphism $f: X \to X'$ and $(\overline{f})^{-1}: E' \to E$ is a definable morphism covering $f^{-1}: X' \to X$. A definable equivalence $\overline{f}: E \to E'$ is called a definable isomorphism if X = X' and $f = id_X$.

- (3) A continuous section $s: X \to E$ of a definable fiber bundle $\eta = (E, p, X, F, K)$ is a definable section if for any i, the map $\phi_i \circ s | U_i : U_i \to U_i \times F$ is a definable map.
- (4) We say that a definable fiber bundle $\eta = (E, p, X, F, K)$ is a principal definable fiber bundle if F = K and the K-action on F is defined by the multiplication of K. We write (E, p, X, K) for (E, p, X, F, K).

Definition 2.3. Let G be a definable group.

- (1) A definable fiber bundle (E, p, X, F, K) (respectively A principal definable fiber bundle (E, p, X, K)) is called a definable G-fiber bundle (respectively a principal definable G-fiber bundle) if the total space E is a definable G-space such that G acts on E through definable equivalences, the base space X is a definable set with a definable G-action and the projection p is a definable G-map.
- (2) A definable morphism (respectively A definable equivalence, A definable isomorphism) between definable G-fiber bundles is a definable G-morphism (respectively a definable G-equivalence, a definable G-isomorphism) if it is a G-map.
- (3) A definable G-section of a definable G-fiber bundle means a definable section which is a G-map.

Let $f: X \to Y$ be a definable map between definable sets. We say that f is proper if for any compact subset C of Y, $f^{-1}(C)$ is compact.

Let E be an equivalence relation on a definable set X. We call E proper if E is a definable subset of $X \times X$ and the projection $E \to X$ defined by $(x, y) \mapsto x$ is proper.

Theorem 2.4 (Definable quotients (e.g. 10.2.15 [6]). Let E be a proper equivalence relation on a definable set X. Then X/E exists a proper quotient, namely X/E is a definable subset of some \mathbb{R}^n and the projection $X \to X/E$ is a surjective proper definable map.

In the remainder of this section, G and K denote compact definable groups. The following is a corollary of Theorem 2.4.

Corollary 2.5 (e.g. 10.2.18 [6]). Let X be a definable set with a definable G-action. Then X/G is a definable subset of some \mathbb{R}^n and the orbit map $p: X \to X/G$ is a surjective proper definable map.

By similar proofs of 2.10 [14] and 2.11 [14], the standard construction of the associated principal bundle from a fiber bundle and by Theorem 2.4, we have the following.

- **Proposition 2.6.** (1) Let (E, p, X, K) be a principal definable G-fiber bundle and F a definable set with an effective definable K-action. Then $(E \times_K F, p', X, F, K)$ is a definable G-fiber bundle, where $p': E \times_K F \to X$ denotes the projection defined by p'([z,k]) = p(z).
- (2) The associated principal G-fiber bundle of a definable G-fiber bundle is definable.
- (3) Two definable G-fiber bundles having the same base space, fiber and structure group are definably G-isomorphic if and only if their associated principal definable G-fiber bundles are definably G-isomorphic.

Let X be a definable set with a definable G-action and $x \in X$. A G_x -invariant definable subset S of X is a definable slice at x in X if GS is a G-invariant definable open neighborhood of the orbit G(x) of x in X, $G \times_{G_x} S$ is a definable set with the standard definable G-action $G \times (G \times_{G_x} S) \to G \times_{G_x} S$, $(g, [g', s]) \mapsto [gg', s]$, and the map $G \times_{G_x} S \to GS \subset X$ defined by $[g, s] \mapsto gs$ is a definable G-homeomorphism.

Theorem 2.7 (Definable slices). Let X be a definable G-set and $x \in X$. Then there exists a definable slice S at x in X.

Let Y be a G-invariant definable subset of a definable G-set X. A definable G-retraction from X to Y means a definable G-map $R: X \to Y$ with $R|Y = id_Y$. For the proof of Theorem 2.7, we recall the following result.

Theorem 2.8 (3.4 [11]). Let Y be a G-invariant definable closed subset of a definable G-set X. Then there exist a G-invariant definable open neighborhood U of Y in X and a definable G-retraction from U to Y.

Proof of Theorem 2.7. Since G(x) is a G-invariant definable closed subset of X and by Theorem 2.8, we have a G-invariant definable open neighborhood U of G(x) in X and a definable G-retraction q from U to G(x). Let $S := q^{-1}(x)$. Then S is a definable G_x -set and U = GS. By II.4.2 [2], the map $f: G \times_{G_x} S \to GS$ ($\subset X$) defined by f([g, s]) = gs is a G-homeomorphism. On the other hand, the map $k: G \times S \to GS$ defined by k(g, s) = gs and the projection $\pi: G \times S \to G \times_{G_x} S$ are definable maps. Since the graph of f is the image of that of k by $\pi \times id_{GS}$, f is a definable G-homeomorphism.

Definition 2.9. A definable G-fiber bundle $\eta = (E, p, X, F, K)$ satisfies the definable Bierstone condition if for any $x \in X$, there exist a G_x -invariant definable open neighborhood U_x of x in X and a definable group homomorphism $\rho_x : G_x \to K$ such that $\eta|U_x$ is definably G_x -isomorphic to $U_x \times F$ with the definable G_x -action defined by $G_x \times (U_x \times F) \to U_x \times F, (h, u, y) \mapsto (hu, \rho_x, (h)y)$.

