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The diMarzio theory has been extended to elucidate the intermolecular and intramolecular phase
segregations of a single flexible chain polyelectrolyte in dilute salt-free solutions. At the long chain
limit, this theory yields the formalism obtained from the more sophisticated Edward Hamiltonian for
polyelectrolyte problems. The calculated phase diagram exhibits the features of a first-order phase
transition, with continuous and discontinuous transitions separated by a critical point. Under the
discontinuous transition, the polyelectrolyte chain exhibits coexistent expanded and collapsed
conformational states, same as intermolecular phase segregation. For a limiting long chain, the mean
chain size at critical point is roughly 90% of the size of an ideal chain. Such a result implies that
partial contraction within a chain molecule is required to collapse a flexible polyelectrolyte chain.
Moreover, the theory predicts that for a longer chain, intramolecular segregated conformations differ
significantly from intermolecular segregated conformations, but the difference becomes small for
shorter chains. Besides, the charge needed to induce intramolecular segregation is smaller than that
of intermolecular segregation for a given chain length. These findings are consistent with previous
literature results. © 2007 American Institute of Physics. �DOI: 10.1063/1.2714552�

I. INTRODUCTION

The coil-globule conformational transition of a single
flexible polymer molecule has been one of the most funda-
mental problems in polymer physics.1,2 For single flexible
chain molecules without electronic charge, their coil-globule
transition is known to be continuous as solvent quality is
varied.2,3 Whereas the conformational behavior of an isolated
flexible polyelectrolyte in solution seems to remain unclear.
Theoretical predictions and simulations have suggested that
the conformational transition of an isolated flexible charged
polymer could be discontinuous, with coexistent collapsed
and expanded conformational states as in the first-order
phase transition.4–7 Such a study is crucial to advance our
understanding of more complex ionic polymers, such as
DNA of which conformational transition governs the switch-
ing of transcriptional activities on-and-off in vivo.8,9 Al-
though the discrete nature of the coil-globule transition of a
giant DNA chain has been mainly described in terms of
semiflexibility of the chain molecule,10 the role of electro-
static interaction on the conformational behavior on both
semiflexible and flexible chains needs to be investigated fur-
ther. In this work, our focus will be confined to the electro-
static effect on a flexible chain.

The coil-globule conformational transition of a single
charged polymer with the bimodal free energy profile on
monomer density may undertake intermolecular and in-
tramolecular phase segregations.11–13 The intermolecular

phase segregation is referred to the discrete conformational
transition between disperse and condensed states, i.e., coex-
isting �bistable� coil and globule states, where individual
polymer molecules exhibit either state. This type of transi-
tion is as opposed to the continuous transition where mono-
mer density changes in a gradual manner as in the textbook
explanation on the transition through theta state. In the ex-
periment, intermolecular segregation is characterized via
measuring the coexistent globular and coiled conformational
states.14 A histogram is obtained to quantify the probability
of each chain size in different conformational states. The
coexistent states are best observed when the probability of
both states is near the same. The conditional free energy as a
function of mean chain size can be estimated from the his-
togram.

In the intramolecular phase segregation, a polymer chain
consists of both coiled segments and globule parts. The
structure may range from a chain containing one globule and
one coiled segment to a pearl necklace chain with several
charged pearls connected by coiled segments.11–13 Figure 1 is
the schematic diagram of the possible pathways for intermo-
lecular and intramolecular segregations. Experimentally,
these chain structures have been observed in both semiflex-
ible long chain DNA molecules15–18 and synthetic flexible
polyelectrolytes.12,19–21 In the mean time, the intramolecular
segregated conformations have been extensively investigated
in recent theoretical studies and simulations.7,22–25 Among
these theoretical works, Dobrynin et al.22 explained the ori-
gin of pear-necklace-like structures based on the Rayleigh
instability26 by which a globular polyelectrolyte chain ina�Electronic mail: shew@mail.csi.cuny.edu
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poor solvents and salt-free condition is split into a series of
charged blobs connected through more stretched chain seg-
ments. Iwaki and Yoshikawa predicted that intramolecular
segregation may occur when the monomer-monomer electro-
static interaction is weak, and the chain is under a poor sol-
vent condition with effective attraction between monomers.13

