濃厚溶液に就ての考察

(其の一) 水溶液の蒸氣壓と濃度

横田泰三

一般に不揮發性溶質よりなる溶液の蒸氣壓は其の純溶媒のそれよりも減少するものであるが、此の蒸氣壓降下と溶液の濃度との關係に就ては既に Raoult-van't Hoff の法則がある。Poynting、Traube、Lowery、Callender 等は何れも相以たる考を以て、即ち溶液の蒸氣壓の降下は溶液中に於ける溶質の妨害作用に因るものにして ——(溶質分子が溶媒分子に結び付き其の自由を妨げ不活性にすると考へて) — 純溶媒と溶液との蒸氣壓の比は夫々、其の溶媒の溶質と結び付かざる自由分子の敷の比に等しとの假定の下に、何れも Raoult の式と略相似たる結果を得てある。此の問題に関しては其の他にも數多の人々に依つて各種の研究學說が發表されてゐるが是等は何れも稀薄溶液及び稍濃厚なる溶液に於てのみ當嵌るものにて一般に濃厚なる溶液に於ては 希と意義なき様 である。 D. Baneroft 及び H. Davis は其の理由として分子量は液體と氣體とに於て其の値を異にするにも拘らず、實際 Raoult の式を應用する場合に一般に此等兩者相等しと見做して取扱へるが為の誤釋に基くものであるとて Raoult の式を濃厚溶液に對して次の様に訂正してゐる。

$$k - \frac{p_1 - p_2}{p} = \left(\frac{G_1}{G_2}\right)^{\alpha}$$

^{1).} Poynting, Phil. Mag. (5) 42, 298 (1896)

^{2).} Traube, Annales chim. Phys. (2) 62, 490 (1897)

^{3).} Lowery, Phil. Mag. (6) 13, 552 (1907)

^{4).} Callender, Proc. Roy. Soc. (A) 79, 125 (1907)

Spe:anski, Z. ph. Chem. /8, 86 (1912); Moudain-Mouva', Comp. rend. 178, 1164 (1924); Irac Bencowitz, J. Ph. Chem. 29, 1432 (1924)

^{6).} D. Bancroft a. H.L. Davis, J. Phy. Chem, 33, 361 (1929)

(64) (横田泰三)

清厚溶液に就ての考察

数に p。p は夫々純溶媒,溶液の蒸氣壁。G₁、G₂ は夫々溶液中の溶媒,溶質の重量。k は溶媒並に溶質の氣和に於ける分子量,溶解度等に関する或る恒數。a は溶媒並に溶質の分子重合に関する或る係數を表はす。

然れども是亦廣範圍に當嵌るものでなく、殊に著者等の實驗 の場合の様な非常に過厚な溶液に於ては全く無意義な事となつてゐる。

並に於て著者は實驗結果を基礎として飽和水溶液、並に邊厚水溶液に就て其の 濃度と蒸氣壓との關係を論じ様と思ふ。

飽和水溶液の蒸氣壓と濃度との關係

著者は異に發表したマン=ツトの設厚水溶液の蒸氣壓測定の結果を以て溶液の 蒸氣壓降下と其の濃度との關係を吟味せしに、其の飽和溶液に就て溫度に無關係 に次の様な簡單なる關係式の成立つ事を發見した。(第一表参照)

$$-\frac{p_{o}-p}{p}=k\frac{n}{N}$$
 (1)

数にp。p は夫々純溶媒、溶液の蒸氣壓。N、n は夫々溶液中の純溶媒、溶質のモル敷。k は溶質の分子狀態に関係あると考へられる濃度の或る係敷とす。

第 - 表

Mannit の飽和水溶液

(権用)

t	-N	pc(atm)	p(atm)	$\frac{p_0-p}{p}$	k	$ln\frac{p_o}{p}$	k _e *
100.0°	0.1948	1.00	0.770	0.2987	1.5330	0.3614	1.3417
11 0 .0°	0.2859	1.414	0.982	0.4399	1.5387	0.3646	1.2752
-120.0°	0 4232	-1.960	1.222	0.6039	1.4271	0.4724	1.1163
130.0°	0.6275	2.666	1.423	0.8735	1.3855	0.6278	1.005
140.0°	1.0023	3,567	1.504	1.3717	1.3683	0.8636	0.8612
150.0°	1.5920	4.698	1.437	2.2693	1.4285	1.1846	0.7441