Note that a definable G-fiber bundle over a definable G-set satisfies the definable Bierstone condition if and only if the associated principal definable G-fiber bundle satisfies it.

Using Theorem 2.7, similar proofs of 1.4 [15] and 1.5 [15] prove the following proposition.

Proposition 2.10. Every definable G-fiber bundle over a definable G-set satisfies the definable Bierstone condition.

A finite definable open covering $\{U_i\}_i$ of a definable G-set is called a *finite definable open G-covering* if each U_i is G-invariant. A finite definable G-open covering is numerable if there exists a definable partition of unity $\{\lambda_i\}_i$ subordinate to $\{U_i\}_i$ such that each λ_i is G-invariant.

The following proposition shows existence of (non-equivariant) definable partition of unity.

Proposition 2.11 (e.g. 6.3.7 [6]). Let X be a definable set in \mathbb{R}^n and $\{U_i\}_{i=1}^n$ a finite definable open covering of X. Then there exists a definable partition of unity subordinate to $\{U_i\}_{i=1}^n$, namely there exist definable functions $\lambda_1, \ldots, \lambda_n : X \to \mathbb{R}$ such that $0 \le \lambda_i \le 1$, supp $\lambda_i \subset U_i$ and $\sum_{i=1}^n \lambda_i = 1$.

The following is an equivariant version of Proposition 2.11.

Proposition 2.12 (Equivariant definable partition of unity). Every finite definable open G-covering of a definable G-set X is numerable.

Proof. Let $\{U_i\}_{i=1}^n$ be a finite definable open G-covering of a definable G-set X. By Corollary 2.5, the orbit map $p: X \to X/G$ is a surjective proper definable map. Since $p: X \to X/G$ is open, $\{p(U_i)\}_{i=1}^n$ is a finite definable open covering of X/G. By Proposition 2.11, one can find a definable partition of unity $\{\overline{\lambda}_i\}_{i=1}^n$ subordinate to $\{p(U_i)\}_{i=1}^n$. Hence $\lambda_1 := \overline{\lambda}_1 \circ p, \ldots, \lambda_n := \overline{\lambda}_n \circ p$ are G-invariant and subordinate to $\{U_i\}_{i=1}^n$.

Note that in Proposition 2.11 and 2.12, we can replace $\sum_{i=1}^{n} \lambda_i = 1$ by $\max_{1 \le i \le n} \lambda_i = 1$. Theorem 1.1 follows from Theorem 2.13 below.

Theorem 2.13. If X is a compact definable G-set, then every definable G-fiber bundle $\eta = (E, p, X \times [0, 1], F, K)$ is definably G-isomorphic to $(p^{-1}(X \times \{0\}) \times [0, 1], p', X \times [0, 1], F, K)$, where G acts on [0, 1] trivially, $X \times \{0\}$ is identified with X and $p' = p|p^{-1}(X \times \{0\}) \times id_{[0,1]}$.

To prove Theorem 2.13, we need the following three results.

Lemma 2.14. Let A be a definable G-set, $X_1 = A \times [a,b], X_2 = A \times [b,c]$, and $\eta = (E,p,X,F,K)$ a definable G-fiber bundle over $X = X_1 \cup X_2$, where G acts trivially on [a,b] and [b,c]. If $\eta|X_1$ and $\eta|X_2$ are definably G-isomorphic to $X_1 \times F$ and $X_2 \times F$, respectively, then so is η , where the action on F is induced by a definable group homomorphism from G to K.

Proof. Let $u_i: X_i \times F \to p^{-1}(X_i)$, (i = 1, 2), be definable G-isomorphisms and $w_i:=u_i|(X_1\cap X_2)\times F$, (i = 1, 2). Then $h:=w_2^{-1}\circ w_1:(X_1\cap X_2)\times F\to (X_1\cap X_2)\times F$

is a definable G-isomorphism. Hence there exists a definable map $l: X_1 \cap X_2 \to K$ such that h(x,y) = (x,l(x)y), where $(x,y) \in (X_1 \cap X_2) \times F$. Let $i_A: A \to K, i_A(a) = l(a,b)$. Then we can extend h to a definable G-isomorphism

$$\tilde{h}: X_2 \times F \to X_2 \times F, \tilde{h}(x_1, x_2, y) = (x_1, x_2, i_A(x_1)y).$$

Since two definable G-isomorphisms $u_1: X_1 \times F \to p^{-1}(X_1)$ and $u_2 \circ \tilde{h}: X_2 \times F \to p^{-1}(X_2)$ coincide on $(X_1 \cap X_2) \times F$ and $X_1 \times F$ and $X_2 \times F$ are closed in $(X_1 \cup X_2) \times F = X \times F$, the gluing map provides the required definable G-isomorphism.

Let H be a definable subgroup of G, $\rho: H \to K$ a definable group homomorphism between definable groups, and F a definable set with an effective definable K-action. For any definable H-set S, we define a definable G-fiber bundle $\epsilon^{\rho}(S)$ by $(G \times_H (S \times F), p, G \times_H S, F, K)$, where $p: G \times_H (S \times F) \to G \times_H S, p([g, (s, y)]) = [g, s]$ and H acts on F via ρ .

