SK INVARIANTS FOR G-MANIFOLDS WITH BOUNDARY

東京理科大学工学部 原 民夫 (Tamio Hara)

Faculty of Engineering, Science University of Tokyo

Let G be a finite abelian group. A G-manifold means an unoriented compact smooth manifold, which may have boundary, together with a smooth action of G. Let N_i (i=1,2) be G-manifolds with the same dimension, L a codimension zero invariant submanifold of each boundary ∂N_i and $\varphi, \psi: L \to L$ G-equivariant diffeomorphisms. Pasting along L, we have G-manifolds $M_1 = N_1 \cup_{\varphi} N_2$ and $M_2 = N_1 \cup_{\psi} N_2$. Then M_1 and M_2 are said to be obtained from each other by an equivariant cutting and pasting or a G-SK process. The abbreviation SK stands for Schneiden und Kleben in German.

Definition. Consider a map T defined for all G-manifolds which takes its values in the ring \mathbb{Z} of rational integers and is additive with respect to the disjoint union of G-manifolds. We call T a G-SK invariant or simply an invariant if it is invariant under the G-SK process, i.e., $T(M_1) = T(M_2)$ for the above M_1 and M_2 . Further, such a T is said to be multiplicative if $T(M \times N) = T(M) \cdot T(N)$ for any G-manifolds M and N.

As an example, χ^H given by $\chi^H(M) = \chi(M^H)$ is a multiplicative invariant, where $H \leq G$, a subgroup of G, and χ is the Euler characteristic.

The purpose of this note is to characterize a form of multiplicative invariants.

By a G-slice type, we mean a pair $\sigma = [H; V]$ of $H (\leq G)$ and an H-module V, i.e., a finite-dimensional real vector space together with a natural linear action of H which satisfies that $V^G = \{0\}$. Let St(G) be the set of all G-slice types. There exists a partial ordering on St(G) as follows: $[H; V] \preceq [K; W]$ means that $H \leq K$ and $W = V \oplus W^H$ as H-modules. In this case, we denote $[K; W]_H = [H; V]$.

Let $SK_*^G(\partial)$ be an SK group resulting from equivariant cuttings and pastings of G-manifolds.

Proposition(cf.[1], [2]). $SK_*^G(\partial)$ is a free SK_* -module with basis $\{[G \times_H D(V)], [G \times_H D(V \times \mathbf{R})] \mid [H; V] \in St(G)\}$, where D(V) denotes the associated H-disk.

An invariant T induces an additive homomorphism $SK_*^G(\partial) \to \mathbf{Z}$ and denote by \mathcal{T}_* the set of all these homomorphisms. For $\sigma = [H; V]$, let χ_{σ} be an invariant defined by $\chi_{\sigma}(M) = \chi(M_{\sigma})$, where M_{σ} is a submanifold of M consisting those points $x \in M$ whose slice types σ_x satisfy that $\sigma \preceq \sigma_x$. Further, consider an invariant θ_{σ} as

$$\theta_{\sigma}(M) := |G/H|^{-1} \left\{ \chi(M_{\sigma}) + \sum_{H < K \leq G} n_H(K) \left(\sum_{\sigma \prec \tau = [K;W]} \chi(M_{\tau}) \right) \right\},$$

where an integer $n_H(K)$ for K with $H \leq K \leq G$ is defined inductively as follows: $n_H(H) = 1$ and $n_H(K) = |K/H| - \sum_{H \leq L < K} n_H(L)$ (|K/H|; the order of K/H). By evaluating θ_{σ} on the basis elements for $SK_*(\partial)$ in Proposition, we have the following theorem.

Theorem(cf.[3]). The class $\{\theta_{\sigma} \mid \sigma \in St(G)\}$ provides a basis for \mathcal{T}_* as a free **Z**-module.

A multiplicative invariant T is considered to be a ring homomorphism $SK_*^G(\partial) \to \mathbf{Z}$.

Definition. Such a (non-trivial) invariant T is said to be of type $\langle G/H \rangle$ if H is the minimum element with respect to the inclusion \leq of subgroups in the set consisting of those subgroups K of G such that $T(G/K) \neq 0$.

In fact, it is seen from the multiplicative structure of $SK_*^G(\partial)$ that $H = \cap_{\lambda} K_{\lambda}$, where $\{K_{\lambda}\}$ is the set of all subgroups of G such that $T(G/K_{\lambda}) \neq 0$. For example, χ^H is of type $\langle G/H \rangle$.

Theorem(cf.[4]). If T is of type $\langle G \rangle$, then it is uniquely determined by the value $a = T(D^1)$ on the one-dimensional disk D^1 with the trivial action and has a form $T(M) = a^{\dim(M)}\chi(M)$ for any G-manifold M. Here, if a = 0, then a^0 is regarded as 1.

