<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>タイトル</td>
<td>触媒の被毒現象の研究（第1報） Pd線上の酸素水素反応に対するCOの毒作用</td>
</tr>
<tr>
<td>著者</td>
<td>小野宗三郎</td>
</tr>
<tr>
<td>引用</td>
<td>物理化學の進歩 1943年5月15日 17(4): 115-144</td>
</tr>
<tr>
<td>事前日付</td>
<td>1943-07-30</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/46351</td>
</tr>
<tr>
<td>形式</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>出版者</td>
<td>publisher</td>
</tr>
<tr>
<td>学術機関</td>
<td>Kyoto University</td>
</tr>
</tbody>
</table>
触媒の被毒現象の研究（第1報）
Pd 線上の酸素水素反応に対する CO の毒作用

小野宗三郎

I 序 論

従来の気一固不均一系触媒反応の研究に於ては、Langmuir 及 Hilshelwood 以来、主として反
応速度論的に行われられ、封鎖系に於ける反応進行測定方法としては殆ど圧力のみと言える
1) 於く西畑研究室に於ても、李、野川、尾山及川北の諸博士は尚此方法を取った。著者は反応進行
に伴う圧力変化と同時に物理の物理的変化をも平行して観測する事に依って、圧力のみよりせ
る研究には触れ得なかった點をも明らかにする第一であるとし、圧力と共に観測すべき物理量と
して、便宜上触媒の抵抗を採った。而して触媒として Pd を用ひた。共故は H2 か Pd に溶解

* 本研究の一部は日化 64, 770（昭和18年）に発表した。
1) Schwab, "Katalyse von Standpunkt der chemischen Kinetics" (Springer 1931); Hilshelwood,
 "Kinetics of Chemical Change" (Oxford 1940).
2) 李、野川、尾山及川北, 本誌原報参照。
する時は、圧力の平方根に比例して溶解し、溶解量に比例して抵抗が増加する。且つ、Pd 鍋中の水素の拡散は充分浅いが、抵抗値より Pd 表面上の水素の挙動を測定する事が出来た。従って反応としては、水素を一つの反応剤とするものであればよく、先づ便宜上酸素水素反応を検討した。本研究以前、この事に研究は殆ど見受けない。唯一の Dohytschin 等が Pd 蒸発装を用ひ、-78℃に於て、エチレンの水素添加反応及び酸素水素反応を研究した報のものであるが、之を薄気としての特徴を生かしたものではあるが、膜面使用中の少しの構造変化により更に大きな気体吸着に依り抵抗が相違変化するので細い議論を交える事である。著者は Pd 線を用ひ、温度 100 ～ 160℃に於って研究した、又水素溶解に依る抵抗変化を明確にする為に、除気操作は用ひられず、酸素水素常量混合體として、約 1 ～ 30 mm Hg に於て測定をしつつある。

然らに Pd は酸素水素反応に対しても非常に活性度高く、単に表面を清浄に保つのみで、強力な触媒能を示す。前記の条件に於て反応をしめると、反応體導入と同時に急激な反応が起こり、10 秒以内に殆ど完了し、Pd は反応熱の為に抵抗を増増するに至る。共故反応が迅速的でないから抵抗を測定しても、これから H2 の吸着速度を推定し得ない事が分った。従つて Pd、H2 及び O2 ののみの系で圧力と抵抗との同時測定を活用する事が不可能である。そこで次の手段を併用した。

CO を微量（158 ～ 1000 mm Hg 以下）附加する事に依つて、反応は著しく抑制される事及後で迅速の様に CO が酸化されて CO2 になる事、及び酸素水素反応が起こり抵抗は急増する事が分った。斯くして CO に依る酸素水素反応の被密現象を種々の條件に於て観測する事に依つて、反応の特性を観る事が出来ることは約である。

又 CO に依る被密反応に依る抵抗を測定すれば、Pd 表面上による H2 の挙動を推定する事が出来る。斯くの如くにして、圧力及び抵抗の同時測定に依り、CO に依り被密される酸素水素反応の特性を明かにせんとするのが本研究の目標とする所である。

II 實 驗

(a) 實験装置及圧力及抵抗測定法：

第一図は装置の主要部分を示すもので、反応槽は容積約 100 cc のテレフタル酸水素維管で、中央に設置した管として、此石英部分は電化水素で表面してスパイリル状の溝を刻し、其中に Pd を巻き付けた。Pd は最初の内は径 0.25 mm、長さ約 110 cm の

6) 6) Dohytschin & Gelhart, Acta Physicochim., 6, 95 (1937).
網の用いた。之を以後 Pd (I) と名付ける。面して途中より案ら径 0.1 mm、長さ約 22 cm のものを用ひたが、之を Pd (II) と名付けて置く。反應管の左はアピツゾン・グリース・N を塗

Fig. 1

った活性炭及液態酸素で冷却した U 字管を経て、マクレオッド壓力計、水銀壓力計、各種瓦斯漏
及水銀擴散ボンプに通じる。酸素及水素は 33% 質性加里水溶液に小量の水酸化バリウムを混
じたものを電解して発生させ、先づ Pt アスペストを通し、水素は其後五酸化硼状 2 個を通
し、又酸素は一旦質性加里塔を通して後、五酸化硼状 2 個を通じて、夫々五酸化硼上で乾燥貯
蔵した。CO は 130℃ に煮洗られた濃硫酸に活性炭を添加して発生させ、質性加里水溶液
、アルカリ性ビロガロール水溶液及五酸化硼を通して後、最後に液態空気のトラップを経て貯
蔵器に収めた。N2 は市販のボンベのものを用ひ、300℃ の還元器上を通じてすめして後、質性
加里塔及液態酸素のトラップを通じて貯蔵した。

系の壓力はテレックス型子製ブルドン型壓力計の針のフレで測る。針先は光学的に拡大し
且つ浸しフレを検定して置く。正確度は最高 1/70 mm Hg である。抵抗測定には図示せる如
く、10Ω 及 100Ω の標準抵抗を固定断へ、最小目盛 0.1Ω なるダイヤル型抵抗箱 R を可変
腕とせるホーキートストン橋を造つてあるので、Pd の抵抗は R の目盛に 10 倍の値となって現
される。Pd (I) では電池電流 12 mA を流し、Pd の 0.0006 Ω の変化は反応型検流計 G のフ
レで 0.1 cm、正確度は 0.0001 Ω の程度である。反応開始前及終了後の加き平衡状態に於ける
抵抗値は、電池電流の向きを変えて得る抵抗の値の平均を以てし、反応中的抵抗値は検流計のフレを除き検定して置いた、フレより算出する。検流計のフレの感度は時々1Ωの標準抵抗をPdの代りに用いてRの0.1Ωの変化に換して検流計のフレが一定であるかどうかを見届めた。Pd(II)の場合には、電池電流を小さくしないと加熱せられるので、5mAとした。

(b) 電気亜鉛の恒温度:

後述する如く160°Cに於で0.1mm HgのH₂を送入する時は、Pd(II)の抵抗は雰囲気中の時より0.0029Ω増加する。然るに電極の温度が1°C変化すれば0.0050Ω変化するのである。1°Cの恒温度は普通の電極のみ測る亜鉛反応に於ては充分な値であるが、抵抗を測る本実験の如き場合には明らかに不充分であつて、特に高い恒温度を得るべく努めた。電気亜鉛は内径約6cm、長さ45cmの銅管にアスベストを巻き、その上にニクロム線を端に中央に球になる如き巻き付け、荷共上にアスベストとカーリンを水で練つたものを塗付け、乾燥して後特製イソライク塗膜で外周をした。後の加熱電流を一定にする為、マツダの電圧調節器を用いて電流の変動を小し、スライダクトで所要の一電圧にした。而して温度調節には、図示する如く光電管を利用して調節板を手製した。温度計としてCu-コニスタタン熱電対を直列に二個用いたものを用ひ、之の電動力をボテンショメーターに大半相接して置いて小さい変動を特に電圧度のよい検流計(電圧感度1×10⁻⁷V)に入れる。今若し所要の温度より高かったならば検流計はフレ、ラムプの光は電圧管に入り、共解三極管電管(グリッド発電管)のグリッドに電圧が掛けて電管が鳴き、機械的指針を動かして電気亜鉛加熱用補助電流回路を開く、反則に所要電圧より下に電圧管に光が入る、電圧管が鳴かず、共端に機械的指針が動かず補助電流回路を閉じる。時計式断続器を変に附着した理由は、グリッド発電管は一旦放電し出すとグリッドの電圧が変化してても放電を継続するので、30秒に一回同1/10秒間放電管の加熱電圧を切って光電管に光が入つても始わけば放電が発生し続けない様にする為である。然くして160°Cにする為には、加熱用の直流電は1200mA、補助電流には50mA流して、水銀室内で160°Cに保つ様に調節した。又抵抗変化から見て温度の変動は高々±0.1°C、実験中0.1°Cの恒温度を保つには困難を感じなかった。

(c) 水素溶解に依るPdの抵抗増加:

Pd(II)を用抹した場合、160°Cに於ける水素の圧力の平方根とPdの抵抗との間との関係は第二圖の如くである。然らに電気亜鉛の最高恒温度は前述の如く0.1°Cであったにしろ
基づく抵抗変動は 0.0003Ω、安全の為 0.2℃の変動ありとして 0.0012Ωの変動がある。
0.0012Ωの増加は第二因より H₂の分圧の平均値として 0.19、H₂の分圧 0.023 mm Hgに相当する。即ち 0.03 mm Hg以上の廃棄のH₂は溶質に抵抗より別に出来ぬ。

又 H₂以外の気體、CO、O₂、N₂及び H₂Oの吸着に依り著々約 0.0010Ωの抵抗増加を来す。

(d) 觀察の活性化と活性度の再現性

Pdは酸素水素反応に対して最も活性度高い観察である。それだけに種々の物質に依る効用を受けて易い。活発のグリースの種類に依っては著しい活作用を呈する。リノール・ピーカックス・グリース・グリースの活作用に就ては次報に詳述する事にする。斯くして毒性の非常に薄いアピエゾン・グリース・Nを用ひ、且つ次に述べる如く活性度保持に充分の時味を行ばれる。

活性化処理法： 之には三方法を採った。塩を 300℃に保ちつweeks時間、続けて 10 mm HgのO₂中3時間、10 mm HgのH₂中2時間放置して後、排気しつつ温度を低下せしめる。之を活性化處理（I）と名付ける。反覆前前には反覆容器を 160℃に保ちつ、Pdのみを 540℃に真空中で15分間加熱し、次に 10 mm HgのO₂中で15分間300℃に熱し、次に 10 mm HgのH₂中で15分間200℃に熱し、最後に真空中で540℃に15分間加熱し、H₂を入れてPdを保護して160℃に一定温度に調節する。之を活性化處理（II）とする、或は簡易にPdのみを 540℃に真空中で15分間加熱するだけで活性化する。之を活性化處理（III）とする。反覆前前は原則として活性化處理（I）を行う事が依って（最初の内は各実験前活性化處理（III）を行うのみ）一連の実験で充分再生出来る結果が得られた。一旦実験を休んてて再開する時は、必ず活性化處理（I）を活性化處理（II）の前に行った。

活性度の比較法： 一旦活性化處理したPdは共後真空中にして放置すれば多少活性度を減少する事もあるが、単に酸素水素反応の逆に以て比較しやうとすると活性化處理直後のものと数時間真空中で放置したもののが差違なく共に 10秒以内で火中反應する。是故アピエゾン・グリース・Nの活性は小形事がある。然し後のIII§2B項にて述べる如く、[CO]+[H₂+O₂]系に於て COが無くなって [H₂+O₂]の迅速反応に移る時間τを以て比較すると、今度は真空中放置するとき、τが少し長くなる。即ち Pdは少し是速を受ける事が分る。従つて此方法は非常に簡易な活性度試験方法と言へる考である。

活性度保持法： 上記の試験法に依って、アピエゾン・グリース・Nの活性を試験例により示すと以下の如くなる。即ち Pdを前記の活性化処理（I）を行い、H₂中で30分間放置して後、Pco=150/1000 mm、Pn=7.90 mm、及 Pbc=3.95 mm の系に於ける τを測定すると、一連の結果は438秒、438秒及 438秒、従つて平均436秒を示べる。又同様 H₂中放置1時間のものは、τ=440秒、2時間のものは t=445秒となり。之に係数真空中1時間放置する場合には t=475秒となる。而して活性度保持の為には、H₂中に放置する方が、O₂中に放置するより若干助る様である。更に又上等は定温が26℃の場合の結果であつて、温度の上昇著耗作
用も大となる。共性安全の為以下-described experiment was conducted at 22°C or below. 以上の吟味に依って Pd を活性化処理して後 11 中に保証し且成早早く反酸をしめる事に依って充分再生出来る活性度を一速の実験で保持し得たのであって、アピスN.グリース・N の原因此実験に何等の妨げをなすものでなく、CO のみの影響を安らして観測する事が出来た証である。

