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Electronic energy density in chemical reaction systems
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The energy of chemical reaction is visualized in real space using the electronic energy densitynE(rW)
associated with the electron densityn(rW). The electronic energy densitynE(rW) is decomposed into
the kinetic energy densitynT(rW), the external potential energy densitynV(rW), and the interelectron
potential energy densitynW(rW). Using the electronic energy densitynE(rW) we can pick up any point
in a chemical reaction system and find how the electronic energyE is assigned to the selected point.
We can then integrate the electronic energy densitynE(rW) in any regionR surrounding the point and
find out the regional electronic energyER to the globalE. The kinetic energy densitynT(rW) is used
to identify the intrinsic shape of the reactants, the electronic transition state, and the reaction
products along the course of the chemical reaction coordinate. The intrinsic shape is identified with
the electronic interfaceS that discriminates the regionRD of the electronic drop from the regionRA

of the electronic atmosphere in the density distribution of the electron gas. If theR spans the whole
space, then the integral gives the totalE. The regional electronic energyER in thermodynamic
ensemble is realized in electrochemistry as the intrinsic Volta electric potentialfR and the intrinsic
Herring–Nichols work functionFR . We have picked up first a hydrogen-like atom for which we
have analytical exact expressions of the relativistic kinetic energy densitynTM

(rW) and its
nonrelativistic versionnT(rW). These expressions are valid for any excited bound states as well as the
ground state. Second, we have selected the following five reaction systems and show the figures of
thenT(rW) as well as the other energy densities along the intrinsic reaction coordinates: a protonation
reaction to He, addition reactions of HF to C2H4 and C2H2, hydrogen abstraction reactions of NH3

1

from HF and NH3. Valence electrons possess their unique delocalized drop region remote from
those heavily localized drop regions adhered to core electrons. The kinetic energy densitynT(rW) and
the tension densitytWS(rW) can vividly demonstrate the formation of the chemical bond. Various basic
chemical concepts in these chemical reaction systems have been clearly visualized in real
three-dimensional space. ©2001 American Institute of Physics.@DOI: 10.1063/1.1384012#
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I. INTRODUCTION

The redistribution of electrons is essential in the cou
of chemical reaction coordinates.1–3 This is because the as
sociated lowering in the electronic energy is the driving fo
of chemical reaction. The decomposition of the electro
energy in the abstract functional space of orbital has playe
significant role in the study of chemical reactivity indic
such as Coulson valence bond theory, Woodward–Hoffm
law, and the Fukui frontier orbital theory.4–6

We have recently developed a novel theory of ene
decomposition in the real space.7–10The new energy decom
position scheme is exact and complementary to the con
tional orbital-space energy decomposition scheme. Nam
which region of space has significant contribution to che
cal reaction coordinate is easily recognized. This is adva
geous in visualization of the chemical interaction in re
space.

This new regional energy decomposition scheme is h
in the present paper extended to an infinitely small region
energy decomposition scheme, namely, the electronic en
density decomposition scheme. Our scheme here prese
enables us to recognize how the electronic energy densi

a!Electronic mail: akitomo@scl.kyoto-u.ac.jp
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associated with the electron density. Using the electronic
ergy density, we can pick up any point in a chemical react
system and find how the electronic energyE is assigned to
the point. We can then integrate the electronic energy den
in a small region and find out the regional electronic ene
contribution to the global electronic energyE. If the integra-
tion spans the whole space, then the integral gives the t
E. We assume in this paper the adiabatic Born–Oppenhei
treatment for the electronic structure. All the calculations
performed at the HF level of theory. The basis set
6-311G** unless otherwise stated explicitly.

II. REGIONAL ENERGY DECOMPOSITION

A. Electronic energy density

According to Heisenberg’s uncertainty principle, we ca
not know the position of an electron precisely but we mer
know the electron densityn(rW) if the energy of the quantum
mechanical state of the electron gas is given. The elec
density n(rW) plays an important role in newly develope
density functional theory of materials.11–13 In chemical reac-
tion systems, the redistribution of electrons directly redefin
the electronic energyE as a unique functional of the electro
densityn(rW).
7 © 2001 American Institute of Physics
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In Ref. 8, we have developed a novel field theory
regional energy decomposition. Here we shall briefly revi
the theory8 augmented by the new definition of the kinet
energy density operator rigged with gauge invariance of
theory. The gauge invariance is essential to the theory
‘‘density’’ as well as the integrated quantity such as energ.
This is because the gauge merely changes the phase o
wave function:

c~rW !→c8~rW !5expS 2 i
e

\c
u~rW ! Dc~rW !. ~1!

The phase itself should not affect the density as well as
integrated quantity such as total energy. Since the gradie
the wave function should appear in the equation of motion
electrons, the gauge invariance of theory should inevita
require the gauge potential. The gradient operator sho
then change to covariant derivative operator. The gauge
tential brings about the gauge field, namely the electrom
netic field. Thus the introduction of the electromagnetic fie
is mandatory by the gauge invariance. This kind of gau
principle has been fundamental in the modern quan
theory of electrons.

For the simplicity of presentation of theory, full relativ
istic gauge invariant theory of quantum electrodynam
~QED! will be presented in Sec. II B@see also Appendices A
and B; specifically Eqs.~B12! and ~B13!#.

In Sec. II A, we shall first start from the nonrelativist
electronic field theory. For the nonrelativistic electronic fie
theory the Lagrangian is invariant under the gauge trans
mation, and the Hamiltonian density operatorĤ(rW) is given
using the covariant derivative as follows:

Ĥ~rW !5T̂~rW !1V̂~rW !1Ŵ~rW !, ~2!

whereT̂(rW) is the kinetic energy density operator,V̂(rW) the
external potential energy density operator associated with
external electrostatic potentialv(rW)52ef(rW) ~see Appendix
A!, while Ŵ(rW) denotes interelectron potential ener
density operator associated with the interelectron poten
energy,

w~rW,sW !5
e2

urW2sWu
:

T̂~rW !52
\2

2m
•

1

2
~ x̂1~rW !Dk

2~rW !x̂~rW !

1Dk*
2~rW !x̂1~rW !"x̂~rW !!, ~3!

V̂~rW !5x̂1~rW !n~rW !x̂~rW !52ex̂1~rW !f~rW !x̂~rW !, ~4!

