<table>
<thead>
<tr>
<th>Title</th>
<th>Stability of Generic Pseudoplanes (Interaction between model theory and algebraic geometry)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Ikeda, Koichiro</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (2003), 1344: 33-39</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2003-10</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/43515</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
<tr>
<td>Publisher</td>
<td>Kyoto University</td>
</tr>
</tbody>
</table>
Stability of Generic Pseudoplanes

池田宏一郎
(Koichiro IKEDA)
法政大学経営学部
(Faculty of Business Administration, Hosei University)

Problem (Baldwin[B1]) Is there any "generic" structure that is super-stable but not ω-stable?

Theorem There is no δ-generic pseudoplane that is superstable but not ω-stable.

1 δ-Generic Pseudoplanes

Let $L = \{R(*, *)\}$ be a language of undirected graphs: It satisfies $\models \forall z (\neg R(z, z))$ and $\models \forall x \forall y (R(x, y) \rightarrow R(y, x))$. Let α be a positive real number. Then

- For a finite graph A, $\delta_\alpha(A) := |A| - \alpha|R^A|$, where $R^A = \{\{a, b\} : A \models R(a, b)\}$.
- $K_\alpha := \{A : A$ is a finite graph, $\forall B \subset A[\delta_\alpha(B) \geq 0]\}$.

Definition Let A be a finite subgraph of a graph M
(i) We say A is closed in M (in symbol, $A \leq M$), if $\delta_\alpha(XA) \geq \delta_\alpha(A)$ for any finite $X \subset M - A$.
(ii) The closure of A in M, $\text{cl}_M(A) := \bigcap\{B : A \subset B \leq M, |B| < \omega\}$.

To simplify our notation, we write $\delta(*)$ in place of $\delta_\alpha(*)$. For finite A, B, we write $\delta(A/B) = \delta(AB) - \delta(B)$.

Definition Let $K \subset K_\alpha$ be closed under subgraphs. Then a countable graph M is said to be (K, \leq)-generic, if it satisfies the following:
(i) If A is a finite subset of M, then $A \in K$;
(ii) If $A \leq B \in K$ and $A \leq M$, then there exists $B' \leq M$ such that $B' \cong_A B$.

Definition We say that a graph M is δ-generic, if M is (K, \leq)-generic for some α and some $K \subset K_\alpha$ such that

1. M has finite closures (i.e., any finite subset of M has finite closures);
2. M is saturated.

Definition A pseudoplane P is called δ-generic, if there is a δ-generic graph M with $P = (M, M, I)$ where an incidence relation xIy is defined by $R(x, y)$.

Example (i) Hrushovski's pseudoplanes ([H1]) are δ-generic, ω-categorical and strictly stable.
(ii) Baldwin's projective planes ([B2]) are δ-generic and \aleph_1-categorical.

Note 1.1 It is an open problem whether there is an ω-categorical projective plane or not (for instance, see [C], [Ho]). In [I], it is proven that there is no δ-generic ω-categorical projective plane.

Definition (i) Given a finite $A \subset M$, define $d_M(A) = \delta(\mathrm{cl}_M(A))$.
(ii) For finite A, B, write $d_M(A/B) = d_M(AB) - d_M(B)$. Define $d_M(A/B)$ for possibly infinite B to be $\inf\{d_M(A/B') : B' \subset B, B' \text{ is finite}\}$.

Fact 1.2 Let $A \leq B \leq M$ and $\bar{a} \in M$. Then $\mathrm{tp}(\bar{a}/B)$ does not fork over A if and only if $d_M(\bar{a}/B) = d_M(\bar{a}/A)$.

Fact 1.3 Let P be a δ-generic pseudoplane.
(i) $\mathrm{Th}(P)$ is stable;
(ii) If α is rational, then $\mathrm{Th}(P)$ is ω-stable.

2 Lemmas

Lemma 2.1 If $\alpha > 0$ is irrational, then $\sup\{d : d = a - b\alpha < 0, a, b \in \mathbb{N}\} = 0$.

Proof Let $X = \{a - b\alpha : a, b \in \mathbb{N}, a - b\alpha < 0\}$ and $Y = \{a - b\alpha : a, b \in \mathbb{Z}, a - b\alpha < 0\}$.
Claim: $\sup Y = 0$.