Lemma 2.15. Let X be a compact definable G-set and $\eta = (E, p, X \times [0, 1], F, K)$ a definable G-fiber bundle over $X \times [0, 1]$. Then there exist finitely many points x_1, \ldots, x_n with definable slices S_{x_1}, \ldots, S_{x_n} and definable group homomorphisms $\{\rho_i : G_{x_i} \to K\}_{i=1}^n$ such that $\{GS_{x_i}\}_{i=1}^n$ is a finite definable open G-covering of X and each $\eta|(GS_{x_i} \times [0, 1])$ is definably G-equivalent to $\epsilon^{\rho_i}(S_{x_i}) \times [0, 1]$.

Proof. By Proposition 2.10, for any $(x,t) \in X \times [0,1]$, there exist a G_x -invariant definable open neighborhood U_x of x in X and $\delta > 0$ such that $\eta | (U_x \times [t - \delta, t + \delta])$ is definably G_x -isomorphic to $(U_x \times [t - \delta, t + \delta]) \times F$, where the action on F is induced by a definable group homomorphism $\rho_x : G_x \to K$. Since [0,1] is compact and by Lemma 2.14, we have a G_x -invariant definable open neighborhood V_x of x in X such that $\eta | V_x \times [0,1]$ is definably G_x -isomorphic to $(V_x \times [0,1]) \times F$. By Theorem 2.7, we have a definable slice S_x at x with $S_x \subset V_x$. Hence there exists a definable G_x -isomorphism $l_x : S_x \times [0,1] \times F \to \eta | S_x \times [0,1]$. Thus $h_x : G \times_{G_x} (S_x \times [0,1] \times F) = \epsilon^{\rho_x} (S_x) \times [0,1] \to \eta | GS_x \times [0,1]$ defined by $h_x([g,(s,t,f)]) = gl_x(s,t,f)$ is a definable G-equivalence. Since X is compact, there exist finitely many points x_1, \ldots, x_n of X such that $\{GS_{x_i}\}_{i=1}^n$ is a finite definable open G-covering of X.

Theorem 2.16. Let X be a compact definable G-set, $r: X \times [0,1] \to X \times [0,1], r(x,t) = (x,1)$ and $\eta = (E,p,X\times [0,1],F,K)$ a definable G-fiber bundle over $X\times [0,1]$. Then there exists a definable G-morphism $\phi: E\to E$ covering r.

Proof. By Lemma 2.15, we can find finitely many points x_1, \ldots, x_n with definable slices S_{x_1}, \ldots, S_{x_n} and definable group homomorphisms $\{\rho_i : G_{x_i} \to K\}_{i=1}^n$ such that $\{GS_{x_i}\}_{i=1}^n$ is a finite definable open G-covering of X and each $\eta|(GS_{x_i} \times [0,1])$ is definably G-equivalent to $\epsilon^{\rho_{x_i}}(S_{x_i}) \times [0,1]$. By Proposition 2.12, there exist G-invariant definable functions $l_1, \ldots, l_n : X \to [0,1]$ such that:

- (a) The support of each l_i is contained in GS_{x_i} .
- (b) $\max_{1 \le i \le n} l_i(x) = 1$ for all $x \in X$.

Let $h_{x_i}: (G \times_{G_{x_i}} (S_{x_i} \times F)) \times [0,1] \to p^{-1}(GS_{x_i} \times [0,1])$ be a definable G-equivalence covering a definable G-homeomorphism $f_{x_i} \times id_{[0,1]}: (G \times_{G_{x_i}} S_{x_i}) \times [0,1] \to GS_{x_i} \times [0,1]$.

Define

$$(u_{i}, r_{i}) : (E, X \times [0, 1]) \to (E, X \times [0, 1]), 1 \le i \le n,$$

$$r_{i}(x, t) = \begin{cases} (x, \max(l_{i}(f_{x_{i}}([g, s])), t)), & ([g, s], t) \in (G \times_{G_{x_{i}}} S_{x_{i}}) \times [0, 1] \\ (x, t), & \text{otherwise} \end{cases},$$

$$\begin{aligned} u_i(h_{x_i}([g,(s,f)],t) &= h_{x_i}([g,(s,f)], \max(l_i(f_{x_i}([g,s])),t)), \\ & \quad \text{for any } ([g,(s,f)],t) \in (G \times_{G_{x_i}} (S_{x_i} \times F)) \times [0,1], \end{aligned}$$

 u_i is the identity outside $p^{-1}(GS_{x_i} \times [0,1])$.

Then $r = r_n \circ \cdots \circ r_1$. Therefore $\phi = u_n \circ \cdots \circ u_1 : E \to E$ is the required definable G-morphism.

Theorem 2.13 follows from Theorem 2.16.

3. Definable G-vector bundles and proof of Theorem 1.2, 1.3 and Corollary 1.4

We recall that G and K denote compact subgroups of $GL_n(\mathbb{R})$ except section 2. Then remember that G is a compact algebraic subgroup of $GL_n(\mathbb{R})$ and any closed subgroup of G is a compact algebraic subgroup of G.

Note that a definable group homomorphism from G to $O_n(\mathbb{R})$ is a definable C^{∞} -map because it is a continuous group homomorphism between Lie groups.

Recall universal G-vector bundles (e.g. [12]).