III 実験結果と其考察

§1. [CO（微量）+2H₂+O₂] 系の反応の特性概観

(a) [CO（微量）+2H₂+O₂] 系一 CO の溫度の影響：觸媒は Pd (I) を用ひ、酸素水素常量混合體の圧力约 26 mm の反酸経過に対する CO 附加の影響を調べると、第三図の知く成る。上半は系の壓力減少、下半は Pd の抵抗増加の夫々時間的変化を示すものである。最左端の曲線は CO の無い場合であつて、10秒以内に反酸の大半は完了する。抵抗値は始めより急激に増加して、最高増加点 584×10⁻¹Ω に達する。所が最初 0.02 mm Hg の CO を送入して後 11 分にして酸素水素常量混合體を入れた時は、右際の圧力曲線を興へる。CO の量が 0.24, 0.30, 0.64 及び 1.1 mm と増加するに従つて、CO に依つて各々顕著に発せられる。此一連の実験に於ては、Pd の活性化は、先づ活性化処理 (I) 及 (II) を行つて置いて、各実験前に活性化処理 (III) を行つたものである。第三図に於て抵抗の阻害は酸素水素常量混合體ののみの場合の反酸後の平衡値を取ってある。従つて Pd に残る微量の H₂ 及 Pd に依る H₂O 及 CO₂ 等の吸着の為反酸前の Pd のみの抵抗値よりは少し大である。又 CO の量の増すに
つれて反応終了後の抵抗値の大となっているのは、達成する酸素水素は加量であるので、COの増すつれて未反応の H₂が増大する値である。

(b) [(CO(微量)+O₂+(2H₂+O₂)] 系： 以上は何れも COを最初に入れて、後から酸素水素を入れたのであるが、今度は 0.24 mmの COを入って後、O₂を 1 mm入し、60分間放置して後酸素水素を 26 mm追加すれば、第三図に見られる知き被膜が現われる。

(c) [(CO(微量)+H₂+(2H₂+O₂)] 系： 次に先ず 0.24 mmの COを入って後、H₂を1 mm入し、60分間放置後酸素水素を追加すれば、被膜は現われる。

(d) [(O₂+(CO(微量)+2H₂)] 系及 [(CO(微量)+2H₂+O₂)] 系： 又先ずO₂を入れ、COとH₂との混合体を追加する時或は CO、H₂及O₂の混合体を始めて追加する時は、(a)の場合と同一成分である場合、(b)の場合より被膜が小となるが矢張り現われる。以上の結果から、COは H₂上に於て持つ O₂或は酸素水素反応中O₂に依って自然に失われるものであって、此無機化反応は、CO₁O₂→CO₂と推定される。

所か本実験中発見された Burrows 等の研究7がある。それは 20℃に於けるPdに依る酸素水素反応に対する COの溶作用を 10⁻¹ mmHgの圧力下で観測したのであるが、完全に反応しない誘導期間が現われるのである。Taylor 等のPdへのCOの吸着の研究8に依れば、COの活性化吸着は0℃で最高をとっつあるが、Burrows の場合は著者の場合に比してCOの溶作用がより著しく現れる事は當然想像される事であり、COの無機化反応をO₂に依る酸化反応である事が直ぐ被膜と一致する所である。然し Burrows 等は抵抗は測定して居らぬ、酸素水素水素の機構に就ては Pdの酸化還元の連続なりと結論してあるのみであるから、此等両反応の平行して起こる際の現象を更に詳しく研究する事に依つて、又 Burrows 等は行はなかった抵抗測定をなす事に依つて、酸素水素水素のみたらす COの無機化反応の機構をも、更に一段立てて孵出する事を考え次の如く実験を進めた。

(e) [(CO(微量))+(2H₂+O₂)] 系一温度の影響： 第三図に於て、各圧力曲線の各部分に於て、如何なる変化が起こって来るかを考察すると、最初の圧力の和が直後に述べるべき如く COの酸化反応と酸素水素反応が低く起つてゐる事であるが、主な圧力の減少の原因は Pdへの H₂の溶解に始づくものである。共確認を示すと、第三図は觸媒が Pd(I)，即ち約 0.25 mm、長さ約 110 cmのもの、に就て得られた結果であるが、Pd(II)即ち約 0.1 mm、長さ約 22 cmのものを用ひて、Pdの酸化を約 1/10にした酸素水素混合体の圧力を半分とすれば、第四図に示す如く、最初の圧力減少は非常に小となつて著る秀に起つてゐる。此実験及び之の後の既述の実験に於ては、各実験前活性化處理(I)を行つてある。次に第二の圧力変化の観察も部分は、 COの酸化と酸素水素反応とが平行してゐる部分である

物理化学の進歩 Vol. 17 No. 4 (1943)

（原稿）小野宗三郎

Fig. 4

図4の結果から、Pd上のCO、O₂及びH₂の挙動を就て推定を試みる。今Pd上の反応に与える部分に対する三つの気体の吸着力を比較すると、COが最も強く活性部分に選択的
に吸着する事に依って、斯くも顕著な毒作用をなすものである事は容易に推定される。従つて CO の吸着層（之を以後 CO-Pd 面と呼ぶ）は確かに有る。而して 100℃ に於ては、此活性部分は CO によって分解され、O₂ の吸着が起こり得ないわけであるから、然らに H₂ は Pd との特別な親和性に依って、酸素水素反応に対する活性部分を CO に依って押へられても残りの部分に吸着し、Pd 内部へ溶解して行く。気相中の H₂ の濃度から期待される抵抗増加の約 80% にも達する。従つて H₂ の吸着せる表面（之を H₂-Pd 面と言ふ）が確かにある事である。即ち活性部分は CO-Pd 面、又他の部分に H₂-Pd 面が存在する事は確からであるにも拘らず両反応が起こらないのである。之は活性部分が CO に獨占されても O₂ の吸着が起こり得ない為に依るものではない。従れ活性部分が CO に獨占されても O₂ の吸着が起こり得ない為に依るものではない。又温度が 160℃ になると両反応が進行するので、温度上昇と共に CO の濃度が弱るのでは、O₂ の吸着を許す様にあって斯る吸着層、之を O₂-Pd 面と言ふが、之がある為に両反応が進行するのでは確かである。

斯くの如く Pd 上の活性部分に O₂-Pd 面が生成する事は両反応に必要であると考えても無理ではないと考えられる。斯くすれば何か不都合な事が起こるかどうか又斯くする事によって如何に反応の範囲の事実を含む得るかを詳しく吟味せんとして以下の実験を行った。

§2. \[(CO(微量))+(2H₂+O₂)\] 系の反応より見た CO の酸化反応機構

(A) 反応速度測定方法

さて CO に依る被箔酸素水素反応を知る為に、先づ CO の酸化反応の特性を調べる必要がある。然し如く第四章に見ると如く、\(CO = 0.14\) mm に対して \(O₂ = 4.45\) mm の如く \(O₂ \) が非常に強烈な場合で、共反応速度が小である。斯る系の反応圧力に比して CO の小さな圧力減少を精密に測定する事は困難であるが、確実に CO が酸化し又はすれば、酸素水素反応が光に起り、反応型酸素反応は逆切れる。