^{7).} 古谷, 本誌, (1.)(6 (1927), 横田, 同 (川.) 51. (1929) * ば の意味は 14 ・参照4

	(4	(横田峯三)		厚溶液に	(65	.)		
~~~~								ii:
169:0°	3.7725	6.10	0.978	5.2372	1.3935	1.8305	0.4826	
165.09	11.498	600	0.345	19.0570	1 6579	7.0103	0.6007	

此の関係式を今日迄數多の研究者に依つて發表せられたる諸種の物質の水に對する溶解度と共の飽和溶液の蒸氣壓とを比較對照して當嵌めて見ると第二表以下に示す様な結果を得た。

F 二 表 KIの節和水溶液

(古谷)

t	n N	po (atm)	p (atm)	$\frac{p_{\circ}-p}{p}$	lc
100°	4.34	1.00	0.606	0.650	2.821
110°	4.13	1.414	0 861	0.642	2.651
120°	3,95	1.960	1.120	0.750	2.962
120°	3.76	2.666	1.520	0.754	2.767
140°	3.59	3.567	2.04	0.749	2.689
150°	3-46	4.698	2.62	0.793	2.744
160°	3.24	6.10	3.30	0.848	2.749
170°	3.07	7.92	4.24	0.844	2.588
180°	2.91	9.91	5.11	0.937	2.727
1900	2.68	12.30	6.32	0.946	2.535
200°	2.53	15.34	7.58	1.024	2.590

## 第 三 表

## AgNO。の飽和水溶液

10)

1	n N	po (atm)	p (atm)	$\frac{p_{\circ}-p}{p}$	k
140°	2.149	3.567	1.135	2.1427	0.997
150°	2.761	4.693	1.263	27197	0.985
160°	3.450	6.10	1.32	3,6212	1.049
170°	4.718	7.82	1.33	4.8796	1 034

^{8). 9).} Landolt u. Börnstein, Tabelle von Poysikochemie

^{10).} Roozeboom, Versl. akad. Amsterdam, 25, J. (1901)

66 )	(横田	秦三) <b>诸</b>	漫草溶液に就ての考察			
180°	6.520	9.90	1 27	6.7595	1.036	
190°	10.499	12.39	1.05	10.800	1.029	
200°	26.40	15.34	0.55	26.890	1.018	
ST.		3-193	四 表	(Adams	11) s u. Merz.)	
t	n N	p ₀ (mm)	p (mm)	$\frac{p_{\rm c}-p}{p}$	k	
10.0°	0.0755	9.210	8.07	0.1426	1.8717	
20.0°	0.0827	17.540	15.04	0.1662	2.010	
30.0°	0.0923	31.84	26.75	0.1 03	2 1077	
40.00	0.0973	55.32	44.99	0.2296	2.36(8	
50.0°	0.1091	92.51	73.97	0.2517	2.3066	
		30.500 S	五 表	(Leopold u	Johnston)	
t	n N	p ₀ (mm)	p (mm)	$\frac{p}{L^{\circ}-b}$	k	
21.42°	0.0840	19.127	16.23	0.1515	1.7958	
21.42° 25.62° .	0.0340 0.0874	19.127 24.647	16.23 20.72	0.1515 0.1895	1.7958 2.1692	
	9.55.0 (9.55.65.37) 10.0 - deleter	2005.2802.502	57978157037A			
25.62° .	0.0874	24.647	20.72	0.1895	2.1692	
25.62° . 27.56°	0.0874 0.088\$	24.647 27.605	20.72 23.27	0.1895 0.1863	2.1692 2.0992	
25.62°. 27.56° 33.64°	0.0874 0.0888 0.0333	24.647 27.605 39.106	20.72 23.27 82.46	0.1895 0.1863 5.2048	2.1692 2.0992 2.1947	
25.62° . 27.56° 33.64° 39.31°	0.0874 0.0888 0.0333 0.0973	24.647 27.605 39.106 53.322 68.361	20.72 23.27 82.46 43.70	0.1895 0.1863 5.2048 0.2202 0.2291	2.1692 2.0992 2.1947 2.2625	