Definition 3.1. Let Ω be an n-dimensional representation of G induced by a definable group homomorphism $B: G \to O_n(\mathbb{R})$ of Ω . Suppose that $M(\Omega)$ denotes the vector space of $n \times n$ -matrices with the action $(g, A) \in G \times M(\Omega) \to B(g)AB(g)^{-1} \in M(\Omega)$. For any positive integer k, we define the vector bundle $\gamma(\Omega, k) = (E(\Omega, k), u, G(\Omega, k))$ as follows:

$$G(\Omega, k) = \{ A \in M(\Omega) | A^2 = A, A = A', TrA = k \},$$

$$E(\Omega, k) = \{ (A, v) \in G(\Omega, k) \times \Omega | Av = v \},$$

$$u : E(\Omega, k) \to G(\Omega, k), u((A, v)) = A,$$

where A' denotes the transposed matrix of A and Tr A stands for the trace of A. Then $\gamma(\Omega, k)$ is an algebraic vector bundle. Since the action on $\gamma(\Omega, k)$ is algebraic, it is an algebraic G-vector bundle. We call it the universal G-vector bundle associated with Ω and K. Remark that $G(\Omega, k) \subset M(\Omega)$ and $E(\Omega, k) \subset M(\Omega) \times \Omega$ are nonsingular algebraic G-sets.

- **Definition 3.2.** (1) A definable G-vector bundle of rank k is a definable G-fiber bundle with fiber \mathbb{R}^k and structure group $GL_k(\mathbb{R})$. We usually write (E, p, X) instead of $(E, p, X, \mathbb{R}^k, GL_k(\mathbb{R}))$.
 - (2) Let $\eta = (E, p, X)$ and $\eta' = (E', p', X)$ be definable G-vector bundles. A definable G-map $f: E \to E'$ is called a definable G-morphism if $p = p' \circ f$ and f is linear on each fiber. A definable G-morphism $h: E \to E'$ is said to be a definable G-isomorphism if there exists a definable G-morphism $h': E' \to E$ such that $h \circ h' = id$ and $h' \circ h = id$.

(3) A definable G-section of a definable G-vector bundle means a definable G-section as a definable G-fiber bundle.

By a way similar to 3.1 [10], we have the following proposition.

Proposition 3.3. If η and η' are two definable G-vector bundles over a definable G-set X, then $\eta \oplus \eta'$, $\eta \otimes \eta'$, $Hom(\eta, \eta')$ and the dual bundle η^{\vee} of η are definable G-vector bundles over X.

The next result states equivalent properties of strong definablity of definable G vector bundles, which is obtained in a way similar to the proof of 3.6 [3].

Theorem 3.4. Let $\eta = (E, p, X)$ be a definable G-vector bundle of rank k over a definable G-set X. Then the following five properties are equivalent.

- (1) The bundle η is strongly definable.
- (2) There exists a surjective definable G-morphism from a trivial G-vector bundle $X \times \Omega$ onto η for some representation Ω of G.
- (3) There exists an injective definable G-morphism from η to a trivial G-vector bundle $X \times \Omega$ for some representation Ω of G.
- (4) There exists a definable G-vector bundle η' over X such that $\eta \oplus \eta'$ is definably G-isomorphic to a trivial G-vector bundle.
- (5) There exist non-equivariant definable sections $s_1, \ldots, s_n : X \to E$ of η such that:
 - (a) For any $x \in X$, the vectors $s_1(x), \ldots, s_n(x)$ generate the fiber $p^{-1}(x)$ over x.
 - (b) The sections s_1, \ldots, s_n generate a finite dimensional G-invariant vector subspace of $\Gamma(\eta)$, where $\Gamma(\eta)$ denotes the set of all continuous sections of η with the natural G-action, namely $(g \cdot s)(x) = g(s(g^{-1}x))$ for all $g \in G$ and $x \in X$.

Theorem 1.2 follows from Theorem 3.4 and Theorem 3.5 below.

Theorem 3.5. Every definable G vector bundle over a definable G set satisfies Condition (5) in Theorem 3.4.

By a way similar to the proof of 3.9 [3], we have the following proposition.

Proposition 3.6. Let $\eta = (E, p, X)$ be a definable G-vector bundle over a definable set X with the trivial G-action and A a closed definable subset of X such that $\eta | A$ is strongly definable. If A admits a definable retraction from X to A, then there exists some open definable neighborhood V of A in X such that $\eta | V$ is strongly definable.

The following is the equivariant definable version of Urysohn's lemma, and its semial-gebraic version is proved in 1.6 [5]. We use only a non-equivariant version of it to prove Theorem 3.5.

Lemma 3.7. Let X be a definable set with a definable G-action and A and B disjoint closed definable G-subsets of X. Then there exists a G-invariant definable function $f: X \to [0,1]$ such that $f^{-1}(0) = A$ and $f^{-1}(1) = B$.

Proof. By Corollary 2.5, X/G is a definable subset of some \mathbb{R}^n and the orbit map $p: X \to X/G$ is a surjective proper definable map. Hence $\pi(A)$ and $\pi(B)$ are closed definable

subsets of X/G. Then the function $h: X/G \to [0,1]$ defined by $h(x) = \frac{d(x,\pi(A))}{d(x,\pi(A))+d(x,\pi(B))}$ is a definable function such that $h^{-1}(0) = \pi(A)$ and $h^{-1}(1) = \pi(B)$, where $d(x,\pi(A))$ (respectively $d(x,\pi(B))$) denotes the distance between x and $\pi(A)$ (respectively x and $\pi(B)$). Therefore $f:=h\circ\pi:X\to [0,1]$ is the required G-invariant definable function.