Ŵ~rW !5
1

2
x̂1~rW !E d3sWx̂1~sW !w~rW,sW !x̂~sW !"x̂~rW !, ~5!

whereDk(rW) denotes the covariant derivative~see Appendix
A! and x̂(rW) denotes the three-dimensional two-compon
spinor operator,

x̂~rW !5S x̂1~rW !

x̂2~rW ! D
~see Appendix B!.
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For electron density operator

N̂~rW !5x̂1~rW !x̂~rW !, ~6!

the probability conservation is represented as the contin
equation,

]

]t
N̂~rW !1div SŴ ~rW !50, ~7!

where the velocity density operator,

Ŝk~rW !5
1

2m
~2 i\x̂1~rW !Dk~rW !x̂~rW !

1 i\Dk* ~rW !x̂1~rW !"x̂~rW !!, ~8!

satisfies the equation of motion,

m
]

]t
SŴ ~rW !5tŴS~rW !1KŴ ~rW !2

e

c
SŴ ~rW !ÃBW ~rW !. ~9!

Aside from the Lorentz force density operator, the stress v

tor density operator or the tension density operatortŴS(rW) is
given as the divergence of the stress tensor density ope

tĴS(rW) as follows:

t̂Sk~rW !5] l t̂
Skl~rW !, ~10!

where

t̂Sk~rW !5
\2

4m
@ x̂1~rW !Dk~rW !Dl

2~rW !x̂~rW !

1Dk* ~rW !Dl*
2~rW !x̂1~rW !"x̂~rW !

2Dk* ~rW !x̂1~rW !"Dl
2~rW !x̂~rW !

2Dl*
2~rW !x̂1~rW !"Dk~rW !x̂~rW !#

1
e

c
~SŴ ~rW !ÃBW ~rW !!k, ~11!

and

t̂Skl~rW !5
\2

4m
@ x̂1~rW !Dk~rW !Dl~rW !x̂~rW !

1Dk* ~rW !Dl* ~rW !x̂1~rW !"x̂~rW !

2Dk* ~rW !x̂1~rW !"Dl~rW !x̂~rW !

2Dl* ~rW !x̂1~rW !"Dk~rW !x̂~rW !#. ~12!

Second, the force density operatorKŴ (rW) is given as

K̂k~rW !52x̂1~rW !S ]kn~rW !1E d3sWx̂1~sW !]kw~rW,sW !x̂~sW ! D
"x̂~rW !1

e

c

]Ak~rW !

]t
N̂~rW !. ~13!

Let the expectation value over the ensemble associ
with the density matrix(auCa&pa^Cau in the Fock space be
denoted aŝ & such as
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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3499J. Chem. Phys., Vol. 115, No. 8, 22 August 2001 Energy density in chemical reactions
^N̂~rW !&5(
a

pa^CauN̂~rW !uCa&, ^CauCa&51,

~14!

(
a

pa51, 1>pa.0,

then the electron densityn(rW) is given as

n~rW !5^N̂~rW !&. ~15!

It should be noted that the choice of the vacuum and s
vectors and the ensemble itself should reflect the pro
physics of the system we treat. Then, we obtain the ene
densities as follows:

nE~rW !5^Ĥ~rW !&, ~16!

nT~rW !5^T̂~rW !&, ~17!

nV~rW !5^V̂~rW !&, ~18!

nW~rW !5^Ŵ~rW !&. ~19!

The kinetic energy densitynT(rW), the external potential en
ergy densitynV(rW), and the interelectron potential energ
densitynW(rW) are not mutually independent but are related
each other because they are all derived from the same de
matrix. Thus, the three components should follow the s
rule leading to the total energy densitynE(rW):

nE~rW !5nT~rW !1nV~rW !1nW~rW !. ~20!

Regional energy decomposition7–9 is found to be the integra
tion over regionR of space as follows:

ER5E
rWPR

d3rWnE~rW !, ~21!

TR5E
rWPR

d3rWnT~rW !, ~22!

VR5E
rWPR

d3rWnV~rW !, ~23!

WR5E
rWPR

d3rWnW~rW !, ~24!

whererWPR means the regional integral confined within t
regionR exclusively. Apparently, we have the sum rule of t
regional energies as follows:

ER5TR1VR1WR . ~25!

If the whole space is decomposed into a set of regions, t
we obtain7

E5(
R

ER , ~26!

where (R denotes summation over the set of regions a
where the electron energyE is the expectation value of th
electron Hamiltonian operator in the whole space:

E5^Ĥ&, Ĥ5E d3rWĤ~rW !. ~27!
Downloaded 18 Jun 2007 to 130.54.110.22. Redistribution subject to AIP
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Likewise, the electron numberN is defined and decompose
regionally as follows:

N5^N̂&, N̂5E d3rWN̂~rW !,

~28!

N5(
R

NR , NR5E
rWPR

d3rWn~rW !.

It should be noted that the choice of the new kine
energy density operatorT̂(rW) is not positive definite. Con-
ventional positive-semidefinite choiceT̂conv(rW) reads

T̂conv~rW !5
\2

2m
Dk* ~rW !x̂1~rW !"Dk~rW !x̂~rW !. ~29!

Both expectation values in the whole space are the sam8

E d3rW^T̂conv~rW !&5E d3rW^T̂~rW !&, ~30!

but the density is different from each other:T̂conv(rW)
ÞT̂(rW). In our previous calculations,8–10which choice of the
kinetic energy densities is appropriate has not been explic
emphasized. Butthis difference is very important when w
study the behavior of the newly defined kinetic energy den
nT(rW) in chemical reaction systemsas follows.

In the very vicinity of atomic nucleus, the electron fee
infinitely large positive electric potential of the bare nucleu
Then, in terms of classical mechanics, the electron that
constant energy can acquire infinitely large positive kine
energy at the position of the nucleus. In terms of quant
mechanics as well, thenT(rW) should then become infinitely
positive at the position of nucleus, provided that, which
the very case of normal chemistry without radiation field, t
intramolecular electric fieldEW intra(rW) produced by the othe
electrons does not exceed that of the bare nucleus.14–16 The
nucleus is therefore normally surrounded by the surface
zero kinetic energy density,nT(rW)50, within which the ki-
netic energy densitynT(rW).0 where the electron density i
amply accumulated and classically allowed motion of el
tron is guaranteed. We may call this the region of the el
tronic drop denoted byRD and the complementary region th
region of the electronic atmosphere denoted byRA , being
separated by the electronic interfaceS:

RD5$rWunT~rW !.0%, RA5$rWunT~rW !,0%,
~31!