Proof: For each \(k \in \mathbb{Z} \), let \(f(k) = k\alpha - \max\{m \in \mathbb{Z} : m \leq k\alpha\} \). Take any \(\varepsilon > 0 \). Since \(\alpha \) is irrational, we have \(f(k) \neq f(l) \) for any distinct \(k, l \in \mathbb{Z} \). So there are distinct \(i, j < \omega \) with \(0 > f(i) - f(j) > -\varepsilon \). Let \(d = f(i) - f(j) \). Then we have \(d \in \mathbb{Y} \). Hence we have \(\sup \mathbb{Y} = 0 \). (End of Proof of Claim)

We assume by way of contradiction that \(\sup \mathbb{X} = e < 0 \). By the claim, there is a strictly monotone increasing sequence \(\{d_n\}_{n<\omega} \) of elements of \(\mathbb{Y} \) such that \(\lim_{n \to \infty} d_n = 0 \) and \(d_n > e \) for each \(n < \omega \). Then, for each \(n < \omega \), \(d_n \not\in \mathbb{X} \), and therefore we can write \(d_n = b_n\alpha - a_n \) where \(a_n, b_n \in \mathbb{N} \). Since \(\{d_n\}_{n<\omega} \) is strictly monotone increasing, there is \(m < \omega \) such that \(b_{m+1} > b_m \). Now we have \(0 > d_m - d_{m+1} > e \). On the other hand, since \(b_{m+1} - b_m \in \mathbb{N} \), we have \(d_m - d_{m+1} = (a_{m+1} - a_m) - (b_{m+1} - b_m)\alpha \in \mathbb{X} \). This contradicts \(\inf \mathbb{X} = e \).

Lemma 2.2 If \(\alpha \) is irrational with \(0 < \alpha < 1 \), then for any \(\varepsilon > 0 \) there exists a sequence \(\{q_n\}_{1 \leq n \leq p} \) of \(\mathbb{N} \) such that

(1) \(0 > p - q_p\alpha > -\varepsilon \);
(2) If \(0 < n < p \) then \(n - q_n\alpha > 0 \);
(3) If \(0 < n < m \leq p \) then \((q_m - q_n - 1)\alpha < m - n \).

Proof: By 2.1, for any \(\varepsilon > 0 \) there are \(p, q < \omega \) with \(0 > p - q\alpha > -\varepsilon \).

Let

\[
q_n = \begin{cases}
\max\{k \in \mathbb{N} : \alpha \leq \frac{n}{k}\} & \text{if } 0 < n < p \\
q & \text{if } n = p
\end{cases}
\]

By the definition of \(q_n \), it is clear that (1) and (2) hold. To see (3), we prove two claims.

Claim 1: For any \(n, m \) with \(0 < n < m \leq p \), \(q_m - q_n - 1 \geq 0 \).

Proof: By the definition of \(q_m \), we have \(\frac{m}{q_{m+1}} < \alpha \), so \(q_m > \frac{n}{\alpha} - 1 \). By the definition of \(q_n \), we have \(\alpha < \frac{n}{q_n} \), so \(q_n < \frac{n}{\alpha} \). By our assumption, we have \(0 < \alpha < 1 \). It follows that \(q_m - q_n - 1 > (\frac{m}{\alpha} - 1) - \frac{n}{\alpha} = \frac{m-n}{\alpha} - 2 > (m - n) - 2 \geq 1 - 2 = -1 \). Hence \(q_m - q_n - 1 \geq 0 \).

Claim 2: For any \(n, m \) with \(0 < n < m \leq p \), \((q_m - q_n - 1)\alpha < m - n \).

Proof: If \(q_m - q_n - 1 = 0 \) then clearly \((q_m - q_n - 1)\alpha < m - n \). So, by claim 1, we can assume that \(q_m - q_n - 1 > 0 \). By the definition of \(q_n \) and \(q_m \), we have \(\frac{n}{q_{n+1}} < \alpha < \frac{m}{q_m} \), so \(mq_n - nq_m + m > 0 \). Then we have \(\frac{m-n}{q_m-q_n-1} - \frac{m}{q_m} = \frac{mq_n - nq_m + m}{(q_m-q_n-1)q_m} > 0 \). So \(\frac{m-n}{q_m-q_n-1} > \frac{m}{q_m} > \alpha \). Hence \((q_m - q_n - 1)\alpha < m - n \).