The important finding of the simulations lies in the fact that
intramolecular segregated conformations, for instance, pearl
necklace structure, are highly fluctuating in terms of the size
of charged blobs and their positions.24,25

From the theoretical standpoint, the Edwards Hamil-
tonian has been a well adopted approach to elucidate the
conformation statistics of a polymer molecule. In this model,
the growth of an ideal chain molecule is treated like a ran-
dom walk, and the statistics of two polymer ends can be
depicted by using diffusion equation.27,28 To account for the
excluded volume interaction in good solvents, an energy
penalty is imposed when chain segments overlap.27 Chen and
Kholodenko first used this model to examine the conforma-
tional behavior of single polyelectrolytes in salt-free solu-
tions under the good solvent condition.29 Muthukumar ap-
plied this model to investigate a polyelectrolyte chain
adsorbed onto a charged surface.30 The model was further
generalized to reveal the polyelectrolyte conformation in
poor solvents by Ha and Thirumalai, with three-body ex-
cluded volume interaction incorporated.5 The first-order
phase transition for a polyelectrolyte chain was predicted as
the solvent quality is reduced, with coexistent coiled and
globular conformational states, i.e., intermolecular phase
segregation. The Edwards Hamiltonian displayed its poten-
tial to disclose the conformational behavior due to intermo-
lecular phase segregation.

As a related but different scenario on the transition with
respect to intermolecular phase segregation, Dua and Vilgis
revisited the Edwards Hamiltonian model to examine the re-
gion where the intramolecular phase segregation may occur
in a dilute salt-free solution.31 After neglecting all the pref-
actors, they arrived at the following equation from which the
conformational behavior can be deduced.

�5 − �3 = �−3 − �N1/2 +
uf2

b
N3/2�2, �1�

where � is the swelling ratio �=R /R0�, where R and R0 are
the mean chain sizes of a polyelectrolyte and an ideal chain,
respectively; � is a parameter related to solvent quality and
temperature; u is the Bjerrum length; f is the monomer
charge fraction; b is the monomer length; and N is the chain
length. After solving the above equation numerically, they
attained the range of f where the globular and coiled confor-
mational states coexist in the plot of f vs � for a given chain
length N and solvent quality �. They argued that the intramo-
lecular segregated conformations, such as pearl necklace
chain structure, is located within this region since such a
structure lies in between the coiled and globular conforma-
tional states. Note that this picture is consistent with the
simulation work by Limbach et al. regarding the highly fluc-
tuating nature of the pearl necklace chain.24 Also, they sug-
gested a systematic scheme to estimate the intramolecular
phase segregation boundary in the plot of f vs � for a given
N. The critical monomer charge fraction to induce intramo-
lecular phase segregation for each solvent condition could be
obtained by using Maxwell equal-area construction. At this
critical monomer charge fraction, the splitting of the col-
lapsed chain occurs because the electrostatic repulsive force
balances with the line tension of the polymer chain.31,32

All of the above mentioned works under poor solvents
were targeted only on the part of the phase diagram to illus-
trate the discrete conformational transition of single chain
polyelectrolytes. To the best of our knowledge, the complete
phase diagram and the critical behavior of the conforma-
tional transition of a single polyelectrolyte molecule have not
been addressed systematically from the standpoint of theory
and experiment. In this work, we are motivated to construct
the conformational phase diagram of a single flexible poly-
electrolyte molecule under different solvent qualities through
the mean field theory suggested by diMarzio.33,34