S5$rWunT~rW !50%.

In the RA the electron density is dried up and the motion
electron is classically forbidden and the boundaryS in be-
tweenRD andRA gives a clear image of the intrinsicshape
of the reactant atoms and molecules, the reaction interm
ates, and the reaction products along the course of the ch
cal reaction coordinate. In Sec. III, we shall demonstrate
usefulness of this new concept.

B. Coulson conjecture of energy density

In his book, Coulson conjectured that the physical me
ing of the probability density should be related with the e
ergy density of the wave equation in general. Coulson is
first chemist to envision the intimacy of the field theoretic
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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energy density both of photons and electrons. As a matte
fact, for radiation field with electric fieldEW (rW) and magnetic
field BW (rW) the radiation field energy density is (1/8p)
3(EW 2(rW)1BW 2(rW)).4 We have realized the Coulson conjectu
in such a way that without the radiation field the quantu
electronic Hamiltonian densitynE(rW) for the ground state is
manifestly given as the exact functional of electron dens
n(rW)7,11 as presented in Eq.~20! in Sec. II A. The inclusion
of the radiation field to the electron field is to prove t
self-consistent view to the Coulson conjecture. This is es
lished in terms of the gauge principle of quantum electro
namics~QED!. The relativistic QED Lagrangian compose
of the quantized electromagnetic and electronic fields is
variant under the Lorentz and gauge transformation.

The relativistic Dirac Hamiltonian density operator
electronsĤDirac(rW) is composed of the mass density opera
M̂ (rW) and the external potential energy density opera
2eF̂(rW) ~see Appendices A and B!:

ĤDirac~rW !5M̂ ~rW !2eF̂~rW !, ~32!

M̂ ~rW !5ĉ1~rW !~2 i\cg0gkD̂k~rW !1g0mc2!ĉ~rW !, ~33!

F̂~rW !5ĉ1~rW !f̂~rW !ĉ~rW !. ~34!

In this expression,ĉ(rW) denotes the four-dimensional fou
component spinor operator,

ĉ~rW !5S ĉ1~rW !

ĉ2~rW !

ĉ3~rW !

ĉ4~rW !

D .

The charge conservation is represented as the contin
equation,

]m ĵ m~rW !5
]r̂~rW !

]t
1div jŴ~rW !50, ~35!

where the electronic charge density operatorr̂(rW),

r̂~rW !52eĉ1~rW !ĉ~rW !52ecC ~rW !g0ĉ~rW !5
1

c
ĵ 0~rW !, ~36!

and the electronic current density operatorjŴ(rW),

jŴ~rW !52ceĉ1~rW !g0gW ĉ~rW !52cecC ~rW !gW ĉ~rW !, ~37!

construct four-vector of momentum density operator,

ĵ m~rW !5~ ĵ 0~rW !, jŴ~rW !!. ~38!

The kinetic momentum density operatorPŴ (rW),

P̂k~rW !5 1
2~2 i\ĉ1~rW !D̂k~rW !ĉ~rW !

1 i\D̂k
1~rW !ĉ1~rW !"ĉ~rW !!, ~39!

satisfies the equation of motion,

]

]t
PŴ ~rW !5tŴP~rW !1EŴ ~rW !r̂~rW !1

1

c
jŴ~rW !ÃBŴ ~rW !. ~40!
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Aside from the Lorentz force density operator, the relativis
stress vector density operator or the tension density oper

tŴP(rW) is given as the divergence of the stress tensor den

operatortĴ P(rW) as follows:

t̂Pk~rW !5] l t̂
Pkl~rW !, ~41!

where

t̂Pk~rW !5
i\c

2
@D̂ l

1~rW !cC ~rW !g l "D̂k~rW !ĉ~rW !

1cC ~rW !g l D̂k~rW !D̂ l~rW !ĉ~rW !

2D̂k
1~rW !D̂ l

1~rW !cC ~rW !g l "ĉ~rW !

2D̂k
1~rW !cC ~rW !g l "D̂ l~rW !ĉ~rW !] 2

1

c
~ jŴ~rW !ÃBW ~rW !!k,

~42!

and

t̂Pkl~rW !5
i\c

2
@cC ~rW !g l D̂k~rW !ĉ~rW !

2D̂k
1~rW !cC ~rW !g l "ĉ~rW !]. ~43!

The electronic mass density operatorM̂ (rW) is further de-
composed into the rest mass density opera
2mc2@ r̂(rW)/e#, the kinetic energy density operatorT̂M(rW),
and the residuedM̂ (rW) as follows:

M̂ ~rW !52mc2
r̂~rW !

e
1T̂M~rW !1dM̂ ~rW !, ~44!

T̂M~rW !52
\2

2m
•

1

2
~ ĉ1~rW !D̂k

2~rW !ĉ~rW !

1D̂k
12~rW !ĉ1~rW !"ĉ~rW !!, ~45!

dM̂ ~rW !5M̂ ~rW !1mc2
r̂~rW !

e
2T̂M~rW !. ~46!

By taking the ensemble average, we arrive at the relativi
extension of the densities. For example, the electronic cha
densityr(rW) is given as

r~rW !5^r̂~rW !&. ~47!

It should be noted that the choice of the vacuum and s
vectors and the ensemble itself should of course reflect
proper physics of the system we treat. Then, we get

nEDirac
~rW !5^ĤDirac~rW !&, ~48!

nTM
~rW !5^T̂M~rW !&, ~49!

n2eF~rW !5^2eF̂~rW !&, ~50!

ndM~rW !5^dM̂ ~rW !&. ~51!

And the sum rule of the densities follows

nEDirac
~rW !52mc2

r~rW !

e
1nTM

~rW !1n2eF~rW !1ndM~rW !,

~52!

and their integrals with obvious notation:
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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3501J. Chem. Phys., Vol. 115, No. 8, 22 August 2001 Energy density in chemical reactions
EDirac5mc2N1TM2eF1dM . ~53!

The regional decomposition is in order where we observe
relativistic extension of the characteristic regions,

RDDirac
5$rWunTM

~rW !.0%, RADirac
5$rWunTM

~rW !,0%,

SDirac5$rWunTM
~rW !50%. ~54!