25.62° . 27.56° 33.64° 39.31°	0.0874 0.0888 0.0333 0.0973	24.647 27.605 39.106 53.322 68.361	20.72 23.27 \$2.46 43.70 55.72	0.1895 0.1863 5.2048 0.2202 0.2291	2.1692 2.0992 2.1947 2.2625 2.2805	
25.62° 27.56° 33.64° 39.31° 44.03°	0.0874 0.0888 0.0333 0.0973 0.1005	24.647 27.605 39.106 53.322 68.361 第 KCL の	20.72 23.27 \$2.46 43.70 55.72 六 表 简和水溶液	0.1895 0.1863 5.2048 0.2202 0.2291 (Edga)	2.1692 2.0992 2.1947 2.2625 2.2805	
25.62° 27.56° 33.64° 39.31° 44.03°	0.0874 0.0888 0.0333 0.0973 0.1005	24.647 27.605 39.106 53.322 68.361 第 KCl. の	20.72 23.27 \$2.46 43.70 55.72 六 表 简和水溶液	0.1895 0.1863 5.2048 0.2202 0.2291 (Edga)	2.1692 2.0992 2.1947 2.2625 2.2805 r.u. Swan)	

^{11).} J. R. Adams. B. A. M. Merz, Ind. Eng. Chem. 21, 305 (1929)

^{12).} H. G. Leopold. a. J. Johnston, J. A. C. S. 49, 1974 (1927)

^{13).} G. Edgar a. W. O. Swan, ibid, 44, 570 (1920)

(横田泰三)

遺厚溶液に就ての考察

(67)

第 七 表

KCl. の飽和水溶液

(Speranski)

i t	n N	p _o (mm)	p (mm)	$\frac{p_q-p}{p}$	k
20.0°	0,0327	17.54	15.0	0.1693	2.0457
30.0°	0.0903	31.84	26.8	0.1880	2.0811
40.0°	0.0973	55.32	. 45.5	0.2158	2.2190
50.0°	0.1091	92.51	74.4	0.2434	2.2310

#### 第 八 表

KCl. の飽和水溶液

(F. Pohle)

7	n	p _o (mm)	p (mm)	p ₀ -p	k
•	N_	20 ()		р	
30.0°	0.0903	31.84	28.0	0.1372	1.5325
40.0°	0.0973	55.32	46.0	0.2027	2.0990
50.00	0.1091	92.51	78.0	0.186)	1.7963
co.o°	0.1106	149.38	123.0	0.2145	1.9481
70 0°	0.1169	233.7	187.0	0.2497	2 1368
80.0°	0,1234	355.1	233.0	0.2548	2 0651
90.0°	0.1301	525.8	406.0	0.2950	2.1133
100.0°	0.1365	760.0	534.0	0.3014	2.2173

## 第 九 表

KNO₃ の飽和水溶液

(Adams u. Merz)

1	- <u>n</u> -	p _o (mm)	p (mm)	$\frac{p_0-p}{p}$	k
10.0°	0.0368	9.21	8.87	0.0383	1.0415
20.0°	0.0563	17.54	16.21	0.0521	1.4582
30.0°	0.0821	31-84	23.84	0.1040	1.2676
40.0°	0.1144	55.32	48.67	0.13 6	1.1943
50.0°	0.1534	92.51	78,56	0.7757	1.1577

^{14).} Speranski, Z. ph. Chem. 70, 521 (1910), 78, 8; (1911), 84, 166 (1913)

^{15).} F. Pohle, Mitt. kali-Erforschungsanst (1927) 33.

(横田泰三) 濃厚溶液に就ての考察 (68)

第 十 表

KNO, の飽和水溶液

(Edgar u. Swan)

t	n N	p ₀ (mm)	p (mm)	$\frac{p_{\circ}-p}{p}$	'k
20.0°	0.0563	17.54	16.58	0.0579	1.0230
25.0°		22.22	23.76		51.
30.0°	0.0821	31.84	29.71	0.0717	0.8737

KNO。の負和水溶液

(Pawlowitsch)