第四章に於ては、Pd (II) を用へてあり、第三章に於ける Pd (I) に比して Pd の単位の長さ当りの反応表裏積の減小率より熱容量の減小率の方が大であるし、損失による冷却効果も Pd (II) の方が小である等の理由で、急激反応に際しては温度上昇がより顕著となる為、Pd (I) の時は抵抗急増に止まるが、Pd (II) の時は検流計は換気切れるに至る。第四章に於ける反応系は \[(CO)+(2H₂+O₂)\] 系に於て検流計の急にフレが始まる時刻を以て、\[(CO)+O₂\] 反応の終了する時とする事が出来るといふ工合の下に、此方法に依り \[(CO)+O₂\] 反応の特性を調べた。

(B) \[(CO)+(2H₂+O₂)\] 系

(i) CO の圧力の影響

先づ CO を進し、然る後 11.1 mm の酸素水素気體混合體を入れてより検流計が急にフレ出す迄の時間を \(t\) とすれば、CO の圧力と \(t\) との関係は第五圖の如くなる。CO の圧力が
0～33×10^{-3} \text{mm} 記は酸素水素を入れると同時に検流計は振り絞れて \(t = 0 \) である。CO の增加と共に \(t \) が増加するが、共増加率は CO の増加に伴って段々大となり、曲線は横軸に凸である。郎も CO の圧力の増大によって CO の酸化反応はより著しくなることを見せる。先に第四園に於て急激な酸素水素反応の起こるのは、CO の殆ど無くなる時とたが、第五園の結果よりすれば、\(P_{\text{CO}} = 3.7 \text{mm} \) の時は \(P_{\text{CO}} = 33/1000 \text{mm} \) になる時といふ性である。

(ii) \(O_2 \) の圧力の影響

次は CO の圧力を 127/1000 mm と一定にし、酸素水素量混合体の圧力を変化した場合を調べると第六園に示す結果を得た。此場合は縦軸に \(t \) の逆数を取つてあって、\(t \) は CO の無くなる迄の時間の近似値であるから、\(t \) の逆数は反応速度の近似値であると見える。又縦軸には酸素水素量混合体中の \(O_2 \) の分圧を取つてある。概観した所、反応速度は \(O_2 \) の分圧に略比例する事が分る。

(C) \([\text{CO} + (O_2) + (2H_2)] \) 系

CO を先に入れる事に変りはないが、次には先づ \(O_2 \) を入れて、面る後 \(H_2 \) を入れて酸素水素が分圧になる様にし、且つ \(O_2 \) と CO が接觸した時刻を時間の原點とすると、\(t \) 印に示す如く、酸素水素混合体を送入した (B) の場合と差が分らぬ。

(D) \([\text{CO} + (2H_2) + (O_2)] \) 系

(C) の場合とは逆に、水素を先に入れて後 \(O_2 \) を入れて営業酸素水素混合体になる様にし、且つ \(O_2 \) を送入した時刻を原點に取ると矢張り略曲線上に乗って来る。
(E) \[(\text{CO} + \text{O}_2) + 2\text{H}_2\] 系

以上は全部 CO を一番先に入れた場合であるが、今度は CO と O₂との混合体を途入して後 H₂を入れた時は、印に示す如く反応速度は大となる。

(F) \[(\text{CO} + 2\text{H}_2) + \text{O}_2\] 系

之に反して CO と H₂との混合体を先に入れ、而後 O₂を入れた時は曲線上に乗って来る。

(G) CO の酸化反応の特性の総括

以上の諸事実に基づいて、CO の酸化反応の特徴を総合すると、次の如くなる。第五及六閲より反応速度は CO の分圧の大なるにつれ大となり、O₂の分圧に略比例して大となる。又 CO を先に入れた時と CO と O₂との混合體を先に入れた時とを比べると、後者の方が速度が大である。而も此系では O₂と COとの壓力をと比べると、O₂の方が数十倍大である。従って活性部分に於ける CO の吸着率は O₂に比して非常に大である事が分る。CO を先に入れて後から O₂を入れた時は活性部分に於て一旦強く吸着された CO を O₂が押しのけて吸着平衡に達する説で、CO と O₂を隠め混合して導入した時より平衡に達するのに時間の遅れがある。従ってそれだけ反応進行中の O₂の吸着濃度は前者の方が最初小であるから、前者の方が反応速度が小であると解釈される。

(H) 反応測定方法の吟味

CO の酸化反応速度を \[(\text{CO} + 2\text{H}_2 + \text{O}_2)\] 系の検流計が急にフレを始める迄の時間より測定したのであるが、今此方法の妥当性を吟味して見る、第四閲に於ける検流計の振り切れる現象を考察して見ると、CO が酸化して行くため、気相中は価相当 CO が残存する間は補給して CO 吸着層を相當顕著に確保してあるが、第四閲の結果に依って見れば、O₂の初圧 3.7 mm の時は CO の壓力が 33/1000 mm の時しに於ける O₂の吸着濃度が小なる事の酸素水素反応を起こし発熱熱が Pd の leads よりの冷却及び気相を通じての冷却等で相殺出来なかったって、Pd の温度が少しく上り出す。少しでも上れば CO の吸着濃度は減少する。従ってそれだけ O₂ 吸着濃度が大となる。一方温度が上げれば酸素水素反応の速度は増大する。此二の點に於いて反応熱は増大して温度は昇る一方で、速に検流計の振り切るより起るものと考へられる。従って検流計の振り切れる現象を起する基本條件は主として Pd 上の O₂-Pd 面の酸素、leads よりの冷却及び気相よりの冷却に依って生まるものである。従って厳密に言へば、二つの點を補正すべきものである。一つは CO の反応量に関してはあつて、例えば O₂の初圧 3.7 mm の時は、振り切直前迄に反応した CO の量が途入した CO の全量ではなくて約 33/1000 mm だけ小なるものと見做されるからである。又一方冷却の時は leads よりのもののは一定と見做しても、気相の熱伝導度が壓力に依て変化するから、振り切るを起こるに要する O₂-Pd 面の温度が変化すべきであるからである。故に以上の二点を補正すべきであるが、第一に今共正確な補
正が出来ないにしろ、又第二には出来たとしても共結果は上に得たの CO の酸化反応の特性能に対して何等根本的変更を要求するものではないと考えられるので、此方法は近似法として今も目的に充分副って居るものであるとする事が出来る。

（i）CO の酸化反応機構

然らば CO と O₂ との如何に反応するかを就て考察する。先づ CO-Pd へ O₂ が気相中より飛んで来て反応するものではない。今仮に断く反応するとしたらどうなるか。第五図に於て CO の圧力が 33×10⁻⁴ mm から 156×10⁻⁴ mm に増す時、仮に CO-Pd 面の大气さが一定とすれば、O₂ の圧力は一定であるから、線の曲線は直線となる筈である。然し CO-Pd 面を上記の圧力範囲で CO の圧力の増加するに従い大となると考えられる。然に CO の圧力の増すにつれて反応し易くなり曲線は横軸に凸な部分が出来る。O₂ の圧力が大となつて CO-Pd 面の大きさが飽和蒸気達致した後は曲線は一定傾斜となってよいと考えられる。