Regional energy decomposition7–9 is found to be the integra
tion over regionR of space as in the nonrelativistic case.

It should be noted that if we first switch to the nonre
tivistic treatment and second treat the electromagnetic fi
as the classical radiation field, then the reduction of the
netic energy densitynTM

(rW) to the nonrelativisticnT(rW) as-
sociated withn2eF(rW) to nV(rW) are dictated as follows:

nTM
~rW !→nT~rW !, n2eF~rW !→nV~rW !, ~55!

accompanying the reduction of the electronic charge den
to the electron density:

r~rW !→2en~rW !. ~56!

C. Regional work function and regional electric
potential

We shall treat in this section the nonrelativistic gra
canonical ensemble without radiation field,12 where the den-
sity matrix and therefore in particular the electronic ene
densitynE(rW) are all proved to be given as unique function
of n(rW).7–9,12

The regional electronic energyER is the electronic en-
ergy of a certain regionR in space. The other regions act
spectator or ‘‘medium’’ for the regionR. This nature is true
for extension to the finite temperature case without radia
field using the grand canonical ensemble where all the
evant quantities such asER , n(rW), or nE(rW) are defined by
the thermodynamic quantities.7 The manipulation of electron
is then treated as a thermodynamic process and again
relevant quantities are all given as the unique functiona
n(rW).7,12

For example, removal of the electron from the system
the reservoir gives Gibbs chemical potentialmG . Using
Gibbs grand canonical ensemble, we arrive at the expres
of the Gibbs chemical potentialmG as follows:7

mG5mR1 (
R8~ÞR!

aR8R , ~57!

where

mR5S ]ER

]NR
D

S,v,NR8~ÞR!

, ~58!

aR8R5S ]ER8
]NR

D
S,v,NR8~ÞR!

. ~59!

The regional chemical potentialmR refers to the regiona
contribution to themG . If an electron is withdrawn from a
region R and reaches the reservoir, the regional electro
energyER changes according to Eq.~58! and themR gives
the energy change per one electron. On the other hand
Downloaded 18 Jun 2007 to 130.54.110.22. Redistribution subject to AIP
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passage of the electron through the system to the rese
should inevitably influence the electronic energies of
other regionsR’s, where the regional electronic energyER8
changes according as Eq.~59! and theaR8R gives the energy
change per one electron. If an electron is withdrawn from
region R and passes through another regionR8, then the
electron is treated here external to the regionR8. Namely,
the R8 here acts as a spectator to the passing electron
therefore the energy change inER8 as measured byaR8R in
Eq. ~59! should then be ‘‘electrostatic’’ in nature. This shou
be the electric potential first observed by Volta as proved
Herring and Nichols.17 It should be noted that manipulatio
of electron solely in the particular region leads to the th
modynamic definition of work function.17 As demonstrated
by Volta for a pair of regionsR andR8 in contact with each
other, the contact potential difference is the difference in
regional work function as proved by Herring and Nichols17

fR2fR85FR82FR , ~60!

wherefR denotes the Volta electric potential for the regionR
andFR denotes the work function of the regionR. This is the
consequence of the chemical equilibrium in between a p
of regions in contact with each other:17

mG52eFR2efR52eFR82efR8 , ~61!

where the Gibbs chemical potentialmG is constant from re-
gion to region in contact with each other under the condit
of global chemical equilibrium.

On the other hand, the electrostatic effect is long-rang
As a matter of fact, the electron is negatively charged a
has non-negligible interaction even for spectator regionR9
not directly in contact with the regionR. For example, the
surface dipole of the spectator regionR8 can contribute to
the long-ranged electrostatic interaction with the electr
Hence, in our theory, the intrinsic Volta electric potentialfR

for the regionR is expressed by the sum ofaR8R over the
spectator complementary regionsR8 to R:

2efR5 (
R8~ÞR!

aR8R . ~62!

Therefore, substituting Eq.~62! into Eq. ~61! and comparing
it with Eq. ~57!, we arrive at the intrinsic Herring–Nichol
work functionFR for the regionR as follows:

2eFR5mR . ~63!

Thus, the thermodynamic extension of the electronic
ergy densitynE(rW) turned out to be observable in electr
chemistry: in terms of the intrinsic Volta electric potentialfR

and the intrinsic Herring–Nichols work functionFR . Even
for the same crystal, thefR and theFR are dependent on
surface morphologies or crystallographic orientations, wh
the sum of these gives the constant valuemG for the same
crystal according to Eq.~61!.17,18
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FIG. 1. ~Color! Characteristic densities are demonstrated for a protonation reaction to He. The reaction coordinate is the internucleus dR
5r (He–H1). The equilibrium distance isr (He–H1!50.7735 Å. The maps ofnT(rW) and tWS(rW) are shown in~a! at r (He–H1!52.0 Å and ~b! at
r (He–H1!51.5 Å. The left-hand side is the map ofnT(rW) and the right-hand sidetWS(rW). The scale of length is a.u. and the scale of density is hartree boh23.
For tWS(rW), the arrow shows the direction of the vector while the color gradation shows the strength gradation. The maps of the external potent
density nV(rW), the interelectron potential energy densitynW(rW), and the total energy densitynE(rW) are shown in~c! at r (He–H1!52.0 Å and ~d! at
r (He–H1!51.5 Å. The upper left-hand side is the map ofnV(rW) and the upper right-hand sidenW(rW), while the lower sidenE(rW).
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FIG. 1. ~Continued.!
a-
s

III. APPLICATION

A. H atom

Here we pick up first a hydrogen-like atom without r
diation field for which we have an analytical exact expre
sion of the relativistic kinetic energy densitynTM

(rW):
Downloaded 18 Jun 2007 to 130.54.110.22. Redistribution subject to AIP
-

nTM
~rW !52~EDirac2mc2!

r~rW !

e
2n2eF~rW !2ndM~rW !,

~64!

and its nonrelativistic versionnT(rW),
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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nT~rW !5~E2n~rW !!n~rW !, ~65!

with

n~rW !52ef~rW !52
Ze2

urWu
, ~66!

whereZ is the nuclear charge number. These expressions
valid for any excited bound states as well as the ground s
Downloaded 18 Jun 2007 to 130.54.110.22. Redistribution subject to AIP
re
te.

