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DEFINABLE G-FIBER BUNDLES AND DEFINABLE C"G-FIBER
BUNDLES

TOMOHIRO KAWAKAMI
N EEE (FIRRILKEE)

ABSTRACT. Let G be a compact definable group and f,h : X — Y definable G-maps
between definable G-sets. We prove that if X is compact, 7 is a definable G-fiber bundle
over Y and f and h are G-homotopic, then f*(y) and h*(n) are definably G-isomorphic.

Let G be a compact subgroup of GL,(R) and f,h : X — Y definable C"G maps
between definable C"G manifolds. We show that if X is compact and affine, 5 is a
definable C"G-fiber bundle over ¥ and f and h are definably C"G-homotopic, then
f*(n) and h*(n) are definably C"G-isomorphic.

1. INTRODUCTION

Let M denote an o-minimal expansion of the standard structure R = (R, +,-, <) of the
field of real numbers. The term “definable” means “definable with parameters in M”. In
this paper, we are concerned with homotopy property of definable G-fiber bundles and
definable C"G-fiber bundles when 1 < 7 < 0o. General references on o-minimal structures
are [6], [8], see also [18]. Further properties and constructions of them are studied in [7],
[9], [17]. Every definable category is a generalization of the semialgebraic category and
the definable category on R coincides the semialgebraic one.

A group G is a definable group if G is a definable set and the group operations G x G —
G and G — G are definable. A definable G-set means a G-invariant definable subset
of some representation of G. We use a definable space as in the sense of [6], and every
definable set is a definable space in this sense. Throughout this paper, definable maps
between definable spaces are assumed to be continuous.

Theorem 1.1. Let G be u compact definable group. Suppose thatn = (E,p,Y,F,K) is a
definable G-fiber bundle over a definable G set Y and f,h: X — Y are definable G-maps
between definable G-sets. If X is compact and f and h are G-homotopic, then f* (1) and
h*(n) are definably G-isomorphic.

Two definable G-maps f,h : X — Y between definable G-sets are definubly G-
homotopic if there exists a definable G-map H : X x [0,1] = Y such that H(z,0) = f(x)
and H(z,1) = h(z) for all 2 € X, where the action on [0,1] is trivial. By 1.2 [11], two
definable G-maps in Theorem 1.1 are definably G-homotopic.
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In the rest of this paper except section 2, G and K denote compact subgroups of
GLn(R). It is known that they are compact algebraic subgroups of GL,(R) (e.g. 2.2
16)).

Let Q be a representation of G and &k € N. Then we can consider the universal G-
vector bundle (§2, k) associated with Q and k (see Definition 3.1). A definable G-vector
bundle n = (E,p, X) over a definable G-set X is called strongly definable if there exist
a representation Q of G and a definable G-map f: X — G(£, k) such that 7 is definably
G-isomorphic to f*(v(f2,k)), where k denotes the rank of n. The following result is a
definable version of 1.1 [3].

Theorem 1.2. Every definable G-vector bundle over a definable G-set is strongly defin-
able.

Let X be a definable G-set. Let Vect, (X) (respectively Vect®(X)) denote the set
of definable G-isomorphism (respectively G-isomorphism) classes of definable G-vector
bundles (respectively G-vector bundles) over X. Then there is a canonical map s :
Vect$,;(X) — Vect®(X) which sends the definable G-isomorphism class []S.; of a defin-
able G-vector bundle n over X to the G-isomorphism class [1]¢ of 7.

Theorem 1.3. Let X be a definable G-set. Then the map £ : Vect§,;(X) = Vect®(X)
defined by k([n)G,;) = [n]° is bijective.

As a corollary of Theorem 1.3, we have the following.

Corollary 1.4. Letn = (E,p,Y") be a definable G-vector bundle over a definable G-set 1’
and f,h: X = Y definable G-maps between definable G-sets. If f and h are G-homotopic,
then f*(n) and h*(n) are definably G-isomorphic.

Let 1 < r < w. A definable C"G-manifold is a pair (X, 8) consisting of a definable
CT-manifold X and a group action 6 : G x X — X which is a definable C"-map. We
simply write X for (X,6). A definable C"G-manifold is af fine if it is definably C"G-
diffeomorphic to a G-invariant definable C"-submanifold of some representation of G.

Two definable C"G-maps f, h : X — Y between definable C”G-manifolds are de finably
Cr G-homotopic if there exists a definable C"G-map H : X x[0, 1] = Y such that H(z,0) =
f(x) and H(z,1) = h(z) for all x € X, where G acts on [0.1] trivially.

The following result is a definable C”G-version of Theorem 1.1.

Theorem 1.5. Suppose that 1 = (E,p,Y,F,K) is a definable C"G-fiber bundle over u
definable CTG-manifold Y and 1 < r < oo. Let f,h be definable C"G-maps from a
compact affine definable CTG-manifold X to Y. If f and h are definably C"G-homotopic
and F is affine, then f*(n) and h*(1)) are definably C"G-isomorphic.

Corollary 1.6. Let f,h: X — Y be definable C"G-maps between definable C”G-manifolds
and1 < r < oo. If X is compact and affine, 1) is a definable C™ G -vector bundle over )™ and
f is definably C"G-homotopic to h, then f*(n) and h*(y) are definably C"G-isomorphic.