然に実際は始めて直線で CO の圧力の増すにつれて横軸に凸となる。郎ち CO の圧力の増すにつれて反応し易い群を意味する。前に最初の假定は正しくなく、CO-Pd 面に O₂ が来て反応するものではない。§2 の (E) で述べた事実も之を裏書する。又 §1 (c) の事実及び後の §4 で述べる新しい現象も亦然である。

次に然らば (a) 吸着酸素と吸着 CO との表面二分子的の反応であるか、或は (b) O₂ へ CO-Pd 面に CO も気相中より衡突して直ちに反応するか、(c) 或は O₂ と Pd と CO が一旦吸着して後反応するのか何れかであるか、之を一義的に決定する事は出来ぬ、共理由は次の通りである。

前述の実験結果即ち (i) O₂ の分圧に比して反応速度が増加する、(ii) CO の分圧の増大と共に速度が大となると言ぶ事が、CO と O₂ とのみの系で得られたのであるならば、直ちに (a) 及 (b) の機構を否定し (c) を取るのである。何故ならば (a) 及 (b) 両機構共に CO の吸着と圧力で反応速度最大値を示すべき事を要求するからである。

然に今取扱って居る系は CO と O₂ との他に H₂ が存在し、酸素吸着酸度が一定以上になれば、酸素吸着酸度が起るから、(後述の §4 の結果参照) CO の酸化反応を調べるに當つて実験し得る O₂ 吸着酸度には限度がある。従つて CO の吸着圧力で最大が認められぬからと言って直ちに (a) 及 (b) 両機構を否定する議には行かね。

然らば残る (c) の機構は如何と言ふに、之も次に述べる事より可能性があると考えられる。即ち Mc Kinney の研究のに依れば、PdO への CO と O₂ 及 CO₂ の吸着実験に於て、CO は100°Cで最高となる如き活性化吸着をなし、脱離する時は、CO₂ の形で出て行く。又 O₂ は殆ど吸着せず、CO₂ は低温根吸着量の大なる如き物理的吸着をなす。著者の実験の如く O₂ へ Pd 面と Mc Kinney の PdO とは勿論全然同一視するといふ議には行かないと相方参考すべき

であるからである。細かい決定は将来的の事として、今兹で確定に言える事は、CO の酸化には O₂—Pt 面が不可缺であるという事である。

今 CO—Pt の CO の反応性に就て考察して見る。Langmuir の研究則に依れば、Pt 線上の CO の酸化反応に於て、CO の吸着力が強く、反発を抑制する。CO の吸着から発れた Pt の裸の面へ O₂ が来れば、直ちに酸素原子吸着層を造り、反発はこの吸着層へ気相中より CO が衝突する毎に反発する。又 CO の吸着面では気相からの O₂ の 10⁻¹⁵ 重の衝突に一重の割合で反発が起こる。高温度では前者の機構のみで反発が起こり、低温度では CO が始んと全表面を覆ふので後の機構も能率の悪いものにも拘らず問題になる。然し反発の主體は不確り CO に依って僅かに変された酸素吸着面 CO が衝突する機構に依る。若者の結果と考え合わせる時非常に似てある事は興味深い。Langmuir の実験では H₂ Reference 壁面で測れる壁面抵抗であり、CO と O₂ とが常量比を大に近い組成のものである。著者の実験は Langmuir のそれと異り、CO に対して O₂ が非常に過剰であるから第五指及第六指に示す如き実験條件に於ては、CO—Pt 面と O₂—Pt 面が互に顯立てて居ると見るのが當然である。O₂—Pt 面は稀有にあり、従って反発は此上でも起るものである。CO—Pt 面の CO の反応性は全然ないとは言へぬが、CO—Pt 面の CO と気相よりの O₂ との反発は O₂—Pt 面を中心とする反発に対して無視しても差支へないと考えられる。

斯くして結論を言へば、[CO(微景)+(2H₂+O₂)] 系に於ける CO の酸化反応は O₂—Pt 表面反応を進行させる中心であって、之の存在及大いさが決定的因子である。

§3. [CO(微景)+(2H₂+O₂)] 系の反応より見たる酸素水素反応機構

(A) 基本機構

§1(6) に述べた如く、Pt 面上に於て、CO—Pt 面及 H₂—Pt 面が確に存在すると推定出来る時にも、酸素水素反応も CO の酸化反応も共に進行しないのである。即ち CO の酸化反応の起こ得ない時は、酸素水素反応も起こらないのである。之に反して第四指に示す通り CO の酸化反応の起こている時は、酸素水素反応も起こっているのである。然るに §2 に於て、CO の酸化反応に於て、O₂—Pt 面の存在が不可缺であると結論した。従って同様酸素水素反応も亦 O₂—Pt 面を不可缺とする課である。従って斯る活性部分には H₂—Pt 面のみが生成し、共に上に O₂ が気相中より来て反発する事、換言すれば O₂—Pt 面が存在しないで酸素水素反応が起る事はあり得ない課である。

然らば斯る活性部分は、酸素水素混合気體中で O₂—Pt 面のみより成り、又 CO が存在すれば CO—Pt 面と O₂—Pt 面のみより成ってても H₂—Pt 面がないかと言へば、そうではなく、後で述べる如く、H₂ の過剰によって H₂ の抑制作用が顕著ながら存在する事を確めたのであるから、H₂—Pt 面も確かにある。然し反発する為には、O₂—Pt 面の存在が不可

缺なのである。

今迄 O₂-Pd 面及 H₂-Pd 面の酸素及び水素の状態に就ては一言も触れたかったが、恐らくは酸素は原子状酸素、水素は H₂ の形であり、とは想像するが、第一に著者の実験から直ちにそうだと断定も出来ぬし、又第二に明確に状態を假定しなければ因る事もないから、強いて假定する事は止めて、Pd 上の吸着酸素、吸着水素と考へ再びに。矢々 O₂-Pd 面、H₂-Pd 面とした途であって、決して文字通り分子状酸素及び分子状水素であると言ふ意味ではない。又活性部分に於ける H₂-Pd 面と、不活性部分に於ける H₂-Pd 面とが、如何なる差があるかについても将来の問題とする。

さて斯る O₂-Pd 面が反応に不可缺であるが、相手の H₂ が気相から来るものか、Pd 内部からか、或は又 Pd 表面上からのものか分らないが、何れにしても、O₂-Pd 面の酸素は相手の H₂ に不自由しないので、O₂-Pd 面の割合が反応速度を決定するものと假定する事は無理ではないと考え、之以上の事は将来の問題とする。