In the ground state, the nucleus is surrounded by the e
tronic interface of radiusr SDirac

for the relativistic case andr S

for the nonrelativistic case within which the kinetic ener
density is positive leaving negative outside:

r SDirac
5

\2

Zme2 ~A12Z2a21A4 12Z2a2!, a5
e2

\c
,

~67!
FIG. 2. Characteristic densities are demonstrated for an addition reaction of HF to C2H4 along the IRC ofCs symmetry in~a!–~e! in which ~c! at the transition
state~TS! corresponds to the saddle point on the potential energy surface and~e! at the product complex. The left-hand side is the map ofnT(rW) and the
right-hand sidetWS(rW). The scale of length is a.u. and the scale of density is hartree bohr23. For nT(rW) the grey background denotes negative regionRA . For
tWS(rW) the arrow shows the direction of the vector while the color gradation shows the strength gradation.
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FIG. 2. ~Continued.!
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r S5
2\2

Zme2 , ~68!

so that the intrinsic shape is this electronic drop region j
surrounded by this electronic interface. The radiusr SDirac

for
the relativistic case is smaller than the nonrelativistic va
r S , which ratio approaches 0 asZ approaches 137. The in
trinsic shape of the H atom withZ51 has the radiusr SDirac
Downloaded 18 Jun 2007 to 130.54.110.22. Redistribution subject to AIP
t

e

'r S52 a.u.'1.058 Å, which is comparable to the standa
atomic radius of H atom, 1.5 a.u.'0.79 Å, reduced by a
factor of 75%.

B. Chemical reaction systems

We shall apply the nonrelativistic theory to sever
chemical reaction systems in the electronic ground sta
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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FIG. 2. ~Continued.!
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without radiation field, where no additional external elect
magnetic field is present but the electrostatic field of nuc
Particular interest is put on the kinetic energy densitynT(rW)
that is reduced from Eqs.~2! and ~17! to

nT~rW !5 K 2
\2

2m
•

1

2
~ x̂1~rW !]k

2x̂~rW !1]k
2x̂1~rW !•x̂~rW !!L .

~69!

Since the electronic state is in the stationary state, we c
clude from Eqs.~8! and ~9! that the tension densitytWS(rW)
exactly cancels the external force densityKW (rW):

05tWS~rW !1KW ~rW !, ~70!

where

tSk~rW !5 K \2

4m
@ x̂1~rW !]k] l

2x̂~rW !1]k] l
2x̂1~rW !

"x̂~rW !2]kx̂
1~rW !"] l

2x̂~rW !2] l
2x̂1~rW !"]kx̂~rW !#L ,

~71!

and

Kk~rW !5 K 2x̂1~rW !S ]kn~rW !

1E d3sWx̂1~sW !]kw~rW,sW !x̂~sW ! D "x̂~rW !L . ~72!

We shall here select the following five reaction systems
show the figures of the kinetic energy densities as well as
other energy densities along the intrinsic reaction coordin
~IRCs!.1–3
Downloaded 18 Jun 2007 to 130.54.110.22. Redistribution subject to AIP
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1. Protonation reaction to He

Here we examine a protonation reaction to He utilizi
the basis set given in Ref. 10. The reaction coordinate is
internucleus distancer (He–H1). The reaction energy is exo
thermic and there appears no transition state down to
equilibrium distancer (He–H1!50.7735 Å. The maps of the
kinetic energy densitynT(rW) and the tension densitytWS(rW)
are shown in Fig. 1~a! at r (He–H1!52.0 Å and Fig. 1~b! at
r (He–H1!51.5 Å. At r (He–H1)5`, the He atomic
nucleus is surrounded by theS of radius'0.676 Å within
which thenT(rW) is positive, so that theRD is this sphere just
defined. This intrinsic shape of the He atom is comparable
the standard atomic radius 0.49 Å of He atom reduced b
factor of'72%; it should be noted that the smaller shape
compared with the H atom is well reproduced together w
a similar value of the reduction factor.

At r (He–H1!52.0 Å, we observe two disjointRD’s, one
for He and the other for H1. As reaction proceeds, the k
netic energy densitynT(rW) becomes gradually polarized to
ward the internucleus region. The polarization for theRD is
found to be most drastic and then theS dictates the drastic
change of the shape of the He–H1 intermediate structure
Actually, the RD for He extends to theRD for H1 at
r (He–H1!51.5 Å. Namely, the two disjoint regions of th
electronic drops,RD for He andRD for H1, have been fused
there. Although there is found no saddle point on the pot
tial energy curve along the reaction coordinate, we may id
tify the intrinsic electronic transition state to the coalesc
point. Very swift change of the delocalizedRD of valence
electrons thus dictates the transformation~formation-
scission! of chemical bonds along the reaction coordina
Furthermore, along the course of chemical reaction, we
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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serve a pair of sources of tension located at each nucleu
He and H1. The two tension fields collide and demonstrate
very interesting figure where the tension flow traced by
tension densitytWS(rW) defines the catastrophe point in b
tween the two nuclei. The catastrophe point of the tens
flow moves toward the He nucleus as reaction proce
when the tension density for the side of the H1 nucleus gets
strengthened. It should be noted that the electronic state
the stationary state, and therefore the tension densitytWS(rW)
Downloaded 18 Jun 2007 to 130.54.110.22. Redistribution subject to AIP
of
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exactly cancels the external force densityKW (rW) as shown in
Eq. ~70!. Then, if we reverse the direction of the arrow, th

we get the map of the external force densityKW (rW) without
calculating the interelectron integral in Eq.~72!. Thus we can
visualize both the tension and the external force exerted
the electron using the same figure simultaneously.

The maps of the external potential energy densitynV(rW),
the interelectron potential energy densitynW(rW), and the to
FIG. 3. Characteristic densities are demonstrated for an addition reaction of HF to C2H2 along the IRC. For other details, see the caption of Fig. 2.
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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FIG. 3. ~Continued.!
t

tal energy densitynE(rW) are shown in Fig. 1~c! at
r (He–H1!52.0 Å and Fig. 1~d! at r (He–H1!51.5 Å. The
upper left-hand side is the map ofnV(rW) and the upper right-
hand sidenW(rW), while the lower sidenE(rW). The external
potential energy densitynV(rW) is negative definite while
nW(rW) positive definite, and together withnE(rW) they all do
not show, in contrast tonT(rW) andtWS(rW), very characteristic
change of the delocalized valence electrons that dictates
Downloaded 18 Jun 2007 to 130.54.110.22. Redistribution subject to AIP
he

transformation~formation scission! of chemical bonds along
the reaction coordinate.

