Stability of Generic Pseudoplanes

池田宏一郎 (Koichiro IKEDA) 法政大学経営学部

(Faculty of Business Administration, Hosei University)

Problem(Baldwin[B1]) Is there any "generic" structure that is superstable but not ω -stable?

Theorem There is no δ -generic pseudoplane that is superstable but not ω -stable.

1 δ -Generic Pseudoplanes

Let $L = \{R(*,*)\}$ be a language of undirected graphs: It satisfies $\models \forall x(\neg R(x,x))$ and $\models \forall x \forall y(R(x,y) \rightarrow R(y,x))$. Let α be a positive real number. Then

- For a finite graph A, $\delta_{\alpha}(A) := |A| \alpha |R^{A}|$, where $R^{A} = \{\{a, b\} : A \models R(a, b)\}$.
- $K_{\alpha} := \{A : A \text{ is a finite graph, } \forall B \subset A[\delta_{\alpha}(B) > 0]\}.$

Definition Let A be a finite subgraph of a graph M

- (i) We say A is closed in M (in symbol, $A \leq M$), if $\delta_{\alpha}(XA) \geq \delta_{\alpha}(A)$ for any finite $X \subset M A$.
- (ii) The closure of A in M, $\operatorname{cl}_M(A) := \bigcap \{B : A \subset B \leq M, |B| < \omega \}$.

To simplify our notation, we write $\delta(*)$ in place of $\delta_{\alpha}(*)$. For finite A, B, we write $\delta(A/B) = \delta(AB) - \delta(B)$.

Definition Let $K \subset K_{\alpha}$ be closed under subgraphs. Then a countable graph M is said to be (K, \leq) -generic, if it satisfies the following:

(i) If A is a finite subset of M, then $A \in K$;

(ii) If $A \leq B \in K$ and $A \leq M$, then there exists $B' \leq M$ such that $B' \cong_A B$.

Definition We say that a graph M is δ -generic, if M is (K, \leq) -generic for some α and some $K \subset K_{\alpha}$ such that

- (1) M has finite closures (i.e., any finite subset of M has finite closures);
- (2) M is saturated.

Definition A pseudoplane P is called δ -generic, if there is a δ -generic graph M with P = (M, M, I) where an incidence relation xIy is defined by R(x, y).

Example (i) Hrushovski's pseudoplanes ([H1]) are δ -generic, ω -categorical and strictly stable.

(ii) Baldwin's projective planes ([B2]) are δ-generic and ℵ₁-categorical.

Note 1.1 It is an open problem whether there is an ω -categorical projective plane or not (for instance, see [C], [Ho]). In [I], it is proven that there is no δ -generic ω -categorical projective plane.

Definition (i) Given a finite $A \subset M$, define $d_M(A) = \delta(\operatorname{cl}_M(A))$.

(ii) For finite A, B, write $d_M(A/B) = d_M(AB) - d_M(B)$. Define $d_M(A/B)$ for possibly infinite B to be $\inf\{d_M(A/B'): B' \subset B, B' \text{ is finite}\}$.

Fact 1.2 Let $A \leq B \leq M$ and $\bar{a} \in M$. Then $\operatorname{tp}(\bar{a}/B)$ does not fork over A if and only if $d_M(\bar{a}/B) = d_M(\bar{a}/A)$.

Fact 1.3 Let P be a δ -generic pseudoplane.

- (i) Th(P) is stable;
- (ii) If α is rational, then Th(P) is ω -stable.

2 Lemmas

Lemma 2.1 If $\alpha > 0$ is irrational, then $\sup\{d : d = a - b\alpha < 0, a, b \in \mathbb{N}\} = 0$.

Proof Let $X = \{a - b\alpha : a, b \in \mathbb{N}, a - b\alpha < 0\}$ and $Y = \{a - b\alpha : a, b \in \mathbb{Z}, a - b\alpha < 0\}.$

Claim: $\sup Y = 0$.