Let 1 < 7 < w. A definable C"G-vector bundle # = (E,p, X) over an affine definable
C"G-manifold X is called strongly de finable if then there exist a representation Q2 of G
and a definable C"G-map f : X — G(, k) such that  is definably C"G-isomorphic to
F*(¥(9, k)), where k denotes the rank of 7.
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Theorem 1.7. Let n be a definable C"G-vector bundle over an affine definable C"G-
manifold X. If X is compact and 1 < r < oo, then n is strongly definable. Moreover if
T = 00 or w, then 7 is strongly definable if and only if the total space of n is affine.

This paper is organized as follows. In section 2, we gi\;e a definition of definable G fiber
bundles and prove Theorem 1.1. We prove Theorem 1.2, 1.3 and Corollary 1.4 in section
3 and Theorem 1.5 and 1.7 in section 4.

2. DEFINABLE G-FIBER BUNDLES

A group homomorphism between definable groups is a de finable group homomorphism
if it is a definable map. An n-dimensional representation of a definable group G means
R™ with the linear action induced by a definable group homomorphism from G to O,(R).
A subgroup of a definable group G is a de finable subgroup of G if it is a definable subset of
G. A definable map (respectively A definable homeomorphism) between definable G-sets
is a definable G-map (respectively a definable G-homeomorphism) if it is a G-map.

Let G be a definable group. A definable set with a definable G-action is a pair (X, 6)
consisting of a definable set X" and a group action § : G x X — X such that 0 is a
definable map. We simply write X instead of (X, ). This action is not necessarily linear
(orthogonal). Definable G-maps and definable G-homeomorphisms between definable
sets with definable G-actions are defined similarly.

A definable space is an object obtained by pasting finitely many definable sets together
along open definable subsets, and definable maps between definable spaces are defined
similarly (see Chapter 10 [6]). Definable spaces are generalizations of semialgebraic spaces
in the sense of [4].

Definition 2.1. Let G be a definable group.

(1) A definable G-space is a pair (X, 8) consisting of a definable space .\ and a group
action § : G x X — X which is definable. For simplicity of notation, we write .\" for
(X,6).

(2) Let X and Y be definable G-spaces. A definable map f : X — Y is called a de finable
G-map if it is a G-map. We say that X and Y are definably G-homeomorphic if
there exist definable G-maps h: X — Y and k: Y — X such that h o k = id and
koh =1id.

Note that clearly an implication “a definable G-set”=> “a definable set with a definable
G-action”= “a definable G-space”holds.

Definition 2.2. (1) A topological fiber bundle n = (E, p, X, F, K) is called a de finable
fiber bundle over .\’ with fiber F' and structure group A if the following two condi-
tions are satisfied:

(a) The total space E is a definable space, the base space X is a definable set, the
structure group A" is a definable group, the fiber F' is a definable set with an
effective definable K& action, and the projection p: E — X is a definable map.

(b) There exists a finite family of local trivializations {U;, ¢; : p~'(U;) = U; x F},
of n such that each U; is a definable open subset of X, {U}; is a finite open
covering of X. For any t € Uj, let ¢, : p~1(2) = F, ¢; () = 7 o ¢;(s), where
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7; stands for the projection U; x F — F. For any i and j with U; N U; # 0, the

transition function 8;; := ¢;, 0 ¢} : Uy NU; = K is a definable map. We call

these trivializations de finable.

Definable fiber bundles with compatible definable local trivializations are iden-
tified.

(2) Let n = (E,p, X, F,K) and ( = (E',p', X', F, K) be definable fiber bundles whose
definable local trivializations are {U;, ¢;}; and {V},1);},. respectively. A definable
map f : E — E' is said to be a de finable morphism if the following two conditions
are satisfied:

(a) The map f covers a definable map, namely there exists a definable map f : X —
X' such that fop=p'o .

(b) For any i,j such that U; N f~}(V;) # 0 and for any z € U; N f~1(1}), the map
fii(z) == vjgeyo fodi; : F— Fliesin K, and fi; : Uyn f71(V;) = Kisa
definable map.

We say that a bijective definable morphism f : E — E' is a de finable equivalence if

it covers a definable homeomorphism f:X = X'and (f)"!: E' = E is a definable

morphism covering f~! : X’ — X. A definable equivalence f : E — E' is called a

definable isomorphism 1i X =X"and f =idy.

(3) A continuous section s : X — E of a definable fiber bundle n = (E,p, X, F, K) is a
definable section if for any i, the map ¢; o s|U; : U; = U; x F is a definable map.

(4) We say that a definable fiber bundle n = (E,p, X, F. K) is a principal definable
fiber bundle if F = K and the K-action on F' is defined by the multiplication of K.
We write (E,p, X, K) for (E,p, X, F, K).

Definition 2.3. Let G be a definable group.

(1) A definable fiber bundle (E,p, X, F,K) (respectively A principal definable fiber
bundle (E,p, X, K)) is called a definable G-fiber bundle (respectively a principal
definable G-fiber bundle) if the total space E is a definable G-space such that G
acts on E through definable equivalences, the base space X is a definable set with a
definable G-action and the projection p is a definable G-map.