Therefore, we shall focus onnT(rW) and tWS(rW) exclu-
sively in the following reaction systems.

2. Addition reaction of HF to C 2H4

Here we examine an addition reaction of HF to C2H4 .
The maps of the kinetic energy densitynT(rW) and the tension
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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FIG. 3. ~Continued.!
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densitytWS(rW) are shown along the IRC ofCs symmetry in
Figs. 2~a!–2~e! in which ~c! at the transition state~TS! cor-
responding to the saddle point on the potential energy
face and~e! at the product complex. In the reactant cell
the reaction system~a!, we observe two disjointRD’s, one
for C2H4 and the other for HF. A pair of disjointRA’s around
the innermostRD’s of C’s may represent the boundaries ofK
and L shells discriminating heavily localized core electro
adhered to nuclei and valence electrons that constitute
localizeds bond and the delocalizedp bond in C2H4 . Also
found in HF the characteristicRD that shows the behavior o
the donation of the occupieds electron of H to F and the
backdonation ofp electron of F to the vacantp orbital of H.
As reaction proceeds,~b!, the kinetic energy densitynT(rW)
becomes gradually polarized toward the intermolecule reg
and merges at the corner of H. This coalescence dictate
electronic transition state that supercedes the saddle poin
the potential energy surface. At the transition state,~c!, the
two disjoint RD’s of the reactant molecules are complete
fused also at the corner of F. The scission of the H–F b
starts at~d! and ends at~e! where the newly completed H–C
and F–C bonds are contrasted with the weakened C–C b
in terms of the change in the magnitude of thenT(rW) and the
associated characteristic change of thetWS(rW).

3. Addition reaction of HF to C 2H2

Here we examine an addition reaction of HF to C2H2 .
The maps of the kinetic energy densitynT(rW) and the tension
densitytWS(rW) are shown along the IRC ofCs symmetry in
Figs. 3~a!–3~e! in which Fig. 3~c! at the transition state~TS!
corresponding to the saddle point on the potential ene
surface and~e! at the product complex. A qualitatively sim
lar feature to the preceding reaction system is anticipated
Downloaded 18 Jun 2007 to 130.54.110.22. Redistribution subject to AIP
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actually found, except the change of the C–C triple bond
double bond keeping the stronger magnitude of thenT(rW)
along the IRC as compared with the change of the C
double bond to single bond in the former.

4. Hydrogen abstraction reaction of NH 3
¿ from HF

Here we examine a hydrogen abstraction reaction
NH3

1 from HF.3,9,19 The maps of the kinetic energy densi
nT(rW) and the tension densitytWS(rW) are shown along the IRC
of Cs symmetry in Figs. 4~a!–4~e! in which ~c! at the tran-
sition state~TS! corresponding to the saddle point on th
potential energy surface and~e! at the product complex. In
the reactant cell of the reaction system,~a!, we observe two
disjoint RD’s, one for NH3

1 and the other for HF. A disjoint
RA around the innermostRD of N may represent the bound
ary of K and L shells discriminating heavily localized cor
electrons adhered to nucleus and valence electrons that
stitute the localizeds bond to H. As reaction proceeds,~b!,
the kinetic energy densitynT(rW) becomes gradually polarize
toward the intermolecule region and merges at the corne
H. This coalescence dictates the electronic transition s
that supercedes the saddle point on the potential energy
face. At the transition state,~c!, the scission of H–F bond
starts and then proceeds through~d! and ends at~e! where
the newly completed H–N bond is contrasted with the b
ken H–F bond in terms of the change in the magnitude of
nT(rW) and the associated characteristic change of thetWS(rW).
Also at the product complex,~e!, the releasing F is slightly
bound to NH4

1 and a trace ofRA around the innermostRD of
F may represent the discrimination ofK andL shells in F.
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5. Hydrogen abstraction reaction of NH 3
¿ from NH 3

Here we examine a hydrogen abstraction reaction
NH3

1 from NH3.3,9,19The maps of the kinetic energy densi
nT(rW) and the tension densitytWS(rW) are shown along the IRC
Downloaded 18 Jun 2007 to 130.54.110.22. Redistribution subject to AIP
f

of Cs symmetry in Figs. 5~a!–5~e! in which ~a! at the reac-
tant complex,~c! at the transition state~TS! corresponding to
the saddle point on the potential energy surface and~e! at the
product complex. Qualitatively similar feature to the prece
of
FIG. 4. Characteristic densities are demonstrated for a hydrogen abstraction reaction of NH3
1 from NH3 along the IRC. For other details, see the caption

Fig. 2.
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FIG. 4. ~Continued.!
i

at
at

ce
oint
ing reaction system is anticipated and actually found,
which, however, at the reactant cell,~b!, the N–N bond is
slightly broken because the migrating H atom should rot
around the N pivot center, and further at the transition st
Downloaded 18 Jun 2007 to 130.54.110.22. Redistribution subject to AIP
n

e
e,

~b!, the kinetic energy densitynT(rW) merges again at the
corner of H to form the new H–N bond. This recoalescen
dictates the electronic transition state now at the saddle p
on the potential energy surface.
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FIG. 4. ~Continued.!
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IV. CONCLUSION