t	- <u>n</u>	p _c (mm)	p (mm)	$\frac{p_{c}-p}{p}$	k
30.0°_	0.0821	31.84	30.0	0.0613	0.7674
40.0°	0.1144	55.32	50.0	0.1064	0.9301
50.0°	0.1534	92.51	80.0	0.1564	1.0196
60-0°	0.1969	149.4	122.5	0.2194	1.1142
70.0°	0.2461	233.7	180.0	0.2983	1.2124
80.0°	0.3008	35à.1	260.0	0.3558	1.2160
90.0°	0.3634	525.S	367.5	0.4306	1.1755
100.0°	0.4384	760.0	502.5	0.5124	1.1690

#### 第十二表

KCIO, の飽和水溶液

(Pawlowitsch)

t .	n N	p _c (mm)	p (mm)	$\frac{p_{\circ}-p}{p}$	k
40.0°	0.0214	55.32	53.22	0.0305	1.845
50.0°	0.0290	92 52	87.0	0.0633	2.1800
60.0°	0.0381	149.33	140.0	0.0°70	1.7566
70.0°	0.0477	23.37	215.5	0.0845	1.7800
80.0°	0.0583	355.1	320.0	0.1097	1.8810
90.00	0.0701	525.8	470.0	0.1186	1.6920
100.0°	0.0823	760.0	667.5	0.1336	1.6833

^{16).} Pawlowitsch, Z. ph. Cliem. 84, 170 (1913)

(横田泰三) 濃厚溶液に就ての考察

(69)

### 第十三表

K,SO, の飽和水溶液 (Adams u. Merz)

t	n N	p ₀ (mm)	p (mm)	$\frac{p_{\circ}-p}{p}$	k
20°	0.01149	17.54	17.05	0.02374	2.4091
30°	0.01334	31.84	30.68	0.03781	2.8333
40° '	0.01545	55.32	53.04	0.042986	2.7820
50°	0.01725	92.51	88.57	0.04484	2.5788

#### 第十四 表

K₂SO₄ の的和水溶液 (Leopold u. Johnston)

t	- <u>n</u> -N	p _o (mm)	p (mm)	$\frac{p_{\circ}-p}{p}$	k
18.90°	0.01127	16.37	15.91	0.02916	2,5875
22.20	0.01193	20 13	19.55	0.02972	2.4911
24.73°	0.01240	23 38	22.60	0.03438	2.7730
25.58°	0.01256	24.59	23.89	0.02922	2.3260
31.55°	0.01369	34.76	33.61	0 03:36	2,5098
35.96°	0.01451	44.47	42.90	0.03650	2.5160
43.42°	0.01590	66.25	€3.74	0.03938	2.4770
48-41°	0.01681	85.46	82.11	0.04080	2.4260
52.30°	0.01751	103.60	99.13	0.04509	2.5750

#### 第十五表

K₂Cr₂O; の飽和水溶液 (Leopold u. Johnston)

t .	n N	p _o (mm)	p (mm)	$\frac{p_{\cdot}-p}{p}$	k .
23.66°	0.008684	21.92	21.43	0.02315	2.6658
26.40°	0.009819	25.81	25.30	0.02034	2.0715
32.820	0.01258	37.35	36.05	0.03562	2.8326
36.21°	0.01423	45.03	43.42	0.03821	2.6850
40.85°	0.01657	57.88	55.48	0.04326	2.6101
50.77°	0.02180	96.10	91.55	0.04970	2,2800

(70)

(横田峯三) 濃厚溶液に就ての考察

#### 第十六表

NaCl の飽和水溶液

(Adams u. Merz)

t	n N	p _o (mm)	p (mm)	p,-p	k
10.0°	0.1100	9.21	7.00	0.3157	2.8701
20.0°	0.1105	17.51	13.63	0.2369	2.5295
30.0°	0.1113	31.84	23.96	0.3239	2.9538
40.00	0.1123	55.42	41.37	0.3396	3.026
50.00	0-1133	92.51	68.50	0.3505	3.0939

## 第十七表

NaClの飽和水溶液 (Leopold u. Johnston)