(2) A definable morphism (respectively A definable equivalence, A definable isomor-
phism) between definable G-fiber bundles is a de finable G-morphism (respectively
a definable G-equivalence, a definable G-isomorphism) if it is a G-map.

(3) A definable G-section of a definable G-fiber bundle means a definable section which
is a G-map.

Let f: X = Y be a definable map between definable sets. We say that f is proper if
for any compact subset C of Y, f~1(C) is compact.
- Let E be an equivalence relation on a definable set X'. We call E proper if E is a
definable subset of X x X and the projection E — X defined by (,y) — x is proper.

Theorem 2.4 (Definable quotients (e.g. 10.2.15 [6]). Let E be a proper equivalence rela-
tion on a definable set X. Then X/E ewists a proper quotient, namely X'/E is a definable
subset of some R™ and the projection X' — X/E is « surjective proper definable map.
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In the remainder of this section, G and I denote compact definable groups. The
following is a corollary of Theorem 2.4.

Corollary 2.5 (e.g. 10.2.18 [6]). Let X be a definable set with a definable G-action.
Then X/G is a definable subset of some R™ and the orbit map p : X — X/G is a
surjective proper definable map. '

By similar proofs of 2.10 [14] and 2.11 [14], the standard construction of the associated
principal bundle from a fiber bundle and by Theorem 2.4, we have the following.

Proposition 2.6. (1) Let (E,p,X,K) be a principal definable G-fiber bundle and F a
definable set with an effective definable K-action. Then (E X F,p',X,F,K) is a
definable G-fiber bundle, where p' : E Xy F — X denotes the projection defined by
p((2,K]) = p(z).

(2) The associated principal G-fiber bundle of a definable G-fiber bundle is definable.

(3) Two definable G-fiber bundles having the same base space, fiber and structure group
are definably G-isomorphic if and only if their associated principal definable G-fiber
bundles -are definably G-isomorphic.

Let X be a definable set with a definable G-action and z € X. A G-invariant definable
subset S of X is a definable slice at x in X if GS is a G-invariant definable open
neighborhood of the orbit G(z) of z in X, G x¢, S is a definable set with the standard
definable G-action G x (G x¢,S) = G x¢, S, (9,[¢'. s]) — [9¢'. s], and the map G x¢, S —
GS C X defined by [g, s] — gs is a definable G-homeomorphism.

Theorem 2.7 (Definable slices). Let X be a definable G-set and © € X. Then there
ezists a definable slice S at x in X.

Let Y be a G-invariant definable subset of a definable G-set X. A definable G-
retraction from X toY means a definable G-map R: X — Y with R|Y =idy.
For the proof of Theorem 2.7, we recall the following result.

Theorem 2.8 (3.4 [11]). Let Y be a G-invariant definable closed subset of a definable
G-set X. Then there exist a G-invariant definable open neighborhood U of Y in X and a
definable G-retraction from U to Y.

Proof of Theorem 2.7. Since G(x) is a G-invariant definable closed subset of X and
by Theorem 2.8, we have a G-invariant definable open neighborhood U of G(z) in X and
a definable G-retraction ¢ from U to G(x). Let S := ¢~'(z). Then S is a definable G,-set
and U = GS. By I1.4.2[2], themap f: Gx¢, S = GS (C X) defined by f([g,5]) = gsisa
G-homeomorphism. On the other hand, the map k : G x S — GS defined by k(g,s) = gs
and the projection 7 : G X S = G Xg, S are definable maps. Since the graph of f is the
image of that of k by 7 x idgg, f is a definable G-homeomorphisin. O

Definition 2.9. A definable G-fiber bundle n = (E,p, X, F, ') satisfies the definable
Bierstone condition if for any 2 € X, there exist a G,-invariant definable open neigh-
borhood U, of z in X and a definable group homomorphism p, : G; — K such that
N|U, is definably G,-isomorphic to U, x F with the definable G,-action defined by
G x (Up x F) = U, x F,(h,u,y) = (hu, pg, (h)y).
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Note that a definable G-fiber bundle over a definable G-set satisfies the definable Bier-
stone condition if and only if the associated principal definable G-fiber bundle satisfies
it.

Using Theorem 2.7, similar proofs of 1.4 [15] and 1.5 {15] prove the following proposition.

Proposition 2.10. Every definable G-fiber bundle over a definable G-set satisfies the
definable Bierstone condition.

A finite definable open covering {U;}; of a definable G-set is called a finite de finable
open G-covering if each U; is G-invariant. A finite definable G-open covering is numerable
if there exists a definable partition of unity {\;}; subordinate to {U;}; such that each ),
is G-invariant.

The following proposition shows existence of (non-equivariant) definable partition of
unity.

Proposition 2.11 (e.g. 6.3.7 [6]). Let X be o definable set in R™ and {U;}, o finite
definable open covering of X. Then there ezists a definable partition of unity subordinate to
{U;}2.,, namely there ezist definable functions Ay,..., Ay : X = R such that 0 < A; < 1,
supp \i CU; and 30 A = 1.

The following is an equivariant version of Proposition 2.11.