The new regional energy decomposition scheme in R
7 and 8 has been extended to an infinitely small regio
energy decomposition scheme, namely, the electronic en
density decomposition scheme. The energy of chemical
action is visualized in real space using the electronic ene
densitynE(rW) associated with the electron densityn(rW). The
nE(rW) is decomposed into the kinetic energy densitynT(rW),
the one-electronic potential energy densitynV(rW), the two-
electronic potential energy densitynW(rW). The kinetic energy
densitynT(rW) is used to identify the intrinsic shape of th
reactants, the electronic transition state and the reac
products along the course of the chemical reaction coo
nate. The intrinsic shape is identified with the electronic
terfaceS that discriminates the region of the electronic dr
RD from the region of the electronic atmosphereRA in the
density distribution of the electron gas. Using thenE(rW), we
can pick up any point in a chemical reaction system and
how the electronic energyE is assigned to the selected poin
We have realized the Coulson conjecture ‘‘the physi
meaning of the probability density should be related with
energy density’’4 in such a way that the quantum electron
energy densitynE(rW) is manifestly given as the exact func
tional of electron densityn(rW). We can then integrate th
nE(rW) in any regionR surrounding the point and find out th
regional electronic energy contributionER to the globalE.
The ER in thermodynamic ensemble without radiation fie
is realized in electrochemistry as the intrinsic Volta elect
potentialfR and the intrinsic Herring–Nichols work func
tion FR .
Downloaded 18 Jun 2007 to 130.54.110.22. Redistribution subject to AIP
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We have picked up first a hydrogen-like atom for whi
we have analytical exact expressions of the relativistic
netic energy density and its nonrelativistic versionnT(rW).
These expressions are valid for any excited bound state
well as the ground state. For the H atom we have shown
analytical exact expression and found that the intrinsic sh
of H atom of radius 2 a.u.'1.058 Å appears to be compa
rable to the standard atomic radius 1.5 a.u.'0.79 Å of H
atom reduced by a factor of 75%. For He atom theRD is the
sphere surrounded by theS of radius'0.676 Å. This intrin-
sic shape of He atom is comparable to the standard ato
radius 0.49 Å of He atom reduced by a factor of'72%. The
smaller shape as compared with the H atom is well rep
duced together with similar value of the reduction factor. F
a simple chemical reaction system He1H1, the polarization
and the accumulation of electron density in the course of
reaction coordinate has been clearly demonstrated in term
the RD andS, which leads to the shape of the intrinsic ele
tronic transition state and finally to the molecular shape
the HeH1 complex as the reaction product.

We have selected following five reaction systems a
shown the figures of thenT(rW) as well as the other energ
densities along the intrinsic reaction coordinates~IRCs!: a
protonation reaction to He, addition reactions of HF to C2H4

and C2H2, hydrogen abstraction reactions of NH3
1 from HF

and NH3. Valence electrons possess their unique delocali
drop region remote from those heavily localized drop regio
adhered to core electrons. The kinetic energy densitynT(rW)
and the tension densitytWS(rW) can vividly demonstrate the
formation of chemical bond. Various basic chemical conce
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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in these chemical reaction systems have been clearly vis
ized in real three-dimensional space.

We have demonstrated the new concept of the electr
energy density using simple atom and chemical reaction
Downloaded 18 Jun 2007 to 130.54.110.22. Redistribution subject to AIP
al-
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tems. The application of the present theory to various che
cal reaction systems is under way: excited Li cluster form
tion reactions,20 N21–O2 charge transfer reactions,21 GaN
crystal growth gas phase and surface reactions,22 reactions of
of
FIG. 5. Characteristic densities are demonstrated for a hydrogen abstraction reaction of NH3
1 from HF along the IRC. For other details, see the caption

Fig. 2.
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FIG. 5. ~Continued.!
ed
ar-
F radicals and ions with hydrogen-terminated Si~111! thin
film,23 etching reactions of TiN~111! surface with F
radicals,24 electromigration reactions of Al crystal,25 reac-
tions of O radicals and ions with hydrogen-terminat
Downloaded 18 Jun 2007 to 130.54.110.22. Redistribution subject to AIP
Si~111! thin film,26 chemical potential inequality principle
and inhomogeneity of work function.27

Detailed relativistic treatments of the gauges, antip
ticles and renormalizations will be published elsewhere.28
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FIG. 5. ~Continued.!
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APPENDIX A

In quantum electrodynamics~QED!, the space–time co
ordinatesxm means

xm5~x0,xk!5~x0,x1,x2,x3!5~ct,x,y,z!5~ct,rW !, ~A1!

where Greek letter runs from 0 to 3,m50,1,2,3, and the italic
letter from 1 to 3,k51,2,3. Einstein summation conventio
for duplicate indices is used throughout in this paper. T
space–time coordinatesxm may be suppressed to appear u
less otherwise stated explicitly so thatf or f (rW) may stand for
f (t,rW). The contravariant vectoram is transformed to the
covariant vectoram through

am5gmnan, ~A2!

where the metric tensor is given as

gmn5S 1 0 0 0

0 21 0 0

0 0 21 0

0 0 0 21

D 5gmn. ~A3!

The gradient vectors stand for
Downloaded 18 Jun 2007 to 130.54.110.22. Redistribution subject to AIP
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]m5
]

]xm 5S ]

]x0 ,
]

]x1 ,
]

]x2 ,
]

]x3D
5S 1

c

]

]t
,¹W D5S 1

c

]

]t
,gradD , ~A4!

]m5gmn]n5S ]

]x0 ,2
]

]x1 ,2
]

]x2 ,2
]

]x3D
5S 1

c

]

]t
,2¹W D5S 1

c

]

]t
,2gradD . ~A5!

The gauge potential operators stand for

Âm~rW !5~f̂~rW !,AŴ ~rW !!, ~A6!

Âm~rW !5~f̂~rW !,2AŴ ~rW !!. ~A7!

The covariant derivative operators with gauge potential
eratorÂm(rW):

D̂m~rW !5]m2 i
e

\c
Âm~rW !, ~A8!

D̂m
1~rW !5]m1 i

e

\c
Âm~rW !, ~A9!

satisfy

D̂m~rW !D̂n~rW !2D̂n~rW !D̂m~rW !52 i
e

\c
F̂mn~rW !, ~A10!
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



op

-
-
-

ld
re
th

tial

ty

a-

or

3516 J. Chem. Phys., Vol. 115, No. 8, 22 August 2001 Akitomo Tachibana
D̂m
1~rW !D̂n

1~rW !2D̂n
1~rW !D̂m

1~rW !5 i
e

\c
F̂mn~rW !, ~A11!

with the gauge field operatorsF̂mn(rW) defined as

F̂mn~rW !5]mÂn~rW !2]nÂm~rW !

5S 0 Êx~rW ! Êy~rW ! Êz~rW !

2Êx~rW ! 0 2B̂z~rW ! B̂y~rW !

2Êy~rW ! B̂z~rW ! 0 2B̂x~rW !

2Êz~rW ! 2B̂y~rW ! B̂x~rW ! 0

D .

~A12!

Then, the electric field operatorEŴ (rW) and the magnetic field

operatorBŴ (rW) are represented using the gauge potential
erators as

EŴ ~rW !52gradf̂~rW !2
1

c

]AŴ ~rW !

]t
, ~A13!

BŴ ~rW !5rotAŴ ~rW !, div AŴ ~rW !50, ~A14!

and satisfy the Maxwell’s equations as follows:

rotEŴ ~rW !1
1

c

]BŴ ~rW !