Let T be a multiplicative invariant of type $\langle G/H \rangle$ with $H \neq \{1\}$ in general and let $\mathcal{V}_T = \{a\} \cup \{\gamma_j\}_j$ be integers given by $a = T(D^1)$ and $\gamma_j = |G/H|^{-1}T(G \times_H D(V_j))$

on G-manifolds $G \times_H D(V_j)$, where $\{V_j\}$ is the complete set of non-trivial irreducible H-modules.

Denote by St[H] the set of all G-slice types with H as an isotropy subgroup.

Main Theorem(cf.[4]). Let T be a multiplicative invariants of type $\langle G/H \rangle$ with $H \neq \{1\}$. Then it is uniquely determined by the class of integers \mathcal{V}_T and has a form

$$T(M) = \sum_{\sigma \in St[H]} a^{\dim(M_{\sigma})} \gamma_{\sigma} \cdot \chi(M_{\sigma})$$

for any G-manifold M, where $\gamma_{\sigma} = \prod_{j} \gamma_{j}^{a(j)}$ if $\sigma = [H; \prod_{j} V_{j}^{a(j)}] \in St[H]$. In case where a or $\gamma_{j} = 0$ for some j, we regard a^{0} or γ_{j}^{0} as 1 respectively.

Fxample.

Multiplicative invariants T of type $\langle G/H \rangle$, $H \neq \{1\}$, with $a, \gamma_i \in \{-1, 0, 1\}$:

$$(1) \ \underline{\gamma_j = 1 \ (\forall j)},$$

$$T(M) = \begin{cases} \chi(M^H) & \text{if } a = 1, \\ \chi(M^{H, \ 0}) & \text{if } a = 0, \\ \chi(M^{H, \ ev}) - \chi(M^{H, \ od}) & \text{if } a = -1, \end{cases}$$
 where $M^{H, \ 0}$ is the isolated points of M^H and $M^{H, \ ev}$ (or $M^{H, \ od}$) is the union of

even-dimensional (or odd-dimensional) components of M^H respectively.

$$(2) \ \underline{\gamma_{j} = -1} \ (\forall j),$$

$$T(M) = \begin{cases} \chi(M_{+}^{H}) - \chi(M_{-}^{H}) & \text{if } a = 1, \\ \chi(M_{+}^{H, 0}) - \chi(M_{-}^{H, 0}) & \text{if } a = 0, \\ (-1)^{\dim M} \{\chi(M_{2, +}^{H}) - \chi(M_{2, -}^{H})\} & \text{if } a = -1, \end{cases}$$

 $\{\chi(M_{2,+}^H) - \chi(M_{2,-}^H)\} \quad \text{if } a = -1,$ where $M_+^H = \{x \in M^H \mid l((\sigma_x)_H); \text{even}\}, \ M_-^H = \{x \in M^H \mid l((\sigma_x)_H); \text{odd}\} \ ((\sigma_x)_H \leq 1)\}$ σ_x , $l((\sigma_x)_H) = \sum_j a(j)$; the total length of $(\sigma_x)_H = [H; \prod_j V_j^{a(j)}])$, $M_{\varepsilon}^{H, 0} = M_{\varepsilon}^H \cap M_{\varepsilon}^{H, 0}$ $M^{H,\;0} \; ext{and} \; M^H_{2,\;+} = \{x \in M^H \;|\; l_2((\sigma_x)_H); ext{even}\}, \; M^H_{2,\;-} = \{x \in M^H \;|\; l_2((\sigma_x)_H); ext{odd}\}$ $(l_2((\sigma_x)_H) = \sum_j a(j)$ summing over all j with $\dim(V_j) = 2$; the total length of the two-dimensional irreducible H-modules of $(\sigma_x)_H$).

$$(3) \ \underline{\gamma_j = 0 \ (\forall j)},$$

$$T(M) = \begin{cases} \chi(M_{\sigma^H(\mathbf{0})}) & \text{if } a = 1, \\ 0^{\dim(M)}\chi(M^H) & \text{if } a = 0, \\ (-1)^{\dim(M)}\chi(M_{\sigma^H(\mathbf{0})}) & \text{if } a = -1, \end{cases}$$
where $M_{H(\mathbf{0})}$ is the union of the components of

where $M_{\sigma^H(\mathbf{0})}$ is the union of the components of M^H with $\dim(M_{\sigma^H(\mathbf{0})}) = \dim(M)$.

References

- H. Koshikawa, SK group of manifolds with boundary, Kyushu J. Math. 49 (1995),
 47-57.
- [2] T. Hara and H. Koshikawa, Cutting and pasting of G-manifolds with boundary, Kyushu J. Math. 51 (1997), 165-178.
- [3] T. Hara, Equivariant cuttings and pasting of G-manifolds, Tokyo J. Math. 23 (2000), 69-85.
- [4] T. Hara, Multiplicative SK invariants for G-manifolds with boundary, Tokyo J. Math. 26 (2003), 261-273.