Proposition 2.12 (Equivariant definable partition of unity). Every finite definable open
G -covering of a definable G-set X s numeruble.

Proof. Let {U;}X, be a finite definable open G-covering of a definable G-set X.
By Corollary 2.5, the orbit map p : X — X/G is a surjective proper definable map.
Since p : X — X/G is open, {p(U:)}l=, is a finite definable open covering of X/G.
By Proposition 2.11, one can find a definable partition of unity {};}2, subordinate to
{p(U)},. Hence \; := Xjop,..., A = . o p are G-invariant and subordinate to
{lji}?r-l' O

Note that in Proposition 2.11 and 2.12, we can replace Y .. ; Ay = 1 by max;cij<n Ai = 1.

Theorem 1.1 follows from Theorem 2.13 below.

Theorem 2.13. If X is a compact definable G-set, then every definable G-fiber bundle
n = (E,p,X x [0,1], F, K) is definably G-isomorphic to (p~*(X x {0}) x [0,1].p", X x
[0,1), F,K), where G acts on [0,1] trivially, X x {0} is identified with X and p' =
plp (X x {0}) x idj,y.

To prove Theorem 2.13,. we need the following three results.

Lemma 2.14. Let A be a definable G-set, X| = A x [a,b],Xy = A x [b,¢], and n =
(E,p, X, F,K) a definable G-fiber bundle over X = X|UX,, where G acts trivially on [a, b]
and [b, ). Ifn|X, and n|X; are definably G-isomorphic to X; x F' and Xy X F, respectively,
then so is m, where the action on F is induced by a definable group homomorphism from
GtoK.

Proof. Let u; : X; x F = p~}Y(X;), (i = 1,2), be definable G-isomorphisms and
wi =l (N3N X)) x F, (i =1,2). Then h:=wy'ow, : (X;NX)x F = (X, N\,)x F
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is a definable G-isomorphism. Hence there exists a definable map [ : X} N.X5 — K such
that h(z,y) = (z,((z)y), where (z,y) € (X;NXy) x F. Let iy : A — K,is(a) = l{a.b).
Then we can extend h to a definable G-isomorphism

h:\yx F—o X, X F bz, 22,y) = (T1, T2, 14(T1)y).

Since two definable G-isomorphisms u; : X; x F — p~}(X;) and Upoh : Xgx F — p~1 (X2)
coincide on (X1 NX3) x F and X; X F and X, x F are closed in (X UXy) x F =X x F,
the gluing map provides the required definable G-isomorphism. O

Let H be a definable subgroup of G, p : H — K a definable group homomorphism
between definable groups, and F' a definable set with an effective definable K-action.
For any definable H-set S, we define a definable G-fiber bundle €¢*(S) by (G xy (S x
F),p,G xy S,F,K), where p: G x (S x F) = G x5 5,p((g, (5,9)]) = lg. 5] and H acts
on F via p.

Lemma 2.15. Let X be a compact definable G-set and n = (E,p,X x [0.1], F,K) a
definable G-fiber bundle over X x [0,1]. Then there exist finitely many points z,, ... T,
with definable slices S, , ..., S,, and definable group homomorphisms {p; : G, = K},
such that {GS.. }iL, is a finite definable open G-covering of X and each n|(GS,, x [0,1])
is definably G-equivalent to € (Sy,) x [0, 1].

Proof. By Proposition 2.10, for any (z,t) € X x [0,1], there exist a G,-invariant
definable open neighborhood U, of z in X and 6 > 0 such that n|(U, x [t — .t + d]) is
definably G.-isomorphic to (U, x [t — 6, +8]) x F, where the action on F is induced by a
definable group homormorphism p, : G, — K. Since [0,1] is compact and by Lemma 2.14,
we have a G-invariant definable open neighborhood V; of z in X such that 7|V x [0,1] is
definably G-isomorphic to (V5 x [0,1]) x F. By Theorem 2.7, we have a definable slice S,
at z with S, C 1. Hence there exists a definable G. -isomoaphism lp: Se x[0,1] x F —
NSz x [0,1). Thus h, : G x¢, (S x[0,1] x F) = €#(S,) x [0,1] = 77|GS x [0, 1] defined
by h«(lg, (s,t, £)]) = gls(s,t, f) is a deﬁnable G- equlvalence Since X is compact. there
exist finitely many points z,..., 2z, of X such that {GS;,}, is a finite definable open
G-covering of X. O

Theorem 2.16. Let X be a compact definable G-set, v : X x [0,1] = X x [0,1],7(x,1) =
(z,1) and n = (E,p, X x [0,1], F, K) a definable G-fiber bundle over X x [0,1]. Then
there ezists a definable G-morphism ¢ : E — E covering r.

Proof. By Lemuma 2.15, we can find finitely many points x,...,.r, with definable
slices Sg,,....S;, and definable group homomorphisms {p; : GL — K}, such that
{G Sy}, is a finite definable open G-covering of X and each 7|(GS., x [0, 1]) is definably
G-equivalent to €”i(S;,) x [0,1]. By Proposition 2.12, there exist C-mvarmnt definable
functions ly,..., 0, : X — [0, 1] such that:

(a) The support of each I; is contained in GS,,.
(b) max<i<, li(x) =1 forall r € X.