次に CO か無ければ酸素水素が非常に急激に反応する事が、Pd 上に起き此反応の特質である事を論じたが、之は後の §5 に於て述べる事とする。

而して次に ((CO (微量)) + (mH₂+nO₂)) 系の反応に於て、酸素水素混合體の組成に依る影響、又 H₂O 及 CO₂ の影響を調べた。

(B) H₂ の反応抑制作用

先づ ((CO (微量)) + (mH₂+nO₂)) 系に於て、CO と O₂ との圧力を一定にして H₂ の圧力を変化した場合に反応経過が如何に変化するかを調べ、酸素水素反応に対して水素の抑制作用があるか否かを検した。第七図の○印を記ふ曲線は、Pcn = 150/1000 mm に一定として、酸素水素反応値混合體の場合の 1/11 を Pφ に対して示したものである。Pφ = 3.91 mm にして Pφ = 7.82 mm であれば、CO の酸化反応速度は 24.6 × 10⁻¹/秒である。之に対して Pφ = 3.88 mm で、Pφ = 4.40 mm、従って H₂ が気流より不足であれば、反応速度は大となる。○印に示す如くなる。又之に反して Pφ = 3.88 mm, Pφ = 18.55 mm 及 Pφ = 3.90 mm, Pφ = 18.72 mm の如く著しく H₂ が過剰となれば○印に示す如く速度は小になる。今 O₂ の圧力を一定にして、當量 H₂ 不足及 H₂ 過剰の三つの場合の検流計の読み切れる迄の圧力減少を示すと、第八図の上方の曲線群を如くなる。但し H₂ の溶解による圧力減少を補正してあるので此圧力減少は CO の酸化反応
と酸素水素反応の両方の影響である。然に排気した CO は 150/1000 mm であって、CO の酸化のみによる圧力減少は 0.075 mm であるから、第八図は主として酸素水素の酸化に基づくものである。CO の酸化に基づく圧力減少を差引く事が出来れば、酸素水素反応のみの速度が分るが、之を正確に算する事は今不可能であるので、大略に次のように略算する事とする。2) で述べた如く P_{\text{CO}} = 3.72 mm の時、P_{\text{CO}} = 33/1000 mm 以下では t = 0 となるので、P_{\text{CO}} = 33/1000 mm 以上の時は、CO が酸化に依り消滅して行つて丁度 33/1000 mm になった時摺り切れが起るものと推算しても大した誤りでない。今の場合 P_{\text{CO}} = 3.90 mm であるから、摺り切れを越す CO の圧力は 33/1000 mm より若干小となるものと推定されるが、先づ同一としても大した誤差はないので略算として此値を取る。

即ち CO の \((150-33) \times 10^{-3} \) mm = 117 \times 10^{-3} mm が

Fig. 8

秒間に反応すると假定する。又反応量は時間に比例すると略算する。かかる圧力減少の内 CO の酸化に基づくものを差引いたものは第八図の下方の曲線群の如くなる。さて摺り切れが何を意味するかと言ふに、前述した如く、P_{\text{I}} 上の O_{2}-Pd 面が大となり之に比例する酸素水素反応熱が Pd よりの冷感に打撃しうるので、系の元数の組成が如くに対しても相当影響を與へるべき事は當然である。H_{2} 過剰の時は常量の時比して気相の熱傳導度が大であるので摺り切れを起すための時間の表面反応量よりより大なる事が要求される結果、t は常量の時比して大となる事は當然である。然し H_{2} の過剰が常量に至る事も反応の時比して大なる事は常量の時比して多くなるから、H_{2} 過剰の時の圧力減少曲線は、常量の時比してノル大体一致するが、後半に於ても大なるだけ常量の時の曲線を或る程度延長した所で摺り切れに移行すべきである。所が實際は H_{2} 過剰の時には圧力変化が最初から小になって居る。従つて H_{2} 過剰は t を大にするだけではなく表面反応そのものをも抑圧してゐると見るべきである。H_{2} 過剰は CO の酸化反応も酸素水素反応も共に反応する事に依つて反応速度を減せしみたのである之を酸素水素反応より見れば H_{2} 過剰は O_{2}-Pd 面を減せしめる事に依つて同様反応速度
を減少させめるものと推定出来る。之に反して H₂ が常量より足の場合は、酸素水素反応に対して反応に適合しえ事が必要。

(C) 反応生成物の抑制作用

次に反応生成物たる水が酸素水素反応に対して抑制作用があるかどうかを調べた。160°に於て、常量酸素水素を反応させして生成物たる水を封じ込んだ後、更に常量酸素水素を送入すれば、水のない時と顕著に早さで反応を観察し、計測する。從って生成物たる水の抑制作用が若しあらとしても CO に比べて非常に小さいものとせざるを得ない。然し上の実験だけでは、直ちに H₂O の抑制力が完全なきとは言え難い。前に述べた如く、P.I.の活性度を検ずる時、唯常量酸素水素混合液で其反応速度を比べてやるとする。之に反応が大なる程 t₀が大となつべ、P.I.の活性度の小さき差が量的便表現出来たのであるが、今度の H₂O の影響も同一の方法により、[(A) CO₂ + (2H₂O)] 系の t₀の大きいが、A が夫々 H₂O、N₂ 及び H₂ の場合で異るかどうかによって調べた。共結果は第九図の通りであつて、△印は豫め通則の水素を含む酸素水素を送入して水を生成せむ。即ち

\[\text{P}_{\text{H₂O}} = 0.42 \text{ mm}, \quad \text{P}_{\text{H₂}} = 0.01 \text{ mm} \]

を封じ込んで後、CO を 0.12 mm と常量酸素水素 12.86 mm との混合液を送入した時の t₀を表ししてある。△印は P₁₂ を 0.44 mm 送入して後、CO を 0.12 mm と常量酸素水素 12.84 mm 混合して送入した時の値であり、□印は同様にして豫め N₂ を 0.44 mm 封じた時の t₀を示す。△印及も H₂O を封じ込んだ系と豫め H₂ を封じ込めた系とに於て t₀ が殆ど等しい事を示す。然しご反応速度も豫め封じ込む気體が H₂O と H₂ の場合は殆ど等しく N₂ の場合は殆ど早い。H₂O は H₂ に比して著しく熱分解度が小であるから、表面反応速度が同一ならば t₀ が大なる管であるが、腐敗 t₀が略同様である事は少なくとも H₂ と同一程度の反応抑制作用がある事を示すものである。又 H₂O の場合と N₂ の場合とを比較すると、H₂O は N₂ に比して熱分解度が少し小であることから N₂ と等しく不活性であれば、H₂O の場合は N₂ の場合よりも t₀が小なる事と若し此り得ても大なる事はあり得ない。然るに實際はより大であることから H₂O は活かに反応を抑制するものである。