Proposition 3.8. Let H be a closed subgroup of G, D the closed unit ball of a representation Ω of H. Then $G \times_H D$ is a compact affine definable $C^{\infty}G$ manifold with boundary. In particular, $G \times_H D$ is definably G-imbeddable into some representation of G.

Proof. Note that G and Ω are affine definable $C^{\infty}H$ -manifolds. Thus by 4.4 [13] and 4.5 [13], $G \times_H \Omega$ is a definable $C^{\infty}G$ -manifold whose underlying manifold is a definable C^{∞} -submanifold of some \mathbb{R}^k . Since $G \times_H D$ is compact, there exists a $C^{\infty}G$ -imbedding i from $G \times_H D$ to some representation Ξ of G. Applying the polynomial approximation theorem to i and averaging it, we have a definable $C^{\infty}G$ -imbedding from $G \times_H D$ to Ξ . \square

A definable G-CW-complex is a finite G-CW-complex such that the characteristic map of each G-cell is a definable G-map (see [11]).

Theorem 3.9 (1.1 [11]). Let X be a definable G-set and Y a closed definable G-subset of X. Then there exist a definable G-CW-complex Z in a representation Ω of G, a G-CW-subcomplex W of Z, and a definable G-map $f: X \to Z$ such that:

- (1) The map f takes X and Y definably G-homeomorphically onto G-invariant definable subsets Z_1 and W_1 of Z and W obtained by removing some open G-cells from Z and W, respectively.
- (2) The orbit map $\pi: Z \to Z/G$ is a definable cellular map.
- (3) The orbit space Z/G is a finite simplicial complex compatible with $\pi(Z_1)$ and $\pi(W_1)$.
- (4) For each open G-cell c of Z, $\pi|\overline{c}:\overline{c}\to\pi(\overline{c})$ has a definable section $s:\pi(\overline{c})\to\overline{c}$, where \overline{c} denotes the closure of c in Z.

Furthermore, if X is compact, then Z = f(X) and W = f(Y).

Using Proposition 3.6, Lemma 3.7, Proposition 3.8, Theorem 3.9, a similar proof of 3.5 [3] proves Theorem 3.5.

By Theorem 1.2 and by the proof of 4.7 [11], we have the following.

Proposition 3.10. Let η a definable G-vector bundle over a compact definable G-set X. Then every continuous G-section of η can be approximated by definable G-sections.

We obtain the following theorem using Proposition 3.3 and Proposition 3.10.

Theorem 3.11. Let η and ζ be definable G-vector bundles over a compact definable G-set. If η is G-isomorphic to ζ , then they are definably G-isomorphic.

Proposition 3.12 (2.11 [15]). Let X, Y be definable G-sets. If η is G-vector bundle over Y and $f, h: X \to Y$ are G-homotopic continuous G-maps, then $f^*(\eta)$ is G-isomorphic to

Proposition 3.13 ([1], [20]). Let X be a compact G-set. If η is a G-vector bundle over X, then there exist a representation Ω of G and a continuous G-map $f: X \to G(\Omega, k)$ such that η is G-isomorphic to $f^*(\gamma(\Omega, k))$, where k denotes the rank of η .

Theorem 3.14. If X is a compact definable G-set, $\kappa: Vect_G^{def}(X) \to Vect_G(X)$ is bijective.

Proof. Injectivity follows from Theorem 3.11.

Let η be a G-vector bundle over X. Then by Proposition 3.13, there exist a representation Ω of G and a continuous G-map $f: X \to G(\Omega, k)$ such that η is G-isomorphic to $f^*(\gamma(\Omega, k))$, where k denotes the rank of η . By 3.5 [11], f is G-homotopic to a definable G-map $h: X \to G(\Omega, k)$. Hence by Proposition 3.12, $f^*(\gamma(\Omega, k))$ is G-isomorphic to $h^*(\gamma(\Omega, k))$. Therefore η is G-isomorphic to a definable G-vector bundle $h^*(\gamma(\Omega, k))$. \square

A G-set X is G-contractible if there exist a fixed point $x_0 \in X$ and a continuous G-map $F: X \times [0,1] \to X$ such that F(x,0) = x and $F(x,1) = x_0$ for all $x \in X$, where G acts on [0,1] trivially. We have the following as a corollary of Theorem 1.1.

Corollary 3.15. Let X be a compact G-contractible definable G-set. Then every definable G-vector bundle over X is definably G-isomorphic to a trivial G-bundle.

Theorem 3.16 (3.3 [11]). Let X be a definable G-set. Then there exists a definable G-deformation retraction R from X to a compact definable G-subset Y of X.

By a way similar to the proof of 4.10 [11], we have the following proposition.

Proposition 3.17. The map $R^*: Vect_G^{def}(Y) \to Vect_G^{def}(X)$ defined by $\eta \mapsto R^*(\eta)$ is bijective.

Theorem 1.3 follows from Theorem 3.14 and Proposition 3.17. Corollary 1.4 follows from Theorem 1.3 and Proposition 3.12.