The diMarzio theory is a revision of the theory devel-
oped by Flory, which incorporates the excluded volume in-
teraction and the polymer-solvent interactions into the single
chain free energy at the mean field level. Previously, Shew
and Yethiraj applied this theory for single flexible chain
polyelectrolytes and compared with lattice simulations. They
found that the theory reproduces the correct power laws ob-
tained from other theoretical approaches, such as scaling
theory.6 Moreover, the theory predicts the first-order phase
transition for the conformational transition of a flexible chain
polyelectrolyte in poor solvents, consistent with the simula-
tions. Here, we will first show that this simple theory yields
the formalism in Eq. �1� for long enough chains. With this
equation, the chain length dependent phase diagram and the
critical behavior are examined. Given that all of the actual
polymer molecules are finite systems, the chain length de-
pendent studies may render an opportunity to extrapolate the
behavior of an infinity long chain and to compare with other
known phase transition systems. In this work, both intermo-
lecular and intramolecular phase segregations are investi-
gated through the calculated phase diagram.

FIG. 1. Schematic diagram of the possible pathways to form intermolecular
and intramolecular segregated conformational states.
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II. THEORY

A. Free energy

Here we consider the simplest polyelectrolyte model
consisting of a flexible charged chain immersed in an ex-
tremely dilute solution by using the diMarzio model. diMa-
rzio revisited the Flory-type theory for the conformation of a
neutral isolated polymer chain in different solvent condi-
tions. The polymer molecule is treated as a Gaussian chain
with monomer length equal to b, and the excluded volume
and solvent effects are considered in a similar way as the
Flory-Huggins solution theory.33,34 The weighing function of
a chain conformation is written as a function of mean chain
size R �e.g., mean end-to-end distance� given by

W�R� = �R2 exp�−
3R2

2Nb2���� j=0
n−1�1 −

jb3

R3 ��
�	exp�− N��1 −

Nb3

R3 ��
 , �2�

where N is the chain length; � denotes solvent qualities in
which �=1/2 for � solvent, ��1/2 for good solvents, and
��1/2 for poor solvents. The argument with � parameter
accounts for the total monomer-solvent pairs, with 1
−Nb3 /R3 volume fraction of solvent particles occupied
within the entire volume of a chain molecule. For charged
polymers, the electrostatic interaction energy of an ionic
chain is reformulated as a function of mean chain size and is
approximated to be uf2N2 /R, which can be found in the pre-
vious works by Shew and Yethiraj6 and by deGennes et al.35

In this work, the counterions are not incorporated explicitly
because under the extremely dilute condition, entropically, it
is more favorable for counterions to totally dissociate from
polyions. Furthermore, this model is chosen to compare with
the model based on the Edwards Hamiltonian.31

After some algebra, the weighing function of mean chain
size W��� as a function of swelling ratio � �=R /�Nb� be-
comes

ln��W���� = ln �3N3/2 − 3
2�2 − N��1 − N−1/2�−3�

+ �3N3/2 ln��3N3/2�

− ��3N3/2 − N�ln��3N3/2 − N� − N

− N ln��3N3/2� − 3	
N3/2

�
, �3�

where 	=uf2 /3 in which u is the Bjerrum length and f is the
monomer charge fraction. According to the suggestion of
diMarzio, the optimal mean chain dimension should be
evaluated by maximizing the distribution function ln��W����
other than ln�W���� to maintain the correct coefficients as
Flory’s result for the mean squared end-to-end distance of an
ideal chain.33 This argument is equivalent to taking free en-
ergy to be F /kBT=−ln��W����. This free energy expression
is a conditional free energy with the variable �, which can be
obtained from the experimental histogram for chain size
distribution.14 By minimizing the free energy �i.e., dF /d�
=0�, we arrive at

�5 − �3 = − �6N3/2�ln�1 − N−1/2�−3� + N−1/2�−3�

− N� + 	N3/2�2. �4�

The solutions of the above equation lead to optimal mean
chain sizes. It has been shown that this equation generates
the correct power laws for neutral chains in different solvent
qualities and for polyelectrolytes in good and � solvents,
compared to those obtained from more sophisticated meth-
ods and scaling theory.6,33