Definition Let \(AB \in K_\alpha \) with \(A \cap B = \emptyset \). Then we say that a pair \((B, A) \) is biminimal, if it satisfies the following:
(i) $\delta(B/A) < 0$;
(ii) $\delta(X/A) \geq 0$ for any nonempty proper subset of B;
(iii) $\delta(B/Y) \geq 0$ for any nonempty proper subset of A.

We say that a graph A has no loops, if for each $n > 2$ there do not exist distinct $b_1, b_2, \ldots, b_n \in A$ with $R(b_1, b_2), R(b_2, b_3), \ldots, R(b_{n-1}, b_n)$ and $R(b_n, b_1)$.

Lemma 2.3 If α is irrational with $0 < \alpha < 1$, then for any $\epsilon > 0$ there is a finite graph eBC such that

1. (C, eB) is biminimal;
2. $\delta(C/eB) > -\epsilon$;
3. eBC has no loops;
4. eB has no relations.

Proof: Take any $\epsilon > 0$. Then there is a sequence $\{q_n\}_{1 \leq n \leq p}$ satisfying (1)–(3) of 2.2. Let $q_0 = -1$. Let $\{c_i : 1 \leq i \leq p\} \cup \{b_i^j : 1 \leq i \leq p, 1 \leq j \leq q_i - q_{i-1} - 1\}$ be a graph with the relations:

(a) $R(c_1, c_2), \ldots, R(c_{n-1}, c_n)$;
(b) $R(c_i, b_i^j)$ for each i, j with $1 \leq i \leq p$ and $1 \leq j \leq q_i - q_{i-1} - 1$.

Let $e = b_1^1$, $C = \{c_i : 1 \leq i \leq p\}$ and $B = \{b_i^j : 1 \leq i \leq p, 1 \leq j \leq q_i - q_{i-1} - 1\} \setminus \{b_1^1\}$. Clearly eBC satisfies (3) and (4). By the definition of eBC, we have

$$\delta(C/eB) = p - \left\{ (p - 1) + \sum_{i=1}^{p} (q_i - q_{i-1} - 1) \right\} \alpha = p - q_p \alpha.$$

By (1) of 2.2, we have $0 > \delta(C/eB) > -\epsilon$, so (2) holds.

Claim: If $X(\subset C)$ is connected with $X \neq C$, then $\delta(X/eB) > 0$.

Proof: Let $X = \{c_i\}_{n < i \leq m}$ for some n, m. If $n = 0$, then $\delta(X/eB) = m - q_m \alpha > 0$ by (2) of 2.2. If $n > 0$, then $\delta(X/eB) = (m-n)-(m-q_{n-1} \alpha) > 0$ by (3) of 2.2. (End of Proof of Claim)

We show (1). Take any $X \subset C$ with $X \neq C$. Let $X = \bigcup X_i$ where each X_i is connected component of X. Then $\delta(X/eB) = \sum \delta(X_i/eB) > 0$ by the claim. Hence (1) holds.

Lemma 2.4 If α is irrational with $0 < \alpha < 1$, then for any $\epsilon > 0$ there is a sequence $\{eB_iC_i\}_{i<\omega}$ of finite graphs such that

1. D has no loops;
2. $B_n^* \leq eB_n^* C_n^* \leq D$ for each $n < \omega$;
3. (C_n, eB_n) is biminimal for each $n < \omega$;
eB^* has no relations;
(5) For each $i, j < \omega$ there is no relation between $B_i C_i$ and $B_j C_j$,
where $B_i^* = \bigcup_{i \leq n} B_i, C_i^* = \bigcup_{i \leq n} C_i, B^* = \bigcup_{i < \omega} B_i, C^* = \bigcup_{i < \omega} C_i$ and
$D = eB^* C^*$.

