Write-once read many (WORM) optical storage involves a variety of materials. Among them, tellurium-based thin films are widely used as stable and highly sensitive memory media. However, preparations of the films have suffered from the fact that tellurium itself is toxic and unstable in air.

Copper nitride (Cu$_3$N) and tin nitride (SnN$_x$) are non-toxic and stable in air at room temperature, and they change into metals of high reflectivity by thermal decomposition at low decomposition temperatures. Asano et al.\(^1\) prepared the Cu$_3$N films by ion-assisted vapor deposition, and made preliminary experiments of the write-once optical recording on this film. They reported that the Cu$_3$N film was decomposed into Cu film by heating at 300 °C for 1 h in argon. A previous study by Maya\(^2\) was concerned with another application of these low decomposition temperatures. He reported that Cu$_3$N and SnN$_x$ decomposed into the elements with the rate reaching a maximum at 465 °C and 615 °C, respectively.

The present study was undertaken to establish the feasibility of utilizing the relatively low thermal stability of Cu$_3$N and SnN$_x$ to generate metallic reflection by thermal decomposition.

In preparing nitride films, rf (13.5 MHz) magnetron sputtering equipment (Osaka Vacuum, Ltd.) was used with 99.99% pure copper and tin targets of 10 cm in diameter and 1 mm thick.\(^3,4\) The rf power was 50 W. The sputtering gas was a 99.99% pure nitrogen. The separation distance between the substrate and the target was 48 mm. The chamber vacuum just before growth was less than 2.0×10$^{-6}$ Torr. The substrate temperatures were 99 and 86 °C for Cu$_3$N and SnN$_x$, respectively. They were measured using a chromel–alumel thermocouple attached to the front of the substrate holder. The total sputtering pressures were 2.2 and 9.2 mTorr for Cu$_3$N and SnN$_x$, respectively. A 76×26 mm2 borosilicate glass plate was used as the substrate.

Thermal decompositions of the films were made in the chamber of the sputtering equipment. The chamber vacuum just before heating the films was less than 2.0×10$^{-6}$ Torr to prevent oxidation of the metal at the time of formation. For the thermal decomposition, the 150-nm-thick Cu$_3$N films were heated at 470 °C for 10 min, and the 140-nm-thick SnN$_x$ films were heated at 550 °C for 30 min. The softening of the glass substrate gave the latter temperature as the highest heating temperature in the experiments, although it is little lower than the temperature at the highest decomposition rate, 615 °C.\(^2\) The laser writing was also performed in the chamber of the sputtering equipment by using an argon ion laser operating at power levels of 4 W on the 488 and 515 nm lines. The laser light was focused at 100 μm in diameter.

The crystallinity of the film was analyzed by the x-ray diffraction method with Cu Kα radiation. The near-normal spectral reflectance of the film was obtained in the 0.19–3.2 μm range by means of an UV–VIZ–NIR recording spectrophotometer (Shimadzu UV 3100).

Figures 1(a) and 1(b) show the x-ray-diffraction patterns of the films on a borosilicate glass substrate. The Cu$_3$N film

![FIG. 1. X-ray-diffraction patterns of (a) Cu$_3$N and (b) SnN$_x$ films on a borosilicate glass substrate.](image-url)
is composed of crystallites with cubic structure and with strong (100) plane texturing. The SnN \(_x\) film is composed of crystallites with hexagonal structure and with strong (002) plane texturing. Details of the structures and properties of both Cu\(_3\)N and SnN\(_x\) films are described in the authors previous papers.\(^3\),\(^4\)

The Cu\(_3\)N and SnN\(_x\) films were decomposed into Cu and Sn films by heating in vacuum. Besides, the metal spots were formed on both Cu\(_3\)N and SnN\(_x\) thin films by laser writings at energy density of 15–20 kJ cm\(^{-2}\). Figures 2(a) and 2(b) show the x-ray-diffraction patterns of the film after the thermal decomposition. There appear clear peaks for Cu and \(\beta\)-Sn without a trace of the peaks for Cu\(_3\)N and SnN\(_x\). It is noted that a peak for SnO (100) is included in Fig. 2(b).

Figures 3(a) and 3(b) show the near-normal reflectance spectra of as-prepared Cu\(_3\)N and SnN\(_x\) films and of the thermally decomposed films. Also shown in Figs. 3(a) and 3(b) are the spectra of sputter-prepared Cu and Sn films. The reflectance spectrum of the Cu film obtained by thermal decomposition of Cu\(_3\)N film is close to that of sputter-prepared Cu film; and, the spectrum of the as-prepared Cu\(_3\)N film is smaller than those of Cu films. The difference in reflectance at about 800 nm between the as-deposited and thermally decomposed film is large enough to use as optical recording media. This is attributable to an inclusion of SnO in the Sn film. Oxygen is inferred to be included in the oxide layer at the surface of the SnN\(_x\) film before the thermal decomposition. In addition, some of the Sn formed in the thermal decomposition was observed to coalesce into a thick layer (or microscopic beads in laser writing) leaving areas where constrictions are evident. These phenomena are quite likely due to the relatively low melting point of Sn (232 °C) which is evidently exceeded during the thermal decomposition.\(^2\) This phenomenon deteriorates the specular reflection at the surface.

In conclusion, the Cu\(_3\)N obtained by the reactive sputtering method can be decomposed into Cu by heating at 470 °C for 10 min, and the difference in reflectance between the as-deposited and thermally decomposed film is large enough to use as optical recording media. The Sn film obtained by thermal decomposition of SnN\(_x\) film, however, shows a small difference in reflectance from that of SnN\(_x\) film, because of an inclusion of SnO in the film. In addition, the melting of tin during the thermal decomposition deteriorates the specular reflection at the surface.