B. Construction of phase boundary

In this work, two methods are employed to construct
phase boundary, including free energy method introduced in
Sec. II A and Maxwell equal-area construction. In the sche-
matic plot of Fig. 2, the curve �	 vs �� represents the solu-
tions of Eq. �4� for a poor enough solvent with coexistent
conformational states. Note that 	 increases from top to bot-
tom and � �or R� increases from left to right in the figure.
Between 	min and 	max, there are three solutions of � for the
given �. With Eq. �4�, the intermolecular phase segregation
boundary is constructed in such a way that the two coexistent
conformations in different conformational states exhibit the
same free energy. Experimentally, these two coexistent con-
formations would display equal probability in the histogram
for the chain size distribution.14

Beside intermolecular segregation, intramolecular segre-
gation can also be evaluated in Fig. 2. For 	�	min, the chain
molecule is in the collapsed state, whereas for 	�	max, the
chain molecule is in its coiled state. The intramolecular seg-
regation should emerge in the range between 	min and 	max.
The chain size of intramolecular segregated conformation
should be between �min and �max, corresponding to collapsed
globule and extended coil, respectively. As pointed out by
Dua and Vilgis, Maxwell equal-area construction provides an
estimation of the critical charge to induce the spontaneous
Rayleigh splitting.31 The rationale is given as follows. In Fig.
2 the critical charge fc �or 	c=ufc

2 /3� is the dividing line to
keep the area in regions A and B the same. The equal-area
criterion is equivalent to the following equation:

FIG. 2. Schematic plot for illustration of the Maxwell equal-area
construction.
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�
R1

R2

�	 − 	c�d� = �
R2

R3

�	c − 	�dR , �5�

where all the parameters are defined in Fig. 2. With some
algebra, 	c reads

	c =
1

�R3 − R1��R1

R3

	dR . �6�

This equation can be further rearranged by using the follow-
ing steps:

	c =
1

�R3 − R1��R1

R3 � 	

R2�R2dR

= � �V3 − V1�
4
�R3 − R1��� 1

�V3 − V1��V1

V3 � 	

R2�dV�
=

R3
2

3
�1 + �R1

R3
� + �R1

R3
�2�
 	

R2� , �7�

where V=4
R3 /3, by assuming spherelike morphology for a
chain molecule.36 Since the volume ratio of V3 to V1 is larger
than the order of 104 in experiments �i.e., R3�R1�, 	c

��R3
2 /3��	 /R2�. Meanwhile, the mean electrostatic repulsive

force of the polymer is related to the critical charge fraction
fc in the expression given by

kBT
N2ufc

2

Rnl
2 = 
kBT

N2uf2

R2 � , �8�

where Rnl
2 =R3

2 /3. Now 	c and Rnl are located between the
globular and elongated coiled states. In poor solvents, the
collapsed globule starts to split at the point where the mean
Coulomb repulsive force balances with line tension
�kBT� /b�.31,32 This critical charge can be viewed as the in-
ception of intramolecular segregation due to Rayleigh insta-
bility. Although it is not our main focus, the two balanced
forces result in the power law Rnl�Nb�ufc

2 /�b, with the
characteristics of intramolecular segregated conformations,
such as pearl necklace structure, as in Ref. 31. With these
two methods, the discrimination between intermolecular and
intramolecular segregations is performed based on the chain
length dependent phase boundaries.

C. Critical constants

For a given chain length N, the phase diagram is gov-
erned by three variables: �, �, and 	. To complete the phase
diagram, the critical point is calculated from d� /d�=0 and
d2� /d�2=0 given by

N1/2 d�

d�
= − 6�5N3/2�ln�1 − N−1/2�−3� + N−1/2�−3�

− 3�2N� 1

�1 − N−1/2�−3�
− 1�

+ 2	N3/2� + 3�2 − 5�4, �9�

N1/2 d2�

d�2 = − 30�4N3/2�ln�1 − N−1/2�−3� + N−1/2�−3�

− 24�N� 1

�1 − N−1/2�−3�
− 1�

+ 9
N1/2�−2

�1 − N−1/2�−3�2 + 2	N3/2 + 6� − 20�3.