t	N N	po (mm)	p (mm)	$\frac{p_{\circ}-p}{p}$	k
20.42°	0.11044	17.99	13.65	0.3 76	2.8757
25.49°	0.11074	24.43	18.35	0.3328	3.0042
29.96°	0.11110	31.75	23.80	0.3339	3.0054
36.92°	0.11172	46.83	35.03	0.3378	3.0242
40.55°	0.11206	56.96	43 54	0.30822	2.7505
50.00°	0.11309	68.84	92.51	0.3438	3.0400

## 第十八表

NaCl の飽和水溶液

(F. Pohle)

t	n N	p. (mm)	p(mm)	$\frac{p_{\circ}-p}{p}$	k
30.0°	0.1113	31.84	23.0	0.2247	2.0170
40.0°	0.1123	55.32	42.0	0.3172	2.8117
50.0°	0.1133	92.51	71.0	0.3030	2.6714
60.0°	0.1145	149.38	113.0	0.3220	2.8103
70.0°	0.1158	233.70	175.0	0.3354	2.8911
80.0°	0.1174	355.10	236.0	0.3350	2.8483
90.00	0.1190	525.80	392.0	0.3412	2.8614
100.0°	0.1207	760.0	566.0	0.3428	2.8388

NaCl の飽和水溶液

(Speranski)

t	- n N	p. (mm)	p (mm)	$\frac{p_{\circ}-p}{p}$	k
20.0°	0.1105	17.54	13.5	0.2993	2.7073
30.0°	0.1113	31.84	24.0	0.3267	2.9340
49.0°	0.1123	55.32	41.5	0.3330	2.9607
50.0°	0.1133	92 55	69.0	0.3407	3,0075
€0.0°	0.1145	149.38	111.4	0.3409	2.9776
70.0°	0.1158	233.7	173.0	0.2509	3.0981
80.0°	0.1174	355.1	264.0	0.3451	2.9404
93.0°	0.1190	525.8	<b>388</b> 5	0.2533	2.9685

#### 第二十表

NaCl の飽和水溶液 (Monrad u. Budger)

t	N	po (mm)	p (mm)	$\frac{p_{\circ}-p}{p}$	lc
60.0°	0.1145	149.38	112.0	0.3238	2.9148
70.0°	0.1158	233.7	173.5	0.3470	2.0968
80.0°	0.1174	255 1	264.0	0.3451	2.9403
90.0°	0.1190	525.8	388.5	0.3533	2.9685
100.0°	0.1207	760.0	561.5	0.3535	2.9279

#### 第二十一表

NaNO₃ の飽和水溶液

(Adams u. Merz)

ŧ	- <u>n</u> -	po (mm)	p (mm)	$\frac{p_{q}-p}{p}$	k
10.0°	0.1706	9.21	7.13	0.2917	1.7098
20.00	0.1864	17.54	13.53	0.2964	1.5300
30.0°	0.2036	31.84	23.07	0.3801	1.8667
40.0°	0.2221	55.32	38.81	0.4254	1.9152
50.0°	0.2589	92 51	62.21	0.4871	1.8811

^{17).} C. G. Monrad a. W. L. Badger, Ind. Eng. Chem- 21, 42 (1929)

(72)

(横田泰三) 濃厚溶液に就ての考察

#### 第二十二表

NaNO₃ の飽和水溶液 (Edgar u. Swan)

<i>t</i>	<u>n</u>	p _o (mm)	p (mm)		k
20.0	0.1864	17.54	13.06	0.2430	1.8400
25.0	0.1948	23.76	17.67	0.3439	1.7650
30.0	0.2036	31 84	23.46	0.3572	1.7542

#### 第二十三表

NII₄CI の飽和水溶液

(Adams u. Merz)

1	n N	po (mm)	p (mm)	$\frac{p_0-p}{p}$	k
10.0°	0.1123	9.21	7.27	0.2669	2.2773
20.0°	0.1258	17.54	13.97	0.2601	2.0669
30.0°	0.1396	31.84	24.61	0.2938	2.1050
40.0°	0.1541	55.32	40.81	0.3802	2 466
50.0°	0.1696	92.51	65.92	0.4034	2.3778