Let hy, @ (G Xxq,, (Se; x F)) x [0,1] = p~}(GS;, x [0,1]) be a cleﬁnable G-equivalence
covering a definable G-homeommphlbm fe; X idp 1y 1 (G X, x [0,1] = GS;, x [0,1].
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Define
(’U,,',’I'i) . (E, X X [0, 1]) (E X x [0 ]) 1 < 1 < n,

Ti(.”l),t) ={ (x,max(li(fz,. [g,s])), v ([ga ] ) (G X Gy, :L‘;) [0 1]

(z,1), otherwise

i(he; ((9: (5, F)), 1) = Rz, ([g- (5, f)], max(li(£z([g. 51)), 1))
' for any ([g, (5. f)].1) € (G xg,, (Sz x F)) x [0,1],
u; is the identity outside p~'(GS;, x [0, 1]).
Then r = r,0---or,. Therefore ¢ = upo0---ou; : E — E'is the required definable
G-morphism. O

Theorem 2:13 follows from Theorem 2.16.

3. DEFINABLE G-VECTOR BUNDLES AND PROOF OF THEOREM 1.2, 1.3 AND
COROLLARY 1.4

We recall that G and K denote compact subgroups of GL,(R) except section 2. Then
remember that G is a compact algebraic subgroup of GL,(R) and any closed subgroup of
G is a compact algebraic subgroup of G.

Note that a definable group homomorphism from G to O.(R) is a definable C*-map
because it is a continuous group homomorphism between Lie groups.

Recall universal G-vector bundles (e.g. [12]).

Definition 3.1. Let  be an n-dimensional representation of G induced by a definable
group homomorphism B : G — O, (R) of Q. Suppose that A (€2) denotes the vector space
of n X n-matrices with the action (g, A) € G x M(Q) — B(g)AB(g)~! € M(Q). For any
positive integer k, we define the vector bundle 7(Q, k) = (E(Q, k), u, G(§2, k)) as follows:

GQk)={A€ M(Q)|A*=A4,A= A" TrA =k},

- E(Q,k) = {(4,v) € G(Q, k) x QAv = v},
u: E(Q,k) = G(Q,k),u((4,v)) = A,
where 4’ denotes the transposed matrix of 4 and Tr A stands for the trace of A. Then
(R, k) is an algebraic vector bundle. Since the action on (2, k) is algebraic, it is an
algebraic G-vector bundle. We call it the universal G-vector bundle associated with 2
and k. Remark that G(Q, k) C M(Q) and E(Q, k) C M(Q) x Q are nonsingular algebraic
G-sets.

Definition 3.2. (1) A definable G-vector bundle of rank k is a definable G-fiber bun-
dle with fiber RF and structure group GLi(R). We usually write (E,p, X) instead
of (E,p, X,R¥, GL,(R)).

(2) Let n = (E,p,X) and o = (E',p', X') be definable G-vector bundles. A definable
G-map f : E — E'is called a definable G-morphism if p=p' o f and f is linear
on each fiber. A definable G-morphism A : E — E' is said to be a definable G-
isomorphism if there exists a definable G-morphism k' : E' = E such that hol' = id
and h' o h =id. "
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(3) A definable G-section of a definable G-vector bundle means a definable G-section
as a definable G-fiber bundle.

By a way similar to 3.1 [10], we have the following proposition.

Proposition 3.3. Ifn and ' are two definable G-vector bundles over a definable G-set
X, thenn®n', n®n', Hom(n,n') and the dual bundle nV of n are definable G-vector
bundles over X.

The next result states equivalent properties of strong definablity of definable G vector
bundles, which is obtained in a way similar to the proof of 3.6 {3].

Theorem 3.4. Letn = (E,p, X) be a definable G-vector bundle of rank k over a definable
G-set X. Then the following five properties are equivalent.

(1) The bundle n is strongly definable.
(2) There exists a surjective definable G-morphism from a trivial G-vector bundle X x
onto n for some representation Q of G.
(3) There ezists an injective definable G-morphism from 7 to a trivial G-vector bundle
X x Q for some representation Q0 of G.
(4) There ezists a definable G-vector bundle ' over X such that n @ n' is definably
G-isomorphic to a trivial G-vector bundle.
(5) There ezist non-equivariant definable sections sy, ... . sy - X = E of n such that:
(a) For any z € X, the vectors sy(x)....,s,(x) generate the fiber p~'(z) over .
(b) The sections sy, ... , s, generate a finite dimensional G-invariant vector subspace
of I'(n), where I'(n) denotes the set of all continuous sections of n with the natural
G-action, namely (g - s)(z) = g(s(g~'x)) for allg € G and z € X.

Theorem 1.2 follows from Theorem 3.4 and Theorem 3.5 below.

Theorem 3.5. Every definable G vector bundle over a deﬁnable G set satisfies Condition
(5) in Theorem 8.4.

By a way similar to the proof of 3.9 [3], we have the following proposition.

Proposition 3.6. Let n = (E,p, X) be a definable G-vector bundle over a definable set
X wnth the trivial G-action and A o closed definable subset of X such that n|A is strongly
definable. If A admits a definable retraction from X to A, then there exists some open
definable neighborhood V" of A in X' such ¢ 7 1s strongly definable.