�10�

After eliminating 	, we obtain

5�5 − �3 + 8�6N3/2�ln�1 − N−1/2�−3� + N−1/2�−3�

+ 7�3N� 1

1 − N−1/2�−3 − 1� −
3N1/2

�1 − N−1/2�−3�2 = 0.

�11�

After solving the swelling ratio at the critical point ��*� by
using Eq. �11�, the critical constant of solvent quality ��*� is
obtained from Eq. �9� or �10�, and 	* is calculated through
Eq. �4�. These equations are nontrivial for our analysis of the
long chain limit. Note that the critical point can also be cal-
culated from d	 /d�=0 and d2	 /d�2=0, and the critical con-
stants are exactly the same for both methods.

D. Long chain limit

When N becomes large, the above equations can be sim-
plified furthermore. For large N, ln�1−N−1/2�−3� is approxi-
mated to be −N−1/2�−3−N−1�−6 /2+O�N�, where O�N� de-
notes the higher order terms. With this approximation, Eq.
�4� is simplified to the following form:

�5 − �3 =
�−3

3
− �� −

1

2
�N1/2 + �	N3/2��2. �12�

This equation is basically the same as Eq. �1� by Dua and
Vilgis,31 except the prefactor in the �−3 term �from the higher
order approximation of excluded volume interaction�. Note
that as a matter of fact, Eq. �1� has also been derived by Ha
and Thirumalai, and the prefactor of the �−3 term was treated
as an adjustable parameter in their work.5

Moreover, by using Taylor expansion, Eq. �11� becomes

�8 −
�6

5
−

1

3
= 0. �13�

The solution of this equation can be computed numerically
with a high precision to obtain the critical constant �*, and
�*�0.902 901 when N→�. Such a result has an important
implication on the chain conformation at near the critical
point but has not been investigated in the previous work by
Shew and Yethiraj.6 With similar algebra, the limiting �*

becomes

��* − 1
2�N1/2 = 1

2�3�*5 − �*3 + 5
3�*−3� + N−1/2�*−6 + O�N� ,

�14�

and 	* reads
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	*N3/2 = � 5
2�*3 − 3

2�* + 4
3�*−5� + 3

4N−1/2�*−8 + O�N� .

�15�

The above two equations yield the same power laws as in the
previous work by Shew and Yethiraj,6 i.e., ��*−1/2�
�N−1/2 and 	*�N−3/2.

III. RESULTS AND DISCUSSION

A. Intermolecular phase segregation

The phase diagram is first constructed by solving Eq. �4�
along with the equal free energy method, and the thus ob-
tained phase boundary is related to the coexistent coil-
globule states of intermolecular segregation. Figure 3 plots
the variation of 	 /	* with � /�* in �a� for different �, as
marked, and the variation of � /�* with � /�* in �b� for dif-
ferent 	, as marked, when N=1000, as well as the corre-
sponding phase boundaries, denoted by dotted lines. Both
figures show continuous conformational transitions above
the critical point. In Fig. 3�a�, � increases monotonically
�from left to right� as 	 is increased �from top to bottom� for
a given � because of chain expansion induced by the Cou-

lomb repulsion between monomers. In Fig. 3�b�, � decreases
monotonically �from right to left� as � is increased �from top
to bottom� for a given 	 due to chain contraction when the
solvent quality is decreased. Below the critical point, the
region of coexisting conformational states emerges in the
phase diagram, with three solutions of � for a given � in Fig.
3�a� and for a given 	 in Fig. 3�b�. The phase boundary is
obtained when the minimum and maximum �, among the
three solutions, have the same free energy �connected by
dash-dotted lines in Fig. 3�.