#### 第二十四表

NII,CI の飽和水溶液

(Edgars u. Swan)

t	n N	p _o (mm)	p (mm)	$\frac{p_{\circ}-r}{p}$	k
20.0	0.1258	17.54	13.90	0.2619	2.0818
25.0	0.1326	23.76	18.84	0.2612	1.9700
30.0	0.1396	31.84	24.66	0.2912	2.0863

## 第二十五表

NII,NO: の飽和水溶液

(Adams u. Merz)

t	N N	p _q (mm)	p (mm)	$\frac{p_{\circ}-p}{p}$	k	
10.0	0.3587	9.21	6.88	0.3387	0.9440	
20.0		0.4388 17.	17.54	11.74	0.4941	1.1258
30.0	0.5379	31.84	18.93	0.6820	1.2680	
40.0	0.6541	55.32	29.11	0.9004	1.3766	
50.0	0.7797	92.51	44.71	1.0691	1.3711	

——(原 報)——

(73)

#### (横田泰三) 護厚溶液に就ての考察

#### 第二十六表

NH₁NO₃ の飽和水溶液 (Edgar u. Swan)

t	n N	p _o (mm)	p (mm)	$\frac{p_{\circ}-p}{p}$	k
20.0	0.4388	17.54	11.10	0.5802	1.3221
25.0	0.4872	23.76	14.73	0.6130	1.2584
30.0	0.5379	31.84	18.91	0.6838	1.2713

#### 第二十七表

NH₄NO₃ の飽和水溶液 (Prideaux)

t	n N	p _o (mm)	p (mm)	$\frac{p_0-q}{p}$	k
10.0	0.3587	9.21	2.60	0.2823	0.7969
15.0	0.3958	12.79	4.15	0.3245	0.8176
20.0	0.4388	17.54	6.13	0.3495	0.7964
25.0	0.4872	23.76	9.20	0.3872	0.7948
30.0	0.5379	31.84	14.50	0.4554	0.8467

#### 第二十八表

NH₄H₂PO₄ の飽和水溶液 (Adams u. Merz)

ŧ		p. (mm)	p (mm)	$\frac{p_{o}-p}{p}$	k
10.0°	0.04518	9.21	8.94	0.03020	0.6684
15.0°	0.05134	12.79	12.44	0.02814	0.5480
20.0°	0.05789	17.54	16.10	0.08944	1.5450
25.0°	0.06487	23.76	21.91	0.08444	1.3017
30.0°	0.07265	31.84	29.18	0.09116	1.2548
40.0°	0.08997	55.32	50.05	0.10523	1.1702
50.0°	0.10832	92.51	81.56	0.13426	1.2395
		5			

#### 第二十九妻

(原 報)—

^{18).} Prideuax, J. ch. Ind. 39, 182 (1920)

(74)

(横田漆三)

護厚溶液に就ての考察

NH₄H₂PO₄ の飽和水溶液

(Edgar u. Swan.)

t	n N	p. (mm)	p (mm)	$\frac{p_{q}-p}{p}$	k
20.0°	0.05789	17.54	16 33	0.0741	1.2799
25.0°	0.06487	23.76	22.09	0.0756	1 1655
33.0°	0.07265	31.84	29.57	0.0768	1.0567

### 第三十表

(NH₁)₂SO₄ の飽和水溶液 (Adams u. Merz)

t	$\frac{n}{N}$	p _o (mm)	p (mm)	$\frac{p^{\circ}-p}{p}$	k
10.0°	0.09917	9.21	7 29	0.26337	2.6558
15.0°	0.10085	12.79	10.16	0.25886	2.5665
20.0°	<b>9</b> 0.10384	17.54	14.22	0.23347	2 2702
25.0°	0.10483	23.74	19.50	0.21846	2.0839
30.0°	0.10655	31.84	25.22	0.23249	2 4635
40.0°	0.11065	55 32	43 32	0.27701	2.5035
50.0°	0.11497	9251	71.93	0.28311	2 4886

#### 第三十一表

(NH₄)₂SO₄ の飽和水溶液

(Edgar u. Swan)

t	n N	p ₀ (mm)	p (mm)	$\frac{d_{\circ} - p}{p}$	k