- 4. Definable C^rG -fiber bundles and definable C^rG -vector bundles Definition 4.1 ([12]). Let $1 \le r \le \omega$.
 - (1) A definable fiber bundle $\eta = (E, p, X, F, K)$ is a definable C^r -fiber bundle if the total space E and the base space X are definable C^r -manifolds, the structure group K is a definable C^r -group, the fiber F is a definable C^rK -manifold with an effective action, the projection p is a definable C^r -map and all transition functions of η are definable C^r -maps. A principal definable C^r -fiber bundle is defined similarly.
 - (2) Definable C^r -morphisms, definable C^r -equivalences, definable C^r -isomorphisms between definable C^r -fiber bundles and definable C^r -sections of a definable C^r fiber bundle are defined similarly.
 - (3) A definable C^r -fiber bundle $\eta = (E, p, X, F, K)$ is a definable C^rG -fiber bundle if the total space E and the base space X are definable C^rG -manifolds, the projection p is a definable C^rG -map and G acts on E through definable C^r -equivalences. A principal definable C^rG -fiber bundle is defined similarly.

(4) A definable C^r -morphism (resp. a definable C^r -equivalence, a definable C^r -isomorphism, a definable C^r -section) is a definable C^rG -morphism (resp. a definable C^rG -equivalence, a definable C^rG -isomorphism, a definable C^rG -section) if it is a G-map.

The following is a definable $C^{r}G$ -version of Proposition 2.6, which is obtained similarly.

Proposition 4.2. Suppose that $1 \le r \le \omega$.

- (1) Let (E, p, X, K) be a principal definable C^rG -fiber bundle and F an affine definable C^rK -manifolds with an effective action. Then $(E \times_K F, p', X, F, K)$ is a definable C^rG -fiber bundle, where $p': E \times_K F \to X$ denotes the projection defined by p'([z, k]) = p(z).
- (2) The associated principal G-fiber bundle of a definable C^rG -fiber bundle is a principal definable C^rG -fiber bundle.
- (3) Two definable $C^{\tau}G$ -fiber bundles having the same base space, fiber and structure group are definably $C^{\tau}G$ -isomorphic if and only if their associated principal definable $C^{\tau}G$ -fiber bundles are definably $C^{\tau}G$ -isomorphic.

Proposition 4.3. Let X be a definable C^rG -submanifold of a representation Ω of G and $1 \leq r < \infty$. Then for any $x \in X$, there exists a linear definable C^r -slice at x in X, namely there exists a definable C^rG_x -imbedding i from a representation Ξ of G_x into X such that i(0) = x, $G \times_{G_x} \Xi$ is a definable C^rG -manifold with the standard action $(g, [g', x]) \mapsto [gg', x]$ and the map $\mu : G \times_{G_x} \Xi \to X$ defined by $[g, x] \mapsto gi(x)$ is a definable C^rG -diffeomorphism onto some G-invariant definable open neighborhood of G(x) in X.

Proof. Since G is a compact algebraic subgroup of $GL_n(\mathbb{R})$ and by 4.1 [13], for any $x \in X$, there exists a linear definable C^{∞} slice at x in Ω , namely we have a representation Ξ' of G_x and a definable $C^{\infty}G_x$ imbedding $j:\Xi'\to\Omega$ such that j(0)=x, $G\times_{G_x}\Xi'$ is a definable $C^{\infty}G$ manifold and the map $\mu':G\times_{G_x}\Xi'\to\Omega$ defined by $\mu'([g,x])=gj(x)$ is a definable $C^{\infty}G$ diffeomorphism onto a G invariant definable open neighborhood $Gj(\Xi')$ of G(x) in G. Then $f^{-1}(X)$ is a definable C^rG_x submanifold of G and f invariant definable open neighborhood G of G in G invariant definable open neighborhood G of G in G invariant definable open neighborhood G of G in G invariant definable G invariant definable G invariant definable G is a definable G diffeomorphism G is a definable G diffeomorphism onto a G invariant definable open neighborhood G is a definable G diffeomorphism onto a G invariant definable open neighborhood G is a definable G diffeomorphism onto a G invariant definable open neighborhood G is a definable G diffeomorphism onto a G invariant definable open neighborhood G is a definable G diffeomorphism onto a G invariant definable open neighborhood G is a definable G diffeomorphism onto a G invariant definable open neighborhood G is a definable G diffeomorphism onto a G invariant definable open neighborhood G is a definable G diffeomorphism onto a G invariant definable open neighborhood G is a definable G diffeomorphism onto a G invariant definable open neighborhood G is a definable G diffeomorphism onto a G invariant definable open neighborhood G of G diffeomorphism onto a G diffeomorphism onto G diffeomorphism of G diffeomo

Note that if $r = \infty$ or ω , then Proposition 4.3 is proved in 4.1 [13].

We can consider the definably C^r -Bierstone condition as a definable C^rG -version of Definition 2.9. Using Proposition 4.2 and 4.3, we have the following definable C^r -version of Proposition 2.10.

Proposition 4.4. Let $1 \le r \le \omega$. Then every definable C^rG -fiber bundle over an affine definable C^rG -manifold satisfies the definable C^r -Bierstone condition.

The proof of 4.8 [12] proves the following.

Proposition 4.5 (4.8 [12]). (Definable C'r partition of unity). Let X be a definable closed subset of \mathbb{R}^n , $\{U_i\}_{i=1}^l$ a finite definable open covering of X and $0 \le r < \infty$. Then there exist definable C'r functions $\lambda_1, \ldots, \lambda_l : \mathbb{R}^n \to \mathbb{R}$ such that $0 \le \lambda_i \le 1$, supp $\lambda_i \subset U_i$ and $\sum_{i=1}^l \lambda_i(x) = 1$ for any $x \in X$.