The chain length dependence on the intermolecular
phase segregation boundary is further calculated. In Fig. 4,
the phase boundary is plotted in terms of solvent quality �
versus swelling ratio � in �a� and electrostatic interaction
strength 	 versus swelling ratio � in �b� for different chain
lengths N, as marked, including N=�, denoted by dotted
lines. The phase boundary is asymmetric in both plots. In
contrast to globular state, coiled state deforms more as � or 	
is increased �from top to bottom�. For shorter chains, such as
N=10, the phase boundary is narrower than that of a longer
chain. As the chain length is increased, the width only in-

FIG. 3. Plot of the variation of 	 /	* with � /�* in �a� for different �, as
marked, and the variation of � /�* with � /�* in �b� for different 	, as
marked, when N=1000, as well as the corresponding phase boundaries,
denoted by dotted lines.

FIG. 4. Plot of the phase boundary in terms of solvent quality ���
−1/2� / ��*−1/2�−1� vs swelling ratio �� /�*� in �a� and electrostatic inter-
action strength �	 /	*� vs swelling ratio �� /�*� in �b� for different chain
lengths N, as marked, including N=�, denoted by dotted lines.
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creases slightly, and the phase boundary becomes insensitive
to chain length in the range of our plot when N is larger than
104. It is noticeable that at near the critical point, the phase
boundary is quite independent of chain length.

With the above phase diagrams, the critical behavior is
investigated by computing the power laws: ��coil−�globule�
����−1/2� / ��*−1/2�−1�
1 and ��coil−�globule�
���	−	*� /	*�
2. Figure 5 displays the plot of log���coil

−�globule� /�*� vs log���−1/2� / ��*−1/2�−1� for different
chain lengths N; dotted lines denote the slopes obtained from
linear regression. Our finding shows that 
1=
2=
=0.5 �the
figure for 
2 not shown� and are insensitive to chain lengths.
These results imply that the diMarzio theory falls into the
mean field universality class.37 It is not surprising to obtain
such an exponent since we expect that the conformational
fluctuation is not adequately considered in the mean field
model. Nevertheless, this exponent provides a reference
point for the future work in this area. At present, it is obvious
that the exponent 
 obtained from experiments should be
smaller than or equal to 0.5 because the scaling exponent 

of the mean field universality class is at the upper bound
among all universality classes.

In the following, the chain length dependent critical con-
stants are revisited. Figure 6 displays the variation of the
critical constants �* in �a�, 	* in �b�, and �* in �c� with chain
length N. For long enough chains, �* in Fig. 6�a� and 	* in
Fig. 6�b� exhibit the power laws predicted by Eqs. �14� and
�15�, respectively. These scaling relations indicate that at the
long chain limit, the discrete conformational transition oc-
curs when solvent quality is slightly below �-solvent condi-
tion and/or monomers are weakly charged. In Fig. 6�c�, the
critical mean chain size decreases monotonically as N is in-
creased, and eventually, it becomes leveled off at the long
chain limit. The limiting swelling ratio �* for N=� is ob-
tained from Eq. �13�, which is approximately equal to
0.902 901. This limiting swelling ratio is less than 1, mean-
ing that the chain conformation tends to collapse partially at
the critical point such that the mean chain size is smaller than
that of an ideal chain. The partial contraction within a chain

molecule, predicted by the diMarzio model, may link with
the folding of a flexible polyelectrolyte chain.38,39

B. Intramolecular phase segregation

In addition to intermolecular phase segregation, this
simple mean field model may also provide some insights into

FIG. 5. Plot of log���coil−�globule� /�*� vs log���−1/2� / ��*−1/2�−1� for
different chain lengths N; the dotted line denotes the slope obtained from
linear regression.

FIG. 6. Variation of the critical constants �* �log-log plot� in �a�, 	* �log-log
plot� in �b�, and �* �semilog� in �c� with chain length N.
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intramolecular phase segregation. As discussed in Sec. II B,
intramolecular segregated conformations lie in between the
coiled and globular conformational states.31