]t
50, ~A15!

div BŴ ~rW !50, ~A16!

div EŴ ~rW !54pr̂~rW !, ~A17!

rotBŴ ~rW !2
1

c

]EŴ ~rW !

]t
5

4p

c
jŴ~rW !, ~A18!

wherer̂(rW) is the electronic charge density operator andjŴ(rW)
is the electronic current density operator@see the text: spe
cifically Eqs.~36! and~37!#. The Hamiltonian density opera
tor of the electromagnetic fieldĤEM(rW) is represented as fol
lows:

ĤEM~rW !5
1

8p
~EŴ 2~rW !1BŴ 2~rW !!2f̂~rW !r̂~rW !. ~A19!

The Hamiltonian operator of the field is

ĤEM5E d3rWĤEM~rW !. ~A20!

The radiation field is a particular electromagnetic fie
with neither macroscopic charge density nor charge cur
density. In the classical treatment of the radiation field,
energy densityH radiation(rW) is obtained as

H radiation~rW !5
1

8p
~EW 2~rW !1BW 2~rW !!, ~A21!

which leads to the total energyH radiation of the radiation
field as
Downloaded 18 Jun 2007 to 130.54.110.22. Redistribution subject to AIP
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H radiation5E d3rWH radiation~rW !. ~A22!

Maxwell’s equations are solved using gauge poten
AW (rW) as

EW ~rW !52
1

c

]AW ~rW !

]t
, BW ~rW !5rotAW ~rW !, div AW ~rW !50,

~A23!

with

]m]mAW ~rW !50, ]m]m5
1

c2 S ]

]t D
2

2D, ~A24!

where d’Alembertian]m]m is written using LaplacianD:

D5]k
2. ~A25!

APPENDIX B

In quantum electrodynamics~QED!, the Hamiltonian
density operatorĤQED(rW) is represented as follows:

ĤQED~rW !5ĤEM~rW !1ĤDirac~rW !, ~B1!

where ĤEM(rW) is the electromagnetic Hamiltonian densi
operator @see Appendix A: specifically Eq.~A19!# and
ĤDirac(rW) is the Dirac electronic Hamiltonian density oper
tor:

ĤDirac~rW !5ĉ1~rW !ĥDirac~rW !ĉ~rW !, ~B2!

with

ĥDirac~rW !52 i\cg0gkD̂k~rW !1g0mc22ef̂~rW !, ~B3!

andgm5(g0,gW ) are the Dirac matrices.
The electronic four-dimensional four-component spin

operator,

ĉ~rW !5S ĉ1~rW !

ĉ2~rW !

ĉ3~rW !

ĉ4~rW !

D ,

satisfies the canonical anticommutation relationships,

ĉm~rW !ĉn
1~sW !1ĉn

1~sW !ĉm~rW !5dm
n d~rW2sW !, ~B4!

ĉm~rW !ĉn~sW !1ĉn~sW !ĉm~rW !50, ~B5!

ĉm
1~rW !ĉn

1~sW !1ĉm
1~rW !ĉn

1~sW !50. ~B6!

Using the Hamiltonian operator,

ĤQED5E d3rWĤQED~rW !, ~B7!

the equation of motion is found to be

i\
]

]t
ĉ~rW !5@ĉ~rW !,ĤQED#5ĥDirac~rW !ĉ~rW !. ~B8!

Equivalently, we get

i\gmD̂m~rW !ĉ~rW !2mcĉ~rW !50, ~B9!

and similarly
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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2 i\D̂m
1~rW !cC ~rW !gm2mccC ~rW !50, ~B10!

wherecC (rW) is the Dirac conjugate toĉ(rW):

cC ~rW !5ĉ1~rW !g0. ~B11!

The theory is invariant under gauge transformation as
lows:

ĉ~rW !→ĉ8~rW !5expS 2 i
e

\c
û~rW ! D ĉ~rW !, ~B12!

Âm~rW !→Âm8 ~rW !5Âm~rW !2]mû~rW !, Dû~rW !50. ~B13!

In the nonrelativistic treatment, the electronic field o
erator is x̂(rW) which denotes the three-dimensional tw
component spinor,

x̂~rW !5S x̂1~rW !

x̂2~rW ! D ,

which satisfies the canonical anticommutation relationsh

x̂~v!x̂1~v8!1x̂1~v8!x̂~v!5d~v2v8!, ~B14!

x̂~v!x̂~v8!1x̂~v8!x̂~v!50, ~B15!

x̂1~v!x̂1~v8!1x̂1~v8!x̂1~v!50, ~B16!

where, for the sake of simplicity of presentation, Cartes
and spin variables altogether are represented byv as

v5~rW,s!, s51,2. ~B17!

Using the nonrelativistic Hamiltonian operator

Ĥ5E d3rWĤ~rW !, ~B18!

with the classical treatment of the radiation field, the eq
tion of motion is found to be

i\
]

]t
x̂~rW !5@ x̂~rW !,Ĥ#52

\2

2m
Dk

2~rW !x̂~rW !1n~rW !x̂~rW !

1E d3sWx̂1~sW !w~rW,sW !x̂~sW !x̂~rW !,

~B19!

and similarly,

2 i\
]

]t
x̂1~rW !52

\2

2m
Dk*

2~rW !x̂1~rW !1n~rW !x̂1~rW !

1x̂1~rW !E d3sWx̂1~sW !w~rW,sW !x̂~sW !.

~B20!

The state vector in the nonrelativistic Fock space is rep
sented as

uC&5 (
N50

` E d4v1¯d4vNuv1 ,...,vN&FN~v1 ,...,vN!,

~B21!

uv1 ,...,vN&5
1

AN!
x̂1~v1!¯x̂1~vN!u0&, ~B22!
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,

n

-

-

^v1 ,...,vNuv18 ,...,vM8 &

5dNM

1

N! (s ~2 !sd~v12vs18 !¯d~vN2vsN8 !, ~B23!

whereFN(v1 ,...,vN) denotes the antisymmetric wave fun
tion in the N-electron nonrelativistic Hilbert space an
(s(2)s denotes antisymmetric summation over every p
sible permutations of numbers 1,...,N. The nonrelativistic
Schrödinger equation is written as

i\
]

]t
uC&5ĤuC&. ~B24!
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