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Stability of Generic Pseudoplanes
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- Problem(Baldwin[B1]) Is there any ”generic” structure that is super-
stable but not w-stable?

Theorem There is no d-generic pseudoplane that is superstable but not

w-stable.

1 4-Generic Pseudoplanes

Let L = {R(x,%)} be a language of undirected graphs: It satisfies |=
Vz(-R(z,z)) and | VaVy(R(z,y) — R(y,z)). Let a be a positive real
number. Then

o For a finite graph A, §,(A) := |A| — a|R4|, where R4 = {{a,b}: A
R(a,b)}.

o K, :={A: Ais a finite graph, YB C A[d,(B) > 0]}.

Definition Let A be a finite subgraph of a graph M

(i) We say A is closed in M (in symbol, A < M), if §4(XA) > d4(A) for
any finite X C M - A. '

(ii) The closure of A in M, clp(A) :=({B:AC B< M, |B| < w}.

To simplify our notation, we write §(*) in place of d4(%). For finite A, B,
we write 6(A/B) = 6(AB) — é(B).

Definition Let K C K, be closed under subgraphs. Then a countable
graph M is said to be (K, <)-generic, if it satisfies the following:
(i) If A is a finite subset of M, then 4 € K;
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(i) f A < B € K and A < M, then there exists B’ < M such that
! =~
=4 B.

Definition We say that a graph M is d-generic, if M is (K, <)-generic
for some o and some K C K, such that

(1) M has finite closures (i.e., any finite subset of M has finite closures);
(2) M is saturated.

Definition A pseudoplane P is called d-generic, if there is a d-generic
graph M with P = (M, M,I) where an incidence relation z/y is defined by

R(z,y).

Example (i) Hrushovski’s pseudoplanes ([H1]) are é-generic, w-categorical
and strictly stable.
(i) Baldwin’s projective planes ([B2]) are d-generic and R;-categorical.

Note 1.1 It is an open problem whether there is an w-categorical projec-
tive plane or not (for instance, see [C], [Ho]). In [I], it is proven that there

is no é-generic w-categorical projective plane.

Definition (i) Given a finite A C M, define dps(A) = 6(clpr(4)).
(i1) For finite A, B, write dy(A/B) = dy(AB) — duy(B). Define dy(A/B)
for possibly infinite B to be inf{dy(A/B’) : B' C B, B’ is finite}.

Fact 1.2 Let A< B < M and a € M. Then tp(a/B) does not fork over
A if and only if dps(a/B) = dp(a/A).

Fact 1.3 Let P be a é-generic pseudoplane.
(i) Th(P) is stable;
(ii) If « is rational, then Th(P) is w-stable.

2 Lemmas

Lemma 2.1 If @ > 0 is irrational, then sup{d : d = ¢ — ba < 0,4a,b €
N} =0. '

Proof Let X ={a—ba:a,beNa-ba<0}andY ={a—-ba:a,be
Z,a — ba < 0}.
Claim: supY = 0.
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Proof: For each k € Z, let f(k) = ka — max{m'€ Z : m < ka}. Take any
¢ > 0. Since a is irrational, we have f(k) # f(I) for any distinct k,1 € Z. So
there are distinct 7,j < w with 0 > f(i) — f(j) > —e. Let d = f(i) — ().
Then we have d € Y. Hence we have supY = 0. (End of Proof of Claim)

We assume by way of contradiction that sup X = e < 0. By the claim,
there is a strictly monotone increasing sequence {dp }n<w of elements of ¥
such that lim, 00 dn = 0 and d,, > e for each n < w. Then, for each n < w,
d, € X, and therefore we can write d, = bpa — a, where Gn,bn, € N.
Since {d;}n<w is strictly monotone increasing, there is m < w such that
bpt1 > by. Now we have 0 > d,, — djpy1 > €. On the other hand, since
brpy1 — bm € N, we have dyy — dpps1 = (@m41 — m) — (b1 — bm ) € X.
This contradicts inf X = e.

Lemma 2.2 If « is irrational with 0 < a < 1, then for any € > 0 there
exists a sequence {¢, }1<n<p Of N such that

(1) 0>p—ga>—¢

(2) If0 < n < p then n — g > 0;

(3) If0 < n < m< pthen (qm—qn—l)a<m—-n

Proof: By 2.1, for any ¢ > o there are p,¢ < w with 0 > p —ga > —e.
Let

) max{keN:a<%} if0<n<p
In= q ifn=p

By the definition of gy, it is clear that (1) and (2) hold. To see (3), we prove
two claims.

Claim 1: For any n,m with0<n<m<p, ¢gn — ¢, — 12 0.

Proof: By the definition of ¢,,, we have # < a, 50 gm > 2 — 1. By the
definition of g,, we have a < qi S0 ¢n < Z. By our assumption, we have
0 < a < 1. It follows that ¢, — gn — 1 > (——1)———1= m=n 2>
(m—n)—2>1-—2=-1. Hence ¢y, — g, — 1 > 0.

Claim 2: Forany n,m with 0 < n <m < p, (¢gm —gn — L)a < m —n.
Proof: If ¢y — ¢n — 1 = 0 then clearly (¢gm — ¢» — 1)a < m — n. So,
by claim 1, we can assume that qm — gn — 1 > 0. By the definition of
qn and ¢y, . +1 — ngym +m > 0. Then we
haveﬁ%—%:ﬁ%%>0 Soq——_—_—qu>—->a Hence
(gm —gn — l)a < m—n.

)

Definition Let AB € K, with ANB = . Then we say that a pair (B, A)
is biminimal,if it satisfies the following:
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(i) 6(B/A) <0;
(i) (X /A) > 0 for any nonempty proper subset of B;
(iii) 6(B/Y) > 0 for any nonempty proper subset of A.