The critical charge fraction required for the spontaneous
Rayleigh splitting of a charged globule �into intramolecular
segregated conformations� is estimated by using Maxwell
equal-area construction.31 Figure 7 plots the phase boundary
obtained from the Maxwell construction method, denoted by
broken line, and that obtained from the equal free energy
method, denoted by dotted line. In the figure, two examples,
�=0.58 and 0.62, are shown to illustrate how the critical
charge fraction for the spontaneous Rayleigh splitting and
the corresponding phase boundary are computed through
Maxwell construction. These calculations are further com-
pared with the results from the equal free energy method. In
Fig. 7, the horizontal solid lines divide the close loops with
two equal areas �by using Maxwell construction�, whereas
the horizontal dotted broken lines connect the two bistable
conformation states �of equal free energy�. Generally, for a
given �, the charge fraction of solid line occurs at a smaller
	 than that of dotted broken line �e.g., for �=0.62, 	 /	*

=2.80, denoted by solid line, and 3.13, denoted by dotted
broken line�, suggesting that intramolecular segregation oc-
curs at a lower charge fraction than intermolecular segrega-
tion.

The general picture for the phase diagram can be under-
stood as follows. For a small monomer charge fraction, the
polyelectrolyte chain forms a globule in a poor solvent con-
dition. As the monomer charge fraction is increased to the
critical charge �estimated from Maxwell construction�, the
globule reaches the Rayleigh instability, and the formation of
intramolecular segregated conformations is expected. When
the monomer charge is increased further, the polyelectrolyte
molecule attains the bistable coil-globule conformational
states �with equal free energy for the two conformations�.

Hence, the envelope of the intramolecular phase segregation
boundary calculated from the Maxwell construction method
tends to shift towards smaller � compared to the intermo-
lecular phase segregation boundary. Also, the magnitude of �
may imply that for a given �, the intermolecular segregated
globule state would have a more elongated structure than the
spherical globule at a low monomer charge fraction �or 	�.

The phase boundaries obtained from the above two
methods allow us to examine the dependence of chain length
on conformational fluctuation. Figure 8 compares the phase
boundary obtained from the equal free energy method, de-
noted by dotted lines, with that obtained from the Maxwell
construction method, denoted by broken lines, for N=10 and
�. Generally, the two methods show little difference at near
their critical points. In the regime where � /�*�1, the phase
boundary computed from Maxwell construction shifts to
smaller �, and the magnitude of their shift is roughly the
same for both chain lengths. For � /�*�1, the boundary for
the longer chain shifts more than that for the shorter chain.
Moreover, the longer chain tends to have a wider phase
boundary than the shorter chain. These findings indicate that
a longer polyelectrolyte chain undergoes a greater size fluc-
tuation, which may facilitate intramolecular phase segrega-
tion.

The effect of chain length on intramolecular and inter-
molecular phase segregations can be explored in a phase dia-
gram. In the following, the calculation is proceeded for two
different chain lengths at a fixed solvent quality, and the
charge fractions to induce intramolecular and intermolecular
phase segregations are determined. Figure 9 is the semilog
plots of the charge fractions in terms of �	=uf2 /3� with
swelling ratio � to identify the charge fraction calculated
from the equal free energy method �f�, denoted by dotted
broken lines, and from the Maxwell construction method
�fc�, denoted by solid lines, for N=100 and 1000 when �
=0.7; the phase boundaries of N=1000 obtained from the
two methods are also plotted as references. The result shows
that the phase boundary at small 	 is insensitive to chain
length. For the shorter chain �N=100�, the difference be-

FIG. 7. Comparison of the phase boundary obtained from the Maxwell
construction method, denoted by broken line, with that obtained from the
equal free energy method, denoted by dotted line, for N=1000. Two ex-
amples, �=0.58 and 0.62, are shown to illustrate the critical charge fraction
for spontaneous Rayleigh splitting through Maxwell construction, denoted
by solid lines, and the two bistable conformations of equal free energy
connected by dotted broken lines.

