<table>
<thead>
<tr>
<th>Title</th>
<th>SK INVARIANTS FOR G-MANIFOLDS WITH BOUNDARY (Topological Transformation Groups and Related Topics)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Hara, Tamio</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (2003), 1343: 73-76</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2003-10</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/43501</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
SK INVARIANTS FOR G-MANIFOLDS
WITH BOUNDARY

東京理科大学工学部 原 民夫 (Tamio Hara)
Faculty of Engineering, Science University of Tokyo

Let G be a finite abelian group. A G-manifold means an unoriented compact smooth manifold, which may have boundary, together with a smooth action of G. Let N_i $(i=1,2)$ be G-manifolds with the same dimension, L a codimension zero invariant submanifold of each boundary ∂N_i and $\varphi, \psi: L \to L$ G-equivariant diffeomorphisms. Pasting along L, we have G-manifolds $M_1 = N_1 \cup_\varphi N_2$ and $M_2 = N_1 \cup_\psi N_2$. Then M_1 and M_2 are said to be obtained from each other by an equivariant cutting and pasting or a G-SK process. The abbreviation SK stands for Schneiden und Kleben in German.

Definition. Consider a map T defined for all G-manifolds which takes its values in the ring \mathbb{Z} of rational integers and is additive with respect to the disjoint union of G-manifolds. We call T a G-SK *invariant* or simply an *invariant* if it is invariant under the G-SK process, i.e., $T(M_1) = T(M_2)$ for the above M_1 and M_2. Further, such a T is said to be *multiplicative* if $T(M \times N) = T(M) \cdot T(N)$ for any G-manifolds M and N.

As an example, χ^H given by $\chi^H(M) = \chi(M^H)$ is a multiplicative invariant, where $H \leq G$, a subgroup of G, and χ is the Euler characteristic.

The purpose of this note is to characterize a form of multiplicative invariants.

By a G-slice type, we mean a pair $\sigma = [H; V]$ of $H \leq G$ and an H-module V, i.e., a finite-dimensional real vector space together with a natural linear action of H which satisfies that $V^G = \{0\}$. Let $St(G)$ be the set of all G-slice types. There exists a partial ordering on $St(G)$ as follows: $[H; V] \preceq [K; W]$ means that $H \leq K$ and $W = V \oplus W^H$ as H-modules. In this case, we denote $[K; W]_H = [H; V]$.

Let $SK^G(\partial)$ be an SK group resulting from equivariant cuttings and pastings of G-manifolds.
Proposition (cf. [1], [2]). $SK_\ast^G(\partial)$ is a free SK_\ast-module with basis $\{[G \times_H D(V)] | [H;V] \in St(G)\}$, where $D(V)$ denotes the associated H-disk.

An invariant T induces an additive homomorphism $SK_\ast^G(\partial) \rightarrow \mathbb{Z}$ and denote by \mathcal{T} the set of all these homomorphisms. For $\sigma = [H;V]$, let χ_σ be an invariant defined by $\chi_\sigma(M) = \chi(M_\sigma)$, where M_σ is a submanifold of M consisting of those points $x \in M$ whose slice types σ_x satisfy that $\sigma \preceq \sigma_x$. Further, consider an invariant θ_σ as

$$\theta_\sigma(M) := |G/H|^{-1} \left\{ \chi(M_\sigma) + \sum_{H < K \leq G} n_H(K) \left(\sum_{\sigma \prec \tau = [K;W]} \chi(M_\tau) \right) \right\},$$

where an integer $n_H(K)$ for K with $H \leq K \leq G$ is defined inductively as follows:

- $n_H(H) = 1$ and $n_H(K) = |K/H| - \sum_{H \leq L < K} n_H(L)$ (the order of K/H).

By evaluating θ_σ on the basis elements for $SK_\ast(\partial)$ in Proposition, we have the following theorem.

Theorem (cf. [3]). The class $\{\theta_\sigma | \sigma \in St(G)\}$ provides a basis for \mathcal{T} as a free \mathbb{Z}-module.

A multiplicative invariant T is considered to be a ring homomorphism $SK_\ast^G(\partial) \rightarrow \mathbb{Z}$.

Definition. Such a (non-trivial) invariant T is said to be of type $\langle G/H \rangle$ if H is the minimum element with respect to the inclusion \leq of subgroups in the set consisting of those subgroups K of G such that $T(G/K) \neq 0$.

In fact, it is seen from the multiplicative structure of $SK_\ast^G(\partial)$ that $H = \bigcap_{\lambda} K_\lambda$, where $\{K_\lambda\}$ is the set of all subgroups of G such that $T(G/K_\lambda) \neq 0$. For example, χ^H is of type $\langle G/H \rangle$.