他方 CO の酸化に依って出来る CO₂ の影響はどうかを考察して見る。先に §1 (b) に於て述べた如く、CO と通則の O₂ を通じて CO₂ に変化させして後に酸素水素混合液を入れると、全然酸素ガス現象が現われないのであるから、CO₂ は H₂O と同様 CO に比して著しく吸着力が弱い事がある。然し H₂O の場合には前述の如く值が大から抑制作用があるので CO₂ の場合も検する必要がある。然し CO₂ を流速空気で冷却せる U 字管を通じて反応瓶に挿入し得な
い事は H₂O の場合と同一であるので、此場合も CO の酸化を前もって行は必要がある。然
し O₂ が非常に過剰でなければ反応が進行せず、CO₂ だけを生成せしめて此物の形の影響を
見る仮には、長時間を要して完全酸化を見とづ難いし、斯くしてある間に Pt の活性度が変
化する恐れがある。従つて此実験は遂行しなかった。然し先に述べた如く、Mc Kinney の実
験に於て PdO → CO₂ がよく吸着するので CO による被著反応中 O₂ → Pt 面へ CO₂ が吸着
する可能性あって、之が反應を阻む可能性があるが、之の決定は将来の問題とする。

§ 4. [(CO) + (2H₂ + O₂)] 系に於ける O₂ の圧力大なる時に起る新現象二重振し切

第六回の曲線に見る知く、CO を先づ送入し、10 分間後常温酸素水素混合液を送入する
場合には、O₂ の圧力の増加に伴つて t₀ が減じ、従つて CO の酸化速度が増大して行くが、
O₂ の圧力大となれば或一定値に収斃するかの如き傾向が見出始めているので、更に O₂ 圧
の大なる場合につき調査せんと別の一連の実験を行つた。P₀₀=150/1000 mm とし又 Pt は
活性化処理（II）を行つた。所が新し現象が出て来たが、前述の反應機構を結局は支持する
ものであるので記す事とする。第十一図に於て、P₀₀=5.37 mm では、t₀=366 秒であるが、P₀₀=5.50 mm
となると、酸素水素注入と同時に初流計が振り切れるので、t₀=0 であるか、種々を見ると、明かに未反態の酸
素水素がある事が分る。此振り切れた図で t₀=0 としで×印で表では、更に非常に遅い反態が続いて 888 秒
後第二間目の検流計の振り切れるが起こ、今度は全部反態して終る。此時間を〇印で表はしてある。即ち P₀₀=5.50 mm
では二重振し切れないのがある。此現象を二重振し切れないと名付ける。P₀₀ が更に大となるご何れも
之と同様の現象を観測する事が出来る。斯くの如く P₀₀
が或一定値を越えると、送入と同時に急速な酸素水素反態が起こるが全部反態せぬ内に一旦酸素
水素反態は非常に遅くなるのである。此現象は以下の如く説明する事が出来る。

既に示せり如く、酸素水素反態に於ける稀薄化変化より急速変化への移行並に検流計の振り切
れば、O₂→Pt 面の腐さが流面境界を越すが如き条件に依つて引き起こされるものと考えられる。
第六回の場合及第十図の P₀₀=5.37 mm 以下の場合には、O₂→Pt 面の腐さが最初は急速反態を
起こすのを充分でないのであって、従つて O₂→Pt 面の腐さが流面境界を遅延するのに有効の
時間を要するのである。此時間が t₀ である。然し第十一図の P₀₀=5.50 mm の場合は、此腐
さが最初から急速反態を起こするのに充分であつて、急速反態に基づく Pt の温度上昇は CO の
蒸発を渦発する。従つて系内に相當多量の CO があるにも拘らず、初期の被著現象が現れ

![Fig. 10](image-url)
ないのである。斯くして酸素水素反応中 CO の酸化も起こっているが、酸素水素反応が相當然進行し、O₂ の分離が低下して又 Pd の温度も下って来ると、残っておた CO が再び Pd に吸着し活性點を押へ反応を起す。斯くして較慢な酸素水素反応となるが、之と平行して CO の酸化も起こって居て、CO の壓力が低下し共移動力が弱って来て、O₂-Pd 面上で一定境界の酸素水素反応を起すに充分となれば、此処に再び急激酸素水素反応を起すのである。斯くの如く二重振切れの内、第二の振切れは第十一圏の P_{1}=3.87 mm 以下の場合の如き振切れと同様性質のものである。

此二重振り切れの現象が起こるのは、導入酸素水素の壓力が高くなつて、CO を機械的に押しのげる為でないかとの懸念を無くする為に、導入酸素水素の組成を変化して次の実験を行つた。

先づ水素を過剰にして、例へば P_{H}=3.85 mm, P_{H}=18.77 mm とすれば、全圧力より見れば二重振り切れを起こすべき 異常混合體の全圧力よりも大であるに拘らず、決して二重振り切れを起さない。反つて前に § 3 (B) で述べた如く、斯る場合の t は、P_{1}=3.85 mm なる異常混合體の t よりも大となるのである。

今度は反対に O₂ を過剰にし、例へば P_{O}=9.93 mm, P_{H}=4.29 mm の場合は、即ち全圧力のみより見れば 15 mm 以下で、常量でなければ當然 t＞400 秒なるべき所で、t=0 となるばかりでなく、第二の急激反応も起こらない。之を第十一圏の印で示す。即ち唯一両の急激反応が最初に起こつて共他 CO の毒作用が現われないのである。之は以下のに如く説明する事が出来る。

O₂ の壓力が大であるので、O₂-Pd 面の酸素が急速酸素水素反応を最初から起すのに充分であるので、從つて最初の CO の毒作用を現はしめない。それをみたらす、O₂ が過剰であるので、酸素水素反応が最も近づいても、O₂-Pd 面の酸素は相当大なる値を保持し続けるものと考へられる。従つて CO は酸素水素反応を呈する様は Pd に吸着し得ないので、第二段の CO の毒現象も現われなくものと考えられる。此種の振切れは二重振切れの内第一の振切れと同じ性質のものである事である。

今迄に得られた結果より、瓦斯の組成と検流計の振り切れ出現との関係を総絵る。第十一
図の如くなる。振り切れを矢印で示し、上及下は夫々第一回及第二回目の振り切れを示す迄の時間である。

以上の如く、酸素水素反応及 CO の酸化反応に対して O₂—PtI 面が決定の重要因子であると考える事に依って、総ての振り切れ現象をよく説明する事が出来る。

§5. 酸素水素反応機構に対する論議

以上の実験結果及考察により、Pt 上の CO に依る酸素水素水素反応の特性を遂べると、要點は次の如くである。

(1) Pt 上に O₂—PtI 面が生成せる事が不可缺因子である。

(2) H₂ 及 H₂O は反応を抑制する。

今此反応機構が CO の無い恒温酸素水素反応にも富蔵るものと仮定して、之より他人の結果と比較し反応機構に就て論議する。

(1) 今造の他に研究を見ると、動力学的研究所に就て又静的なものは殆んど総て Mc Lœs 釜圧力計で測る圧力範囲である。又反応生成物なる水は固態炭酸又は液態空気で凝結せしめてある。金屬を構成せる酸素水素反応の機構に対しては、古くから [De la Rive (1828)] が提出されてゐる所の金屬の酸化還元反応方程式とよりするのが大部分である。Burrows 及 Stockmayer 之又 Pt の酸化還元反応方程式とするのである。