The following is a definable C^r -version of Proposition 2.12.

Proposition 4.6 (Equivariant definable C^r -partition of unity). Let X be a definable C^rG -submanifold closed in a representation Ω of G and $\{U_i\}_{i=1}^n$ a finite definable open G-covering of X and $0 \le r < \infty$. Then $\{U_i\}_{i=1}^n$ is numerable, namely there exist G-invariant definable C^r -functions $\lambda_1, \ldots, \lambda_n : X \to \mathbb{R}$ such that $0 \le \lambda_i \le 1$, supp $\lambda_i \subset U_i$ and $\sum_{i=1}^n \lambda_i(x) = 1$ for any $x \in X$.

Proof. First of all, we recall the structure of the orbit space Ω/G . The algebra $\mathbb{R}[\Omega]^G$ of G invariant polynomials on Ω is finitely generated [21]. Let $p_1, \ldots, p_n : \Omega \to \mathbb{R}$ be G invariant polynomials generating $\mathbb{R}[\Omega]^G$, and put $p: \Omega \to \mathbb{R}^n, p = (p_1, \ldots, p_n)$. Then p is a proper polynomial map, and it induces a closed imbedding $j: \Omega/G \to \mathbb{R}^n$ such that $p = j \circ \pi$, where $\pi: \Omega \to \Omega/G$ denotes the orbit map. Hence we can identify Ω/G (resp. X/G, π) with $j(\Omega/G)$ (resp. j(X/G), p). Thus $\{p(U_i)\}_{i=1}^l$ is a finite definable open covering of X/G because $p|X:X\to X/G$ is open. Note that p(X) is closed in \mathbb{R}^n because X is closed in Ω . By Proposition 4.5, one can find a definable partition of unity $\{\overline{\lambda}_i\}_{i=1}^l$ subordinate to $\{p(U_i)\}_{i=1}^l$. Hence $\lambda_1 := \overline{\lambda}_1 \circ p, \ldots, \lambda_l := \overline{\lambda}_l \circ p$ are the required G invariant definable C^r functions.

We can replace $\sum_{i=1}^{n} \lambda_i = 1$ by $\max_{1 \le i \le n} \lambda_i = 1$ in Proposition 4.5 and 4.6.

By the proof of 2.10 [12], we may assume that an affine definable C^rG -manifold is a definable C^rG -submanifold closed in some representation Ω of G. Thus similar proofs of Lemma 2.14, 2.15 and Theorem 2.16 prove the following.

Theorem 4.7. If X is a compact affine definable C^rG -manifold and $1 \le r < \infty$, then every definable C^rG -fiber bundle $\eta = (E, p, X \times [0, 1], F, K)$ is definably C^rG -isomorphic to $(p^{-1}(X \times \{0\}) \times [0, 1], p', X \times [0, 1], F, K)$, where G acts on [0, 1] trivially, $X \times \{0\}$ is identified with X and $p' = p|p^{-1}(X \times \{0\}) \times id_{[0,1]}$.

Theorem 1.5 follows from Theorem 4.7.

The following result is a definable C^rG -version of Theorem 3.4, which is obtained similarly.

Theorem 4.8. Let $\eta = (E, p, X)$ be a definable C^rG -vector bundle of rank k over an affine definable C^rG -manifold X and $1 \le r < \infty$. Then the following five properties are equivalent.

- (1) The bundle η is strongly definable.
- (2) There exists a surjective definable C^rG -morphism from a trivial G-vector bundle $X \times \Omega$ onto η for some representation Ω of G.
- (3) There exists an injective definable C^rG -morphism from η to a trivial G-vector bundle $X \times \Omega$ for some representation Ω of G.
- (4) There exists a definable C^rG -vector bundle η' over X such that $\eta \oplus \eta'$ is definably C^rG -isomorphic to a trivial G-vector bundle.

- (5) There exist non-equivariant definable C^{τ} -sections $s_1, \ldots, s_n : X \to E$ of η such that:
 - (a) For any $x \in X$, the vectors $s_1(x), \ldots, s_n(x)$ generate the fiber $p^{-1}(x)$ over x.
 - (b) The sections s_1, \ldots, s_n generate a finite dimensional G-invariant vector subspace of $\Gamma(\eta)$.

Proof of Theorem 1.7. Since X is compact, a similar proof of Lemma 2.15 proves that there exist finitely many points $x_1, \ldots, x_n \in X$ with definable C^r -slices S_{x_1}, \ldots, S_{x_n} and α -dimensional representations $\Omega_{x_1}, \ldots, \Omega_{x_n}$ of G_{x_1}, \ldots, G_{x_n} , respectively, such that $\{GS_{x_i}\}_{i=1}^n$ is a finite definable open G-covering of X and each $\eta|GS_{x_i}$ is definably C^rG -equivalent to $\epsilon(S_{x_i})$, where $\epsilon(S_{x_i}) = (G \times_{G_{x_i}} (S_{x_i} \times \Omega_{x_i}), p, G \times_{G_{x_i}} S_{x_i}), p : G \times_{G_{x_i}} (S_{x_i} \times \Omega_{x_i}) \to G \times_{G_{x_i}} S_{x_i}, p([g, x, y]) = [g, x]$ and α denotes the rank of η . Clearly each $\epsilon(S_{x_i})$ admits finitely many definable C^r -sections satisfying Condition (5) in Theorem 4.8. Thus every $\eta|GS_{x_i}$ admits definable C^r -sections $s_{i1}, \ldots s_{it_i}$ satisfying the same condition.