Proof For each $i < \omega$ there is $eC_i B_i$ that satisfies $\delta(C_i/eB_i) > -\frac{1}{2}$ and
(1)-(4) of 2.3. We can assume that (5) holds. Then (1), (3) and (4) hold.
To see (2), we prove two claims. Let X_E denote $X \cap E$ for each X and E.
Claim 1: $eB_n^* C_n^* \leq D$.
Proof: Take any $X \subset D - eB_n^* C_n^*$. Then $\delta(X/eB_n^* C_n^*) = \delta(X/e) =
\delta(X_{C^*}/eX_{B^*}) + \delta(X_{B^*}/e) = \delta(X_{C^*}/eX_{B^*}) + |X_{B^*}| \geq \delta(X_{C^*}/eX_{B^*}) + 1 =
\sum_i \delta(X_{C_i}/eX_{B_i}) + 1 \geq - \sum_{i=1}^\omega \frac{1}{2^n} + 1 \geq 0$.
Claim 2: $B_n^* \leq eB_n^* C_n^*$.
Proof: Take any $X \subset eC_n^*$. To show $\delta(X/B_n^*) \geq 0$ we divide into two cases.
Suppose $e \in X$. $\delta(X/B_n^*) = \delta(X/B_n^* e) + \delta(e/B_n^*) = \sum_{i=1}^n \delta(X_{C_i}/B_i e) + 1 \geq
- \sum_{i=1}^\omega \frac{1}{2^n} + 1 \geq 0$.
Suppose $e \not\in X$. By biminimality of $(C_i, B_i e)$ it can be seen that $\delta(Y/B_i) > 0$ for any $Y \subset C_i$. So $\delta(X/B_n^*) = \sum_{i=1}^n \delta(X_{C_i}/B_i) > 0$.

3 Theorem

Lemma 3.1 Let $P = (M, M, I)$ be a δ-generic pseudoplane. Suppose that a finite graph $A \subset M$ has no loops. Then $A \in K$.

Proof Take any $a_0 \in A$. Let C_0 be a connected component of a_0 in A. As A has no loops, C_0 can be regarded as a tree with $\text{height}(a_0) = 0$. Since P is a pseudoplane, M satisfies

- For any $a \in M$ there are infinitely many $b \in M$ with $R(a, b)$;
- For any distinct $a, b \in M$ there are at most finitely many $c \in M$ with $R(a, c) \land R(b, c)$.

So, we can inductively construct $C_0^* \subset M$ with $C_0^* \cong C_0$. Take any $a_1 \in A - C_0$. Let C_1 be a connected component of a_1. In the same way, we have $C_1^* \subset M$ with $C_0^* C_1^* \cong C_0 C_1$. Iterating this process, we have $A^* \subset M$ with $A^* \cong A$. Hence $A \in K$.

Lemma 3.2 Let $P = (M, M, I)$ be a δ-generic pseudoplane. Then $\alpha < 1$.
Proof Suppose that \(\alpha \geq 1 \). Take some \(a \in M \) with \(a \leq M \). Then there is no \(b \in M \) with \(R(a, b) \). This contradicts axioms of a pseudoplane. Hence \(\alpha < 1 \).

Theorem There is no \(\delta \)-generic pseudoplane that is superstable but not \(\omega \)-stable.

Proof Take any \(\delta \)-generic pseudoplane \(P = (M, \leq M, I) \). Let \(M \) be a \((K, \leq) \)-generic graph for some \(K \subseteq K_\alpha \). By 1.3, if \(\alpha \) is rational, then \(P \) is \(\omega \)-stable. Thus it is enough to show that, if \(\alpha \) is irrational then \(P \) is not superstable. By 3.2, we have \(0 < \alpha < 1 \). So we have a sequence \(\{eB_iC_i\}_{i<\omega} \) satisfying (1)–(5) of 2.4. Let \(D = \bigcup_{i<\omega} eB_iC_i \). Since \(D \) has no loops, any finite subset of \(D \) belongs to \(K \) by 3.1. By genericity of \(M \), we can assume that \(D \leq M \).

Claim: \(d(e/B_n^*) = \sum_{i \leq n} \delta(C_i/eB_i) + 1 \).

Proof: By (2)–(5) of 2.4, we have \(d(e/B_n^*) = d(eB_n^*) - d(B_n^*) = \delta(eC_n^*B_n^*) - \delta(B_n^*) = \delta(eC_n^*/B_n^*) = \delta(C_n^*/eB_n^*) + 1 = \sum_{i \leq n} \delta(C_i/eB_i) + 1 \). (End of Proof of Claim)

For each \(n < \omega \), \(\text{tp}(e/B_{n+1}^*) \) is a forking extension of \(\text{tp}(e/B_n^*) \), because \(d(e/B_{n+1}^*) = d(e/B_n^*) + \delta(C_{n+1}/eB_{n+1}) < d(e/B_n^*) \) by the claim. Hence \(\text{Th}(M) \) is not superstable.

Reference

[H1] E. Hrushovski, A stable \(\aleph_0 \)-categorical pseudoplane, preprint, 1988