The following is the equivariant definable version of Urysohn's lemma, and its semial-
gebraic version is proved in 1.6 [5]. We use only a non-equivariant version of it to prove
Theorem 3.5.

Lemma 3.7. Let X be a definable set with a definable G-action and A and B disjoint
closed definable G-subsets of X. Then there exists a G-invariant definable function f :
X — [0,1] such that f~'(0) = A and f~'(1) = B.

Proof. By Corollary 2.5, X/G is a definable subset of some R” and the orbit map p :
X — X/G is a surjective proper definable map. Hence 7(.4) and n(B) are closed definable
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subsets of X/G. Then the function h : X/G — [0, 1] defined by A(z) = g ”f‘gfﬁ%ﬁ)ww))
is a definable function such that h='(0) = n(A4) and A™}(1) = n(B), where d(z,m(A))
(respectively d(z,7(B))) denotes the distance between z and m(A) (respectively z and

m(B))). Therefore f := hom : X — [0, 1] is the required G-invariant definable function.
O

Proposition 3.8. Let H be a closed subgroup of G, D the closed unit ball of a represen-
tation Q of H. Then G x D is a compact affine definable C*G manifold with boundary.
In particular, G xy D is definably G-imbeddable into some representation of G.

Proof. Note that G and Q are affine definable C*° H-manifolds. Thus by 4.4 [13] and
4.5 [13], G xy Q is a definable C*°G-manifold whose underlying manifold is a definable
C'*®-submanifold of some R¥. Since G xy D is compact, there exists a C*G-imbedding
i from G xg D to some representation = of G. Applying the polynomial approximation
theorem to ¢ and averaging it, we have a definable C*°G-imbedding from Gxy D to=. O

‘A definable G-CW-complez is a finite G-CW -complex such that the characteristic
map of each G-cell is a definable G-map (see [11}).

Theorem 3.9 (1.1 [11]). Let X be a definable G-set and Y a closed definable G-subset
of X. Then there erist a definable G-CW-complez Z in a representation ) of G,
G-CW -subcomplez W of Z, and a definable G-map f : X — Z such that:

(1) The map f takes X and )" definably G-homeomorphically onto G-invariant definable
subsets Z, and W, of Z and W obtained by removing some open G-cells from Z and
W, respectively.

(2) The orbit map m: Z — Z/G is a definable cellular map.

(3) The orbit space Z/G is a finite simplicial complex compatible with m(Z,) and w(17).

(4) For each open G-cell ¢ of Z, ¢ : © — =(¢) has a definable section s : 7(¢) = T,
where € denotes the closure of c in Z.

Furthermore, if X is compact, then Z = f(X) and W = f (Y).
Using Proposition 3.6, Lemma 3.7, Proposition 3.8, Theorem 3.9, a similar proof of 3.5
[3] proves Theorem 3.5.
By Theorem 1.2 and by the proof of 4.7 [11], we have the following.

Proposition 3.10. Let 7 a definable G-vector bundle over a compact definable G-set X'
Then every continuous G-section of 1 can be approzimated by definable G-sections.

We obtain the following theorem using Proposition 3.3 and Proposition 3.10.

Theorem 3.11. Let  and ¢ be definable G-vector bundles over a compact definable G-
set. If n is G-isomorphic to , then they are definably G-isomorphic.

Proposition 3.12 (2.11 [15]). Let XY be definable G-sets. Ifn is G-vector bundle over
Y and f,h: X =Y are G-homotopic continuous G-maps, then f*(n) is G-isomorphic to
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Proposition 3.13 ([1], [20]). Let X be a compact G-set. If n is a G-vector bundle over
X, then there ezist a representation Q of G and a continuous G-map f : X — G(Q, k)
such that n is G-1somorphic to f*(v(Q, k)). where k denotes the rank of 7.

Theorem 3.14. If X is a compact definable G-set, & : Vectéef(.\') — Vectg(X) is
bijective.

Proof. Injectivity follows from Theorem 3.11.

Let 1 be a G-vector bundle over X. Then by Proposition 3.13, there exist a represen-
tation Q of G and a continuous G-map f : X — G(2, k) such that n is G-isomorphic to
F*(7(Q,k)), where k denotes the rank of 7. By 3.5 [11], f is G-homotopic to a definable
G-map h : X — G(0,k). Hence by Proposition 3.12, f*(v(Q, %)) is G-isomorphic to
h*(v(, k)). Therefore 7 is G-isomorphic to a definable G-vector bundle h*(y(Q, k)). O

A G-set X is G-contractible if there exist a fixed point zy € X and a continuous G-map
F: X x[0,1] = X such that F(z,0) = x and F(z,1) = z for all 2 € X', where G acts
on [0,1] trivially. We have the following as a corollary of Theorem 1.1.

Corollary 3.15. Let X be a compact G-contractible definable G-set. Then every definable
G-vector bundle over X is definably G-isomorphic to a trivial G-bundle.

Theorem 3.16 (3.3 [11]). Let X be a definable G-set. Then there ezists o definable G-
deformation retraction R from X to a compact definable G-subset Y of X.