Proof: For each $k \in \mathbf{Z}$, let $f(k) = k\alpha - \max\{m \in \mathbf{Z} : m \leq k\alpha\}$. Take any $\epsilon > 0$. Since α is irrational, we have $f(k) \neq f(l)$ for any distinct $k, l \in \mathbf{Z}$. So there are distinct $i, j < \omega$ with $0 > f(i) - f(j) > -\epsilon$. Let d = f(i) - f(j). Then we have $d \in Y$. Hence we have $\sup Y = 0$. (End of Proof of Claim)

We assume by way of contradiction that $\sup X = e < 0$. By the claim, there is a strictly monotone increasing sequence $\{d_n\}_{n<\omega}$ of elements of Y such that $\lim_{n\to\infty} d_n = 0$ and $d_n > e$ for each $n < \omega$. Then, for each $n < \omega$, $d_n \notin X$, and therefore we can write $d_n = b_n \alpha - a_n$ where $a_n, b_n \in \mathbb{N}$. Since $\{d_n\}_{n<\omega}$ is strictly monotone increasing, there is $m < \omega$ such that $b_{m+1} > b_m$. Now we have $0 > d_m - d_{m+1} > e$. On the other hand, since $b_{m+1} - b_m \in \mathbb{N}$, we have $d_m - d_{m+1} = (a_{m+1} - a_m) - (b_{m+1} - b_m)\alpha \in X$. This contradicts inf X = e.

Lemma 2.2 If α is irrational with $0 < \alpha < 1$, then for any $\epsilon > 0$ there exists a sequence $\{q_n\}_{1 \le n \le p}$ of N such that

- (1) $0 > p q_p \alpha > -\epsilon$;
- (2) If 0 < n < p then $n q_n \alpha > 0$;
- (3) If $0 < n < m \le p$ then $(q_m q_n 1)\alpha < m n$.

Proof: By 2.1, for any $\epsilon > o$ there are $p, q < \omega$ with $0 > p - q\alpha > -\epsilon$. Let

$$q_n = \begin{cases} \max\{k \in \mathbf{N} : \alpha \le \frac{n}{k}\} & \text{if } 0 < n < p \\ q & \text{if } n = p \end{cases}$$

By the definition of q_n , it is clear that (1) and (2) hold. To see (3), we prove two claims.

Claim 1: For any n, m with $0 < n < m \le p$, $q_m - q_n - 1 \ge 0$.

Proof: By the definition of q_m , we have $\frac{m}{q_m+1} < \alpha$, so $q_m > \frac{n}{\alpha} - 1$. By the definition of q_n , we have $\alpha < \frac{n}{q_n}$, so $q_n < \frac{n}{\alpha}$. By our assumption, we have $0 < \alpha < 1$. It follows that $q_m - q_n - 1 > (\frac{m}{\alpha} - 1) - \frac{n}{\alpha} - 1 = \frac{m-n}{\alpha} - 2 > (m-n) - 2 \ge 1 - 2 = -1$. Hence $q_m - q_n - 1 \ge 0$.

Claim 2: For any n, m with $0 < n < m \le p$, $(q_m - q_n - 1)\alpha < m - n$.

Proof: If $q_m-q_n-1=0$ then clearly $(q_m-q_n-1)\alpha < m-n$. So, by claim 1, we can assume that $q_m-q_n-1>0$. By the definition of q_n and q_m , we have $\frac{n}{q_n+1}<\alpha<\frac{m}{q_m}$, so $mq_n-nq_m+m>0$. Then we have $\frac{m-n}{q_m-q_n-1}-\frac{m}{q_m}=\frac{mq_n-nq_m+m}{(q_m-q_n-1)q_m}>0$. So $\frac{m-n}{q_m-q_n-1}>\frac{m}{q_m}>\alpha$. Hence $(q_m-q_n-1)\alpha < m-n$.

Definition Let $AB \in K_{\alpha}$ with $A \cap B = \emptyset$. Then we say that a pair (B, A) is *biminimal*, if it satisfies the following:

- (i) $\delta(B/A) < 0$;
- (ii) $\delta(X/A) > 0$ for any nonempty proper subset of B;
- (iii) $\delta(B/Y) \geq 0$ for any nonempty proper subset of A.

We say that a graph A has no loops, if for each n > 2 there do not exist distinct $b_1, b_2, ..., b_n \in A$ with $R(b_1, b_2), R(b_2, b_3), ..., R(b_{n-1}, b_n)$ and $R(b_n, b_1)$.

Lemma 2.3 If α is irrational with $0 < \alpha < 1$, then for any $\epsilon > 0$ there is a finite graph eBC such that

- (1) (C, eB) is_biminimal;
- (2) $\delta(C/eB) > -\epsilon$;
- (3) eBC has no loops;
- (4) eB has no relations.