20.0	0.10284	17.54	14.20	0.23521	2.2871
25.0	0.10483	23.76	19.23	0.23364	2.2287
30.0	0.1 655	31.84	25.82	0.23315	2.1882

此等の結果を見るになは温度に無關係によく一致した値を示し、著者等の實驗 の場合の様に必ずしも高温高壓にて溶液の非常に濃厚なる場合に限らず、飽和溶 液であれば比較的低温稀薄にてもなは常に一定値を示し此の關係式が廣範圍によ く常嵌る事が實證された。

( 75 )

#### 溶液の蒸氣脈の理論的者察

今 Clapevron-Clausius の式

$$\frac{dp}{dT} = \frac{L}{T(v_2 - v_1)}$$

(姓に p は蒸気脈。L は分子蒸發熱。 v1, v2 は夫々液體, 氣體のモルの容 積を表はす。)

に於て液體の容積を無視し、蒸氣は瓦斯法則に從ふと見做して

$$\frac{dp}{dT} = \frac{L.p}{RT^2} \qquad (2)$$

此の式は液體と其の蒸氣壓との關係を示す式であるが、これを不振發性溶質よ りなる溶液に常嵌めて見る。然る時は Lに就ては、先づ1モルの溶媒がその中に 含まれたる x モルの溶質を析出し, 其の純溶媒が蒸發し, 更に其の蒸氣壓 p。か ら溶液の蒸氣壓 p に膨脹されるものとおへると

$$L = -xL_{\epsilon} + L_{\epsilon} - RTln - \frac{p_{\phi}}{p}$$

並に L. は溶解熱。 L. は純溶媒の蒸發熱を表はす。今濃度を一定に保つ ものとせば

$$\left(\frac{\partial p}{\partial T}\right)_{x} = \frac{L_{x} p}{RT^{2}}$$
 (2')

並に L。に就ては前述と同様の老から

$$\mathbf{L}_{x} = \mathbf{L}_{s} - \mathbf{R} \mathbf{T} l n - \frac{\mathbf{p}_{s}}{\mathbf{p}} -$$

然るに一般に

$$\frac{dp}{dT} = \left(\frac{\partial p}{\partial T}\right)_{L} + \left(\frac{\partial p}{\partial x}\right)_{T} \frac{dx}{dT}$$

故に

$$\frac{dx}{dT} = \frac{\frac{dp}{dT} - \left(\frac{\partial p}{\partial T}\right)_{z}}{\left(\frac{\partial p}{\partial z}\right)_{z}}$$

(76) (横田泰三) 慶厚溶液に就ての考察

上式に (2) (2') を代入すれば

$$\frac{dx}{dT} = -\frac{x \cdot L_c \cdot p}{\left(\frac{\partial p}{\partial x}\right)_T RT^2}$$

即ち

$$\frac{d\ln x}{d\mathbf{T}} = \frac{\mathbf{L}}{\left(\frac{\partial \ln p}{\partial x}\right)_{\mathbf{r}}^{\mathbf{R}}\mathbf{T}^{2}}$$
(3)

此の式は明に溶解の一般式である。

$$\frac{\partial lnp}{\partial x} = -1$$

なる場合を考へると

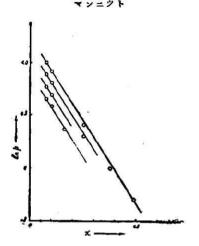
$$lnp = -x + konst,$$

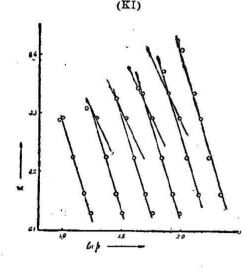
此の式に x=0 と置けば lnp,=konst, 故に

$$ln - \frac{p_{\perp}}{p} = x_{\perp}$$

故に 
$$ln\frac{p_o}{p} = \frac{p_o - p}{p}$$
 と見做せば

$$\frac{p_{\circ}-p}{p}=\frac{n}{N}$$


即ち Raoult の式を得る。故に Raoult の法則の當嵌る様な稀薄溶液に對しては 式 (3) は次の様になる。


$$\frac{dlnx}{dT} = \frac{L_6}{R'\Gamma^2}$$

即ち van't Hoff-Le-chaterier の式と一致する。

然れども一般に濃厚溶液に於ては Rioult の式 は 當嵌ら ず。 且义, 從來この <u>alnp</u> の値が判明しなかつた爲めに此の式(3)を解くことが出來なかつた。然 るに今姓に濃厚溶液に就ての著者等の實驗結果を以て一定温度に於ける。







値を求めるに次の第一闡、第二 圏に示す様な結果を得た。

此等の結果を見るに飽和に近 き濃厚溶液に於ては<del>-olnp</del>-は温 度に無關係に一定の値を保つと とを知る。依つて