By a way similar to the proof of 4.10 [11], we have the following proposition.

Proposition 3.17. The map R* : Vec*téf'f(Y) - VecthEf(X) defined by 7 — R*(n) is
bijective.

Theorem 1.3 follows from Theorem 3.14 and Proposition 3.17. Corollary 1.4 follows
from Theorem 1.3 and Proposition 3.12.

4. DEFINABLE C"G-FIBER BUNDLES AND DEFINABLE C"G-VECTOR BUNDLES

Definition 4.1 ([12]). Let 1 < r < w.

(1) A definable fiber bundle = (E,p, X, F,K) is a definable C"-fiber bundle if the
total space E and the base space \\' are definable C™-manifolds, the structure group
K is a definable C"-group, the fiber F is a definable C”K-manifold with an effective
action, the projection p is a definable C™-map and all transition functions of n are
definable C"-maps. A principal definable C7-fiber bundle is defined similarly.

(2) Definable C"-morphisms, definable C"-equivalences, definable C"-isomorphisms
between definable C"-fiber bundles and de finable C”-sections of a definable CT fiber
bundle are defined similarly.

(3) A definable C"-fiber bundle = (E,p, X, F, K) is a definable C*G-fiber bundle if
the total space E and the base space X are definable C"G-manifolds. the projection
p is a definable C"G-map and G acts on E through definable ("-equivalences. A
principal de finable CTG-fiber bundle is defined similarly.



TOMOHIRO KAWAKAMI

(4) A definable C™-morphism (resp. a definable C"-equivalence, a definable C"-isomor-
phism, a definable C"-section) is a definable C"G-morphism (resp. a definable
CTG-equivalence, a de finable CTG-isomorphism, a definable C"G-section) if it is
a G-map.

The following is a definable C"G-version of Proposition 2.6, which is obtained similarly.

Proposition 4.2. Suppose that 1 <r < w.

(1) Let (E,p,X,RK) be o principal definable C"G-fiber bundle and F an affine defin-
able C™K -manifolds with an effective action. Then (E xg F.p', X, F K} is ¢ defin-
able CTG-fiber bundle, where p' : E xx F' — X denotes the projection defined by
p([2 K]) = p(2).

(2) The associated principal G-fiber bundle of a definable C"G-fiber bundle is a principal
definable C™G-fiber bundle.

(3) Two definable C"G-fiber bundles having the same base space, fiber and structure
group are definably C™G-isomorphic if and only if their associated principal definable
C"G-fiber bundles are definably C"G-isomorphic.

Proposition 4.3. Let X be a definable C™G-submanifold of a representation Q2 of G and
1 <7 < 0. Then for any T € X, there ezists a linear definable C"-slice at = in X,
namely there ezists a definable CTGy-imbedding i from a representation = of G, into
X such that i(0) = 7, G X¢, = 1s a definable C"G-manifold with the standard action
(9,1g'.z]) = [99', 2] and the map p: G X, E — X defined by [g, ] > gi(z) is a definable
CrG-diffeomorphism onto some G-invariant definable open neighborhood of G(x) in X.

Proof. Since G is a compact algebraic subgroup of GL,(R) and by 4.1 [13], for any z €
X, there exists a linear definable C* slice at z in Q, namely we have a representation = of
G, and a definable C®G,, imbedding j : =’ — Q such that j(0) = &, G x, Z' is a definable
C*™G manifold and the map ' : G xg, Z' — Q defined by 1/'([g, z]) = gj(7) is a definable
C*G diffeomorphism onto a G invariant definable open neighborhood Gj(Z') of G(z) in
Q. Then j~!(X) is a definable C"G, submanifold of =’ and j|j71(X):j~'(X) » X is a
definable C"G, imbedding. Hence there exists a sufficiently small G, invariant definable
open neighborhood U of 0 in j7!(X) such that U is definably C"G, diffeomorphic to a
representation = of G,. Take a definable C"G, diffeomorphism [ : = — U with 1(0) = 0
and let 7 = jol. Then i is a definable C"G, imbedding from = to .X' and the map
L G xg, = — X defined by u([g, z]) = gi(x) is a definable C"G diffeomorphism onto a
G invariant definable open neighborhood Gi(Z) = Gj(U) of G(x) in X. O

Note that if 7 = 0o or w, then Proposition 4.3 is proved in 4.1 [13].

We can consider the definably C’-Bierstone condition as a definable C"G-version of
Definition 2.9. Using Proposition 4.2 and 4.3, we have the following definable C"-version
of Proposition 2.10.

Proposition 4.4. Let 1 < r < w. Then every definable C"G-fiber bundle over an affine
definable C™G-manifold satisfies the definable C"-Bierstone condition.

The proof of 4.8 [12] proves the following.

42
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Proposition 4.5 (4.8 [12]). (Definable C™ partition of unity). Let X be a definable closed
subset of R™, {U;}'_, a finite definable open covering of X and 0 < r < co. Then there
exist definable C™ functions Ay, ..., N : R™ = R such that 0 < \; < 1, supp \; C U; and
S h(z)=1foranyz € X

The following is a definable C"-version of Proposition 2.12.