Proof: Take any $\epsilon > 0$. Then there is a sequence $\{q_n\}_{1 \leq n \leq p}$ satisfying (1)-(3) of 2.2. Let $q_0 = -1$. Let $\{c_i : 1 \leq i \leq p\} \cup \{b_i^j : 1 \leq i \leq p, 1 \leq j \leq q_i - q_{i-1} - 1\}$ be a graph with the relations:

- (a) $R(c_1, c_2), ..., R(c_{n-1}, c_n);$
- (b) $R(c_i, b_i^j)$ for each i, j with $1 \le i \le p$ and $1 \le j \le q_i q_{i-1} 1$. Let $e = b_1^1$, $C = \{c_i : 1 \le i \le p\}$ and $B = \{b_i^j : 1 \le i \le p, 1 \le j \le q_i - q_{i-1} - 1\} - \{b_1^1\}$. Clearly eBC satisfies (3) and (4). By the definition of eBC, we have

$$\delta(C/eB) = p - \left\{ (p-1) + \sum_{i=1}^{p} (q_i - q_{i-1} - 1) \right\} \alpha = p - q_p \alpha.$$

By (1) of 2.2, we have $0 > \delta(C/eB) > -\epsilon$, so (2) holds.

Claim: If $X(\subset C)$ is connected with $X \neq C$, then $\delta(X/eB) > 0$.

Proof: Let $X = \{c_i\}_{n < i \le m}$ for some n, m. If n = 0, then $\delta(X/eB) = m - q_m \alpha > 0$ by (2) of 2.2. If n > 0, then $\delta(X/eB) = (m-n) - (q_m - q_n - 1)\alpha > 0$ by (3) of 2.2. (End of Proof of Claim)

We show (1). Take any $X \subset C$ with $X \neq C$. Let $X = \bigcup X_i$ where each X_i is connected component of X. Then $\delta(X/eB) = \sum \delta(X_i/eB) > 0$ by the claim. Hence (1) holds.

Lemma 2.4 If α is irrational with $0 < \alpha < 1$, then for any $\epsilon > 0$ there is a sequence $\{eB_iC_i\}_{i<\omega}$ of finite graphs such that

- (1) D has no loops;
- (2) $B_n^* \le e B_n^* C_n^* \le D$ for each $n < \omega$;
- (3) (C_n, eB_n) is biminimal for each $n < \omega$;

- (4) eB^* has no relations;
- (5) For each $i, j < \omega$ there is no relation between $B_i \bar{C_i}$ and $B_j C_j$, where $B_n^* = \bigcup_{i \le n} B_i, C_n^* = \bigcup_{i \le n} C_i, B^* = \bigcup_{i < \omega} B_i, C^* = \bigcup_{i < \omega} C_i$ and $D = eB^*C^*$.

Proof For each $i < \omega$ there is eC_iB_i that satisfies $\delta(C_i/eB_i) > -\frac{1}{2^i}$ and (1)-(4) of 2.3. We can assume that (5) holds. Then (1), (3) and (4) hold. To see (2), we prove two claims. Let X_E denote $X \cap E$ for each X and E. Claim 1: $eB_n^*C_n^* \leq D$.

Proof: Take any $X \subset D - eB_n^*C_n^*$. Then $\delta(X/eB_n^*C_n^*) = \delta(X/e) = \delta(X_{C^*}/eX_{B^*}) + \delta(X_{B^*}/e) = \delta(X_{C^*}/eX_{B^*}) + |X_{B^*}| \ge \delta(X_{C^*}/eX_{B^*}) + 1 = \sum_i \delta(X_{C_i}/eX_{B_i}) + 1 \ge -\sum_{i=1}^{\omega} \frac{1}{2^i} + 1 \ge 0.$

Claim 2: $B_n^* \leq eB_n^*C_n^*$.

Proof: Take any $X \subset eC_n^*$. To show $\delta(X/B_n^*) \geq 0$ we divide into two cases. Suppose $e \in X$. $\delta(X/B_n^*) = \delta(X/B_n^*e) + \delta(e/B_n^*) = \sum_{i=1}^n \delta(X_{C_i}/B_ie) + 1 \geq -\sum_{i=1}^{\omega} \frac{1}{2^i} + 1 \geq 0$.

Suppose $e \notin X$. By biminimality of $(C_i, B_i e)$ it can be seen that $\delta(Y/B_i) > 0$ for any $Y \subset C_i$. So $\delta(X/B_n^*) = \sum_{i=1}^n \delta(X_{C_i}/B_i) > 0$.