$$\frac{\partial lnp}{\partial x} = -k$$

と置けば lnp=-kx+konst 前述と同様にして

$$ln-\frac{p_s}{p}=k_cx\cdots\cdots(4)$$

此の式は溶液の濃度をの或る 節圍に於て成立すべきものであ る。勿論稀薄溶液の場合は此の 特殊なる場合として ん=1 と たる。

# 飽和溶液の蒸氣壓 に就ての考察

上式(4)は一般に濃厚溶液に 就ての蒸氣壓と濃度との關係式 であるが、飽和溶液の如き濃度 x の變化の廣い場合には此式が 當嵌らず(第一表、第八列参照) 却つて著者の見出した式(1)

(78)

(機田泰三)

濃厚溶液に就ての考察

$$\frac{\dot{p}_s - p}{p} = kx$$

がよく営嵌る。

勿論他和溶液の場合には濃度 α に可成廣い範圍の變化があり。

$$ln\frac{p_{\bullet}}{p} = \frac{p_{\circ} - p}{p}$$

なる近似的關係式は成立しないが、 技に興味ある點は k の値が飽和溶液に於ては 温度に無關係に常に一定なるも、 不飽和溶液に於ては濃度に依つて k。 の値を異 にし濃度の減少すると共に k と k。 との値が漸次相近づき、稀薄溶液に至って途 に一致して 1 となる事である。 (第三十二表、第三十三表参照)

第三十二表

NaCl (100°C)

(Tamman)

N N	p (mm)	$\frac{p_0-p}{p}$	k*	lu_p_	k _e
0.1198	5725	0.3275	2.7338	0.2333	2.3647
0.0863	624.4	0.2172	2.5177	0.1966	2.2768
0.0696	652.9	0.1640	2.3584	0.1519	2.1833
0.0524	681.3	0.1155	2 2059	0.1093	2.0873
0.0356	709.7	0.0709	1.9912	0-0685	1.9245
0.0179	734.9	0.0342	1.9042	0.0336	1.8744

$$k^* = -\frac{p_o - p}{p} / \frac{n}{N} \qquad k^* = \ln p - \frac{p_o}{p} / \frac{n}{N}$$

#### 第三十三表

KCl (100°C)

(Tamman)

n N	p (mm)	$\frac{p_{\circ}-p}{p}$	k*	lu_p_	k _c
0.1237	589.3	0.2897	2.3409	0.2543	2.0553
0.09026	631.4	0.2037	2 1994	0.1854	2.0542

19). Tamman, Ném. Acad. Pét. (7) 35, (1887)

	(横田峯三)		(横田峯三) 渡摩溶液に就ての考袋			( 79
0.07657	652.0	0.1656	2.1632	0.1538	2.0057	
0.06300	667.9	0.1379	2.1887	0.1292	2.0505	
0.04664	696.8	0.0907	1,9447	0.0868	1.8626	
0.02923	720.3	0.0537	1.8344 .	0.0536	1.8310	
0.01169	744.8	0.0204	1.7453	0.0202	1.7268	
0.005968	751.9	0.0108	1.8000	0.0107	1.8000	

次に式(1)を書き替へると次の様になる。

$$-\frac{p_{\circ}}{p} = \frac{kn + N}{N} \tag{8}$$

今溶質の分子は溶液中に於て特殊の分子狀態にあるを以ては倍のモル数の値も 取るものとすれば、溶液の蒸氣壓は其の分子數に逆比例するものとして上式に意 味つける事が出來る。但し著者の得たる實驗式は可成廣い範圍に於て溫度に無關 係である事等の事實より今直によの物理的意義を云々する事は困難であつて是は 將來の研究に譲りたい。

#### 摘 亚

1) 飽和溶液の蒸氣壓降下と其の濃度との間には温度に無關係に次の様な簡單 なる實驗式の成立する事を發見した。

$$\frac{p_{\bullet} - p}{p} = k - \frac{n}{N}$$

鼓に p。p は夫々純溶媒, 飽和溶液の蒸氣壓。N.n は夫々溶液中に於 ける純溶媒、溶質のモル數。なは一つの恒數。

- 2)。諸種の水溶液に就ての實驗結果を以て此の關係式が廣範圍に當嵌る事を實 證した。
  - 3). 不飽和溶液に於ては或る濃度の範圍内に於ては

$$ln - \frac{p_a}{p} = k_a - \frac{n}{N}$$

---(原報)----

#### (80) (横田泰三)

(横田奉三) 歳厚溶液に就ての考察

なる関係が成立して濃度の減少と共に kaの値は減少し1 に近づく。

終りに本考察を爲すに當り御懇篤なる御指導並に御校閥を賜つた堀場教授に深 厚なる感謝を表します。

昭和七年--月

京都帝國大學物理化學研究室に於て。