We say that a graph A has no loops, if for each n > 2 there do not
exist distinct bq,ba,...,b, € A with R(b;,b3), R(bs,b3),..., R(by—1,bs) and
R(by, b1).

Lemma 2.3 If a is irrational with 0 < a < 1, then for any € > 0 there is
a finite graph e BC' such that

(1) (C, eB) is.biminimal;

(2) 6(C/eB) > —¢;

(3) eBC has no loops;

(4) eB has no relations.

Proof: Take any ¢ > 0. Then there is a sequence {qn}1<n<p satisfying

(1)~(3) of 2.2. Let g = —1. Let {¢; : 1< i<plU{b{:1<i<p,1<j<

gi — gi—1 — 1} be a graph with the relations:

(a) R(e1,¢e2),..., R{en-1,¢n);

(b) R(c;,b?) for each i,7 with 1 <i<pand1<j<gi—gqi-1—1.
Lete=0b, C={c:1<i<plandB={b :1<i<pl1<j<

g — gi—y — 1} — {b}}. Clearly eBC satisfies (3) and (4). By the definition

of e BC, we have

5(0/63)=P—{ —1)+Z 4 — gi- 1—1}a=p—qpa-

By (1) of 2.2, we have 0 > §(C/eB) > —¢, so (2) holds.
Claim: If X(C C) is connected with X # C, then §(X/eB) > 0.
Proof: Let X = {ci}n<i<m for some n,m. If n = 0, then §(X/eB) = m —
gma > 0by (2) of 2.2. If n > 0, then §(X/eB) = (m—n)—(gm—¢a—1)a >0
by (3) of 2.2. (End of Proof of Claim)

We show (1). Take any X C C with X # C. Let X = |JX; where each
X; is connected component of X. Then §(X/eB) = Y 6(Xi/eB) > 0 by
the claim. Hence (1) holds.

Lemma 2.4 If a is irrational with 0 < @ < 1, then for any € > 0 there is

a sequence {eB;C;}i<, of finite graphs such that
(1) D has no loops;

(2) By, <eB;C; < D for each n < w;

(3) (Ca,eBy) is biminimal for each n < w;
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(4) eB* has no relations;

(5) For each i, j < w there is no relation between B;C; and B;Cj,

where B, = U<, Bi,C; = Ui, Ci, B* = Ui Bi,C* = Uic,, Ci and
D =eB*C*.

Proof For each ¢ < w there is eC;B; that satisfies 6(C;/eB;) > —-51,— and
(1)-(4) of 2.3. We can assume that (5) holds. Then (1), (3) and (4) hold.
To see (2), we prove two claims. Let Xg denote X N E for each X and E.
Claim 1: eB;C; < D.

Proof: Take any X C D — eB}C;. Then §(X/eB,C}) = 6(X/e) =
0(Xce/eXps)+6(Xp-/e) =6(Xcs[eXpe)+ |Xpe| > 6(Xce/eXp)+1=
2:0(Xc,/eXp,) + 1 Z - ZT:I ‘217 +12>0.

Claim 2: By < eB:C".

Proof: Take any X C eC;;. To show §(X/B}) > 0 we divide into two cases.
Suppose e € X. §(X/B;,) = §(X/Bre)+6(e/By) =Y i, 6(Xc,/Bie)+1 >
~Yisizx+1>0

Suppose e ¢ X. By biminimality of (C;, B;e) it can be seen that §(Y/B;) >
0 for any Y C C;. So 8(X/B}) =3 i, 6(Xc,/B;) > 0.

3 Theorem

Lemma 3.1 Let P = (M, M, I) be a é-generic pseudoplane. Suppose that
a finite graph A C M has no loops. Then A € K.

Proof Take any ag € A. Let Cp be a connected component of ag in A.
As A has no loops, Cj can be regarded as a tree with height(ag) = 0. Since
P is a pseudoplane, M satisfies

e For any a € M there are infinitely many b € M with R(a,b);

e For any distinct a,b € M there are at most finitely many ¢ € M with
R(a,c) AR(b,c).

So, we can inductively construct C§ C M with C§ = C,. Take any a; €
A — Cy. Let Cy be a connected component of ;. In the same way, we have
C} C M with C3C? = CoC). Iterating this process, we have A* C M with
A*= A. Hence A € K.

Lemma 3.2 Let P = (M, M,I) be a §-generic pseudoplane. Then a < 1.
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Proof Suppose that o > 1. Take some ¢ € M with a < M. Thén there
is no b € M with R(a,b). This contradicts axioms of a pseudoplane. Hence

a<l.

Theorem There is no é-generic pseudoplane that is superstable but not

w-stable.

Proof Take any é-generic pseudoplane P = (M, M, I). Let M be a (K,<
)-generic graph for some K C K,. By 1.3, if a is rational, then P is w-
stable. Thus it is enough to show that, if o is irrational then P is not
superstable. By 3.2, we have 0 < a < 1. So we have a sequence {¢B;C;}icw
satisfying (1)~(5) of 2.4. Let D = |J;.,, eB;C;. Since D has no loops, any
finite subset of D belongs to KX by 3.1. By genericity of M, we can assume
that D < M.
Claim: d(e/B}) = 3 ;¢, 6(Ci/eB;) + 1.
Proof: By (2)—(5) of 9.4, we have d(e/B}) = d(eB;)—d(B;) = é(eCy By) —
8(B}) =46(eCr/B;) =6(Cr/eBr)+1=3"..,0(Ci/eB;)+1. (End of Proof
of Claim) B

For each n < w, tp(e/B;, ;) is a forking extension of tp(e/B;,), because
d(e/B; 1) = d(e/B}) + 6(Cnt1/€Bny1) < d(e/B;) by the claim. Hence
Th(M) is not superstable.
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