By Proposition 4.6, we have an equivariant definable C^r -partition of unity $\{\lambda_i\}_{i=1}^n$ subordinate to $\{GS_{x_i}\}_{i=1}^n$. Let $\overline{s_{iq}} := \lambda_i s_{iq}$. Then for any $g \in G$, $g \cdot \overline{s_{iq}} = \lambda_i (g \cdot s_{iq})$. Therefore a finite family of definable C^r -sections $\overline{s_{11}}, \ldots, \overline{s_{1t_1}}, \ldots, \overline{s_{nt_1}}, \ldots, \overline{s_{nt_n}}$ satisfies the required conditions.

Now we prove the second part of the theorem. If η is strongly definable, then there exist a representation Ω of G and a definable C^rG -map f from X to $G(\Omega, \alpha)$ such that η is definably C^rG -isomorphic to $f^*(\gamma(\Omega, \alpha))$. Since the total space of $f^*(\gamma(\Omega, \alpha))$ is affine, E is affine.

Conversely, we assume that E is a definable C^rG -submanifold of a representation Ξ of G.

Let

$$F_1: X \to M(\Xi), F_1(x) =$$
the matrix projecting $T_x\Xi$ onto T_xE , $F_2: X \to M(\Xi), F_2(x) =$ the matrix projecting $T_x\Xi$ onto T_xX .

Then by a way similar to the proof of I.3.3 [19], F_1 and F_2 are definable maps. Thus they are definable C^r -maps. By the definition of G-action, they are G-maps. Hence they are definable C^rG -maps. Let

$$F: X \to G(\Xi, \alpha), F = (id - F_2)F_1.$$

Then F is a definable C^rG -map and η is definably C^rG -isomorphic to $F^*(\gamma(\Xi, \alpha))$. Therefore η is strongly definable.

REFERENCES

- [1] M. F. Atiyah, K-theory, Benjamin, 1967.
- [2] G.E. Bredon, Introduction to compact transformation groups, Academic Press, 1972.
- [3] M. J. Choi, T. Kawakami, and D.H. Park, Equivariant semialgebraic vector bundles, Topology and its appl. 123 (2002), 383-400.
- [4] H. Delfs and M. Knebusch, Semialgebraic topology over a real closed field II: Basic theory of semialgebraic spaces, Math. Z. 178 (1981), 175-213.
- [5] H. Delfs and M. Knebusch, Separation, retraction and homotopy extension in semialgebraic spaces, Pacific J. Math. 114(1) (1984), 47-71.
- [6] L. van den Dries, Tame topology and o-minimal structures, Lecture notes series 248, London Math. Soc. Cambridge Univ. Press (1998).

- [7] L. van den Dries, A. Macintyre, and D. Marker, The elementary theory of restricted analytic field with exponentiation, Ann. Math. 140 (1994), 183-205.
- [8] L. van den Dries and C. Miller, Geometric categories and o-minimal structures, Duke Math. J. 84 (1996), 497-540.
- [9] L. van den Dries and P. Speissegger, The real field with convergent generalized power series, Trans. Amer. Math. Soc. 350, (1998), 4377-4421.
- [10] T. Kawakami, Algebraic G vector bundles and Nash G vector bundles, Chinese J. Math. 22(3) (1994), 275-289.
- [11] T. Kawakami, Definable G CW complex structures of definable G sets and their applications, preprint.
- [12] T. Kawakami, Equivariant differential topology in an o-minimal expansion of the field of real numbers, Topology and its appl. 123 (2002), 323-349.
- [13] T. Kawakami, Imbedding of manifolds defined on an o-minimal structures on $(\mathbb{R}, +, \cdot, <)$, Bull. Korean Math. Soc. 36 (1999), 183-201.
- [14] K. Kawakubo, The theory of transformation groups, Oxford Univ. Press, 1991.
- [15] R. K. Lashof, Equivariant Bundles, Illinois J. Math. 26(2) (1982), 257-271.
- [16] D.H. Park and D.Y. Suh, Linear embeddings of semialgebraic G-spaces, Math. Z. 242, (2002), 725-742.
- [17] Y. Peterzil, A. Pillay and S. Starchenko, *Definably simple groups in o-minimal structures*, Trans. Amer. Math. Soc. **352** (2000), 4397-4419.
- [18] M. Shiota, Geometry of subanalyite and semialgebraic sets, Progress in Math. 150 (1997), Birkhäuser.
- [19] M. Shiota, Nash manifolds, Lecture Note in Math. 1269, Springer-Verlag (1987).
- [20] G. Segal, Equivariant K-theory, Inst. Hautes Études Sci. Publ. Math. 34 (1968), 129-151.
- [21] H. Weyl, The classical groups (2nd ed.), Princeton Univ. Press, Princeton, N.J., (1946).

DEPARTMENT OF MATHEMATICS, FACULTY OF EDUCATION, WAKAYAMA UNIVERSITY, SAKAEDANI WAKAYAMA 640-8510, JAPAN

E-mail address: kawa@center.wakayama-u.ac.jp