FIG. 8. Comparison of the phase boundary obtained from the equal free
energy method, denoted by dotted lines, with that obtained from the Max-
well construction method, denoted by broken lines, for N=10 and �.
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tween f and fc is quite small, but for the longer chain �N
=1000�, a significant difference between the two charge frac-
tions is observed. Also, we notice that f �or 	� is greater than
fc �or 	c� for all cases, as the sample calculations shown in
Fig. 9 �e.g., �	−	*� /	*=5.42 and �	c−	*� /	*=3.95 for N
=1000�. These results may coincide with the previous studies
in this area. First, the result of chain length dependent calcu-
lations qualitatively agrees with the recent simulation results
in which the pearl necklace chain structures �due to intramo-
lecular chain segregation� are usually more pronounced for
longer chains.7,22 The explanation is given as follows. For
shorter chains, intramolecular segregation occurs at the
monomer charge fraction close to intermolecular segrega-
tion, and the conformations resulting from the two different
phase segregation mechanisms may resemble to each other.
For a longer chain, fc �or 	c� is significantly different from f
�or 	�, suggesting that the critical charge to induce intramo-
lecular segregation is far away from that to induce intermo-
lecular segregation. The intramolecular segregated confor-
mational structures are expected to be very different from the
intermolecular segregated conformational structures. Fur-
thermore, the theory makes a prediction that f � fc. This pre-
diction, as shown in Figs. 7 and 9, is somehow consistent
with the work by Iwaki and Yoshikawa.13 They concluded
that the intramolecular segregation emerges when the mono-
mer charge of a chain molecule is weak and the attractive
interaction between monomers is present.

IV. CONCLUSIONS

The diMarzio model has been extended to construct the
phase diagram for the intermolecular and intramolecular con-
formational transitions of a single flexible polyelectrolyte
chain in a dilute salt-free solution. Three variables are in the
single chain free energy expression, including mean chain
dimension, solvent quality, and monomer charge fraction, for
a given chain length. At the long chain limit, the model re-

sults in the same equation as that obtained from the more
sophisticated chain model based on the Edwards Hamil-
tonian to deduce mean chain dimension. In the diMarzio
theory, the phase boundary of intermolecular segregation is
solved numerically by using the equal free energy method in
which the two bistable �coexistent� conformations have the
same free energy. Such a phase diagram exhibits the features
of the first-order phase transition �like liquid-vapor phase
diagram�, consisting of both continuous and discontinuous
transitions separated by a critical point. Under the discon-
tinuous transition, the polyelectrolyte chain consists of coex-
istent �bistable� expanded and collapsed conformational
states as seen in the experimental intermolecular phase seg-
regation. Meanwhile, the theory falls into the universality
class of mean field theory. Also, we find that the critical
constants are sensitive to the chain length, given by ��*

−1/2��N−1/2 and 	*�N−3/2. For the limiting long chain, the
theory predicts that the mean chain size becomes a constant
at the critical point and is roughly 90% of the mean size of
an ideal chain. The result implies that partial contraction
within a chain molecule is required to collapse a polyelec-
trolyte chain in the folding process. Besides, through the
Maxwell equal-area construction method, the monomer
charge fraction to induce intramolecular phase segregation
�due to Rayleigh instability� is estimated. The findings show
that for longer chains, the monomer charge fraction to induce
intramolecular phase segregation is very different from that
to induce intermolecular phase segregation, but for shorter
chains, the difference becomes small. We speculate that the
conformational structures arising from the intramolecular
and intermolecular phase segregations differ significantly for
longer chains, whereas the conformations involved in the
two different phase segregation processes become similar for
shorter chains. This result may account for the pronounced
pearl necklace structures for long chain molecules observed
in many simulation results. Furthermore, the theory predicts
that the monomer charge fraction to induce intramolecular
phase segregation is smaller than that to induce intermolecu-
lar phase segregation, consistent with the previous work in
literature.

In addition to free energy and Maxwell construction,
chemical potential is an alternative criterion in constructing
phase boundary. The condition, at which intramolecular seg-
regated conformations coexist with a globular or a coiled
phase, may arise when these conformational states have the
same chemical potential. Such a phase diagram will be in-
vestigated in our future work, along with the effect of ex-
plicit counterions and chain stiffness on the conformational
behavior of a polyelectrolyte molecule.
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