3 Theorem

Lemma 3.1 Let P = (M, M, I) be a δ -generic pseudoplane. Suppose that a finite graph $A \subset M$ has no loops. Then $A \in K$.

Proof Take any $a_0 \in A$. Let C_0 be a connected component of a_0 in A. As A has no loops, C_0 can be regarded as a tree with $height(a_0) = 0$. Since P is a pseudoplane, M satisfies

- For any $a \in M$ there are infinitely many $b \in M$ with R(a, b);
- For any distinct $a, b \in M$ there are at most finitely many $c \in M$ with $R(a, c) \wedge R(b, c)$.

So, we can inductively construct $C_0^* \subset M$ with $C_0^* \cong C_0$. Take any $a_1 \in A - C_0$. Let C_1 be a connected component of a_1 . In the same way, we have $C_1^* \subset M$ with $C_0^* C_1^* \cong C_0 C_1$. Iterating this process, we have $A^* \subset M$ with $A^* \cong A$. Hence $A \in K$.

Lemma 3.2 Let P = (M, M, I) be a δ -generic pseudoplane. Then $\alpha < 1$.

Proof Suppose that $\alpha \geq 1$. Take some $a \in M$ with $a \leq M$. Then there is no $b \in M$ with R(a, b). This contradicts axioms of a pseudoplane. Hence $\alpha < 1$.

Theorem There is no δ -generic pseudoplane that is superstable but not ω -stable.

Proof Take any δ -generic pseudoplane P = (M, M, I). Let M be a (K, \leq) -generic graph for some $K \subset K_{\alpha}$. By 1.3, if α is rational, then P is ω -stable. Thus it is enough to show that, if α is irrational then P is not superstable. By 3.2, we have $0 < \alpha < 1$. So we have a sequence $\{eB_iC_i\}_{i<\omega}$ satisfying (1)-(5) of 2.4. Let $D = \bigcup_{i<\omega} eB_iC_i$. Since D has no loops, any finite subset of D belongs to K by 3.1. By genericity of M, we can assume that $D \leq M$.

Claim: $d(e/B_n^*) = \sum_{i \leq n} \delta(C_i/eB_i) + 1$.

Proof: By (2)-(5) of 2.4, we have $d(e/B_n^*) = d(eB_n^*) - d(B_n^*) = \delta(eC_n^*B_n^*) - \delta(B_n^*) = \delta(eC_n^*/B_n^*) = \delta(C_n^*/eB_n^*) + 1 = \sum_{i \le n} \delta(C_i/eB_i) + 1$. (End of Proof of Claim)

For each $n < \omega$, $\operatorname{tp}(e/B_{n+1}^*)$ is a forking extension of $\operatorname{tp}(e/B_n^*)$, because $d(e/B_{n+1}^*) = d(e/B_n^*) + \delta(C_{n+1}/eB_{n+1}) < d(e/B_n^*)$ by the claim. Hence $\operatorname{Th}(M)$ is not superstable.

Reference

- [B1] J. T. Baldwin, Problems on pathological structures, In Helmut Wolter Martin Weese, editor, Proceedings of 10th Easter Conference in Model Theory (1993) 1-9
- [B2] J. T. Baldwin, An almost strongly minimal non-Desarguesian projective plane, Transactions of American Mathematical Society, 342 (1994) 695-711
- [BS] J. T. Baldwin and N. Shi, Stable generic structures, Annals of Pure and Applied Logic 79 (1996) 1-35
- [C] P. J. Cameron, Oligomorphic Permutation Groups, London Mathematical Society Lecture Note Series 152, Cambridge University Press, Cambridge, 1990
- [Ho] W. Hodges, Model theory, Encyclopedia of Mathematics, Cambridge University Press, 1993
- [G] J. Goode, Hrushovski's geometries, In Helmut Wolter Bernd Dahn, editor, Proceedings of 7th Easter Conference on Model Theory (1989) 106–118
- [H1] E. Hrushovski, A stable ℵ₀-categorical pseudoplane, preprint, 1988

39

- [H2] E. Hrushovski, A new strongly minimal set, Annals of Pure and Applied Logic, 46 (1990) 235-264
- [I] K. Ikeda, A note on generic projective planes, to appear in Notre Dame Journal of Formal Logic
- [W] F. O. Wagner, Relational structures and dimensions, Kaye, Richard (ed.) et al., Automorphisms of first-order structures. Oxford: Clarendon Press. 153–180 (1994)