Proposition 4.6 (Equivariant definable C"-partition of unity). Let X be a definable CTG-
submanifold closed in a representation Q of G and {U;}%, a finite definable open G-
covering of X and 0 < r < oo. Then {U;}l., is numerable, namely there ezist G-
invariant definable C"-functions Ay, ..., A : X 2> R such that 0 < \; <1, supp \, C U
and > i Mi(z) =1 for any z € X.

Proof. First of all, we recall the structure of the orbit space Q/G. The algebra R[Q2)¢
of G invariant polynomials on Q is finitely generated [21]. Let py,...,pn : @ — R be
G invariant polynomials generating R[Q]%, and put p : @ = R",p = (p1,...,pn). Then
p is a proper polynomial map, and it induces a closed imbedding 5 : /G — R™ such
that p = j o, where 7 : @ — Q/G denotes the orbit map. Hence we can identify Q/G
(resp. X/G, ) with j(2/G) (resp. j(X/G), p). Thus {p(U;)}._, is a finite definable
open covering of .X/G because p|X : X — X/G is open. Note that p(X) is closed in R"
because X is closed in Q2. By Proposition 4.5, one can find a definable partition of unity
{Xi}..; subordinate to {p(U;)},=,. Hence A; := X, 0p,..., A, := A, o p are the required G
invariant definable C™ functions. ]

We can replace 37 A; =1 by maXi<i<a A; = 1 in Proposition 4.5 and 4.6.

By the proof of 2.10 [12], we may assume that an affine definable C"G-manifold is a
definable C"G-submanifold closed in some representation Q of G. Thus similar proofs of
Lemma 2.14, 2.15 and Theorem 2.16 prove the following.

Theorem 4.7. If X is a compact affine definable C"G-manifold and 1 < r < oo, then
every definable C"G-fiber bundle n = (E,p, X x [0,1], F, K) is definably C™G-isomorphic
to (p~H(X x {0}) x [0,1],p', X x [0,1], F, K), where G acts on [0,1] trivially, X x {0} is
identified with X and p' = plp™ (X x {0}) x idjp,y;.

Theorem 1.5 follows from Theorem 4.7.

The following result is a definable C"G-version of Theorem 3.4, which is obtained
similarly.

Theorem 4.8. Let n = (E,p,X) be u definable C"G-vector bundle of rank k over an
affine definable C*G-manifold X and 1 < r < co. Then the following five properties are
equivalent.
(1) The bundle 1) is strongly definable.
(2) There emists a surjective definable C"G-morphism from a trivial G-vector bundle
X x Q onto n for some representation § of G.
(3) There ezists an injective definable C™G-morphism from 1 to a trivial G-vector bundle
X x Q for some representation Q of G.
(4) There exzists a definuble C™G-vector bundle ' over X such that n® 1 is definably
C"G-isomorphic to a trivial G-vector bundle.
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(5) There exist non-equivariant definable C™-sections sy, ... .sn : X — E of  such that:
(a) For any x € X, the vectors s;(x),. .., sn(x) generate the fiber p~H(z) over .
(b) The sections sy, ... ,s, generate a finite dimensional G-invariant vector subspace

of T'(n).

Proof of Theorem 1.7. Since X is compact, a similar proof of Lemma 2.15 proves
that there exist finitely many points i, ...,%, € X with definable C™-slices Sz,,... .5,
and a-dimensional representations Q,,...,8, of Gy,,...,Gg,, respectively, such that
{GS,,}~, is a finite definable open G-covering of X and each n|GS;, is definably C"G-
equivalent to €(S,,), where €(S;,) = (G Xa,, (Sz; X z,), 1 G Xa., Sz:),p : G Xg,, (Sa; %
Q) = G xq,, Se,np((9:7,y]) = [9,z] and « denotes the rank of 7. Clearly each €(S,)
admits finitely many definable C"-sections satisfying Condition (5) in Theorem 4.8. Thus
every 11|GS;; admits definable C"-sections s;1, . . . si; satisfying the same condition.

By Proposition 4.6, we have an equivariant definable C”-partition of unity NI,
subordinate to {GS;, }~,. Let 5 := Xisy. Then for any ¢ € G, g-5ig = (g * Sig)-
Therefore a finite family of definable CT-sections 5i7,....514, -+, 5n1,-- -, 3nt, Satisfies
the required conditions.

Now we prove the second part of the theorem. If 7 is strongly definable, then there
exist a representation Q of G and a definable C"G-map f from X to G(f, ) such that 7
is definably C"G-isomorphic to f*(y(Q,@)). Since the total space of f*(v(f2, @)) is affine,
E is affine.

Conversely, we assume that E is a definable C"G-submanifold of a representation = of
G.

Let }

F,: X - M(Z),Fi(z) = the matrix projecting T,.= onto T, E,

Fy: X — M(Z), Fo(z) = the matrix projecting TZ onto T,.X.

Then by a way similar to the proof of 1.3.3 [19], F; and F; are definable maps. Thus they
are definable CT-maps. By the definition of G-action, they are G-maps. Hence they are
definable C"G-maps. Let

F:X = GE a),F =(id— F)F,.

Then F is a definable C"G-map and 7 is definably C"G-isomorphic to F*((Z, a)). There-
fore 7 is strongly definable. O
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