Theorem (cf. [4]). If T is of type $\langle G \rangle$, then it is uniquely determined by the value $a = T(D^1)$ on the one-dimensional disk D^1 with the trivial action and has a form $T(M) = a^{\dim(M)} \chi(M)$ for any G-manifold M. Here, if $a = 0$, then a^0 is regarded as 1.

Let T be a multiplicative invariant of type $\langle G/H \rangle$ with $H \neq \{1\}$ in general and let $\nu_T = \{a\} \cup \{\gamma_j\}$ be integers given by $a = T(D^1)$ and $\gamma_j = |G/H|^{-1} T(G \times_H D(V_j))$. Theorem (cf. [4]). If T is of type $\langle G \rangle$, then it is uniquely determined by the value $a = T(D^1)$ on the one-dimensional disk D^1 with the trivial action and has a form $T(M) = a^{\dim(M)} \chi(M)$ for any G-manifold M. Here, if $a = 0$, then a^0 is regarded as 1.
on G-manifolds $G \times_H D(V_j)$, where $\{V_j\}$ is the complete set of non-trivial irreducible H-modules.

Denote by $St[H]$ the set of all G-slice types with H as an isotropy subgroup.

Main Theorem (cf.[4]). Let T be a multiplicative invariants of type (G/H) with $H \neq \{1\}$. Then it is uniquely determined by the class of integers \mathcal{V}_T and has a form

$$T(M) = \sum_{\sigma \in St[H]} a^{\dim(M_\sigma)} \gamma_\sigma \cdot \chi(M_\sigma)$$

for any G-manifold M, where $\gamma_\sigma = \prod_j \gamma_j^{a(j)}$ if $\sigma = [H; \prod_j V_j^{a(j)}] \in St[H]$. In case where a or $\gamma_j = 0$ for some j, we regard a^0 or γ_j^0 as 1 respectively.

Example.

Multiplicative invariants T of type (G/H), $H \neq \{1\}$, with $a, \gamma_j \in \{-1, 0, 1\}$:

1. $\gamma_j = 1 \ (\forall j)$,

$$T(M) = \begin{cases}
\chi(M^H) & \text{if } a = 1, \\
\chi(M^{H, 0}) & \text{if } a = 0, \\
\chi(M^{H, \text{ev}}) - \chi(M^{H, \text{od}}) & \text{if } a = -1,
\end{cases}$$

where $M^{H, 0}$ is the isolated points of M^H and $M^{H, \text{ev}}$ (or $M^{H, \text{od}}$) is the union of even-dimensional (or odd-dimensional) components of M^H respectively.

2. $\gamma_j = -1 \ (\forall j)$,

$$T(M) = \begin{cases}
\chi(M^H) - \chi(M^H) & \text{if } a = 1, \\
\chi(M_{+}^{H, 0}) - \chi(M_{-}^{H, 0}) & \text{if } a = 0, \\
(-1)^{\dim M} \{\chi(M_{2, +}^{H, 0}) - \chi(M_{2, -}^{H, 0})\} & \text{if } a = -1,
\end{cases}$$

where $M_{+} = \{x \in M^H \mid l((\sigma_x)_H); \text{even}\}$, $M_{-} = \{x \in M^H \mid l((\sigma_x)_H); \text{odd}\}$, $((\sigma_x)_H) \preceq \sigma_x$, $l((\sigma_x)_H) = \sum_j a(j)$; the total length of $(\sigma_x)_H$ = $[H: \prod_j V_j^{a(j)}]$, $M_{+}^{H, 0} = M_{+} \cap M^{H, 0}$ and $M_{2, +} = \{x \in M^H \mid l_2((\sigma_x)_H); \text{even}\}$, $M_{2, -} = \{x \in M^H \mid l_2((\sigma_x)_H); \text{odd}\}$

$(l_2((\sigma_x)_H)) = \sum_j a(j)$ summing over all j with $\dim(V_j) = 2$; the total length of the two-dimensional irreducible H-modules of $(\sigma_x)_H$.
\(\gamma_j = 0 \) \((\forall j) \),

\[
T(M) = \begin{cases}
\chi(M_{\sigma^H(0)}) & \text{if } a = 1, \\
0^{\dim(M)}\chi(M^H) & \text{if } a = 0, \\
(-1)^{\dim(M)}\chi(M_{\sigma^H(0)}) & \text{if } a = -1,
\end{cases}
\]

where \(M_{\sigma^H(0)} \) is the union of the components of \(M^H \) with \(\dim(M_{\sigma^H(0)}) = \dim(M) \).

References