Dobytischin 及 Gelbart は -78°C にて、蒸発法で造出した Pt 薄膜を以て 0.1mm 程度の薄い酸素水素反応中の抵抗を観測した。始め0.2程度の抵抗であるが、O₂ 過剰の時は、H₂ 消失後抵抗が非常に急増する (10^5Ω)、断く成つ PtI 薄膜は H₂ 過剰なる酸素水素混合雰囲気中で反応を熟する事が依ってのみ元の抵抗値に復帰し得る事か、上記の状態を酸素物解し、彼等は亦酸化還元説を支持するのである。

然るに著者の実験より Pt 上の活性部分へ酸素が吸着する事が不可缺である事を明らかにしたもののである、反応の中心 O₂—PtI 面は二次元的酸化物と言へるおって上記の研究者の言ぶ酸化物に依てしめ、又反応によって酸素が除かれる状態を還元物に依てしめると著者の機構は酸化還元説を含むものであり、而も後述する通り H₂ の過剰が反応を抑制し得る事実、他著者の説では説明困難であるが、著者の説では O₂—PtI 面を小にするせよとしてよく説明出来る。

(2) 大に H₂ 及 H₂O の抑制作用に就て考察し、多くの研究に於て、H₂ は酸素の活性度を低下し O₂ は活性度を高めるという事を屡々報告されてある。之を文字通り直接的にものとして酸素の構造の変化に基づくものと考える事が多い。

然しそれだけとすると飛んだ誤りをする場合が有て、酸素に対する挙物が H₂ 或は共

11) 例へば C. Wagner & K. Hausle, Z. Elektrochem., 45, 409 (1939) 参照。
毒性を失はないが、O₂中では無毒となるが、一見上記の如き特性を有するが如く思われる場合がある。

例えば Chapman 及 Gregory⑩は P1 を H₂中に放置する時は不活性になるが、O₂中に放置すれば活性化される事より、P1 高圧度酸化されている状態の時活性であって、此酸化物を出発物とする酸化還元反覆反應であるのもある。既に共後 Chapman 一派の Barrows 及 Stockmayer⑪の研究に於て、之を以下に述べ定めた。即ち H₂中で不活性になるのは、H₂と硝子中から出る微細の CO₂との反応により生じる微細の CO の為に P1 が不活性化なる事又 O₂中では CO が生成しない事を明らかにして、H₂そのものの抑制作用を発揮しないのである。従って P1 は濁流であつてよいとした事である。

次にグリース等の抑制作用が見掛上同様の現象を引き起こす事がある。著者の実験に依れば、ラノリン・ピーサワックス・グリース蒸気は P1 に対して強い抑制作用を有するのである。然し O₂中に P1 を保つと微細空気度低下を喫し止めるが、H₂中 P1 を保たれば喫しけ止めて集止し、一見 H₂ に抑制作用があると、O₂に促進作用があるかの如く見える典型的の実例を得たのである⑫。従って多くの研究に於て H₂の抑制作用を言つてもおいて、それがグリース等の抑制作用に対しての差異が充分に示されておらない限り再検討の要がある事である。

著者が今言はったのは上述の如き二次的抑制作用に依る抑制ではない。§3(C) にて述べたごく著者の実験に於て、H₂の製造抑制作用を確かであるが認めたのである。而して之は H₂の過剰が O₂→P1 面を小する事に依って出来るものとして容易に説明される。之に反し前記の如き混雑たる酸化還元反覆反応等は説明困難である。C. Wagner 等⑬の流動法の実験に於て、H₂の大い抑制作用を観察しているが、溶血元中に H₂O を混入せしめてある関係上何等 P1 の助長がなされておらず、グリース等の反応がないから、大い抑制作用を発揮に至り受け否難味。

次に H₂O の抑制作用であるが、前述の如く、静的実験では皆水を凝結してゐるの故比較出来ないので、流動法の研究と比較し得るものである。§3(C) 頃にて述べた如く、Mc Kinney⑭の研究に於て、P1 は反覆により生成する水をよく吸着する事から抑制作用が期待される。又 C. Wagner 等⑬も之を可能とし、溶血元中に絶えず一定壓力の H₂O を混入せしめてゐる。

最後に CO が空気すれば、酸素水素反応が非常に早く、160℃ にて、1→30 mm の圧力範囲で、10 秒以内に殆ど大半が反復し、鋼媒は加熱されるといふ現象は如何にして説

⑬ Barrows 等の実験では温度が低くても 20℃ であり、又酸素水素の圧力は Mc Leod 压力計で示される程度であるが、O₂が 10⁻⁵ mm でも顕著な抑制作用が現われたが、著者の如く 160℃ で CO₂の圧力が 3.7 mm の時は CO₂の爆発が 33×10⁻⁵ mm 以下では CO₂の抑制作用が現われないのであるが、著者の場合は硝子から出る CO₂は問題に成らぬ。

⑭ 本誌, 17, 145 (1943)。
明するか，之に就て述べべる。

斯る現象を起こす為には，触媒は単に清浄に保たれておれば充分であって，触媒の活性化処理は此のものである。Pd の活性点は空気中に H₂ の存在する時にも，O₂ を吸着し得る部分である事は屡々述べた通りであつて，(1) 断る點が上記の如き反応条件に於ては非常に数多く存在する事，又 (2) O₂＝Pd 表面と H₂ の反応が相営早い事を想像すれば，(3) 反応熱の大なる反応である故，共反応熱を着録して温度上昇が不可避となるものと考えられる。而して触媒が到達し得る最高加熱温度は，触媒の形に依つて異なる。表面積の割合に熱容量が小で冷却速度の小なる機械的に高くなる事は當然であつて，Pd (II) [径 0.1 mm，長約 22 cm] の方が Pd (I) [径 0.25 mm，長約 110 cm] より温度が高くなったものである。然し温度の昇らぬ様に Pd の形を変じて，成丈表面積を小にし，熱容量を大，冷却を大としても，普通に触媒として用ひられる程度では自ら限度があり，Pd が清浄である限り恒温反応を期待する事は至難であるとせざるを得ない。

此點より考へて，著者の実験結果より當然豫想されるものと了解に苦しむものとの二例を述べべる。

［前者の例］Faraday (1833) に依れば，Pd 板 [長約 6.36 cm，官約 1.27 cm，厚さ約 0.36 cm，0.127 cm，<0.042 cm 等] は，之を清浄にすれば，倒立試験管中に水素蒸発された一気圧の酸素水素常温混合気を常温に於て，白熱的且最後は爆炎的に化させる，Pd 板が著しく加熱される現象を見出した。Pd 板では更に興味であると述べてゐる。断る現象は著者の実験より考えれば，當然豫想し得るものである。

［後者の例］T. Tucholski は針金で釘下げられた Pd 板 [径 3.5 cm，巾 2.5 cm，厚 0.1 mm] を用ひ，靜的に研究したが，200°C 以下の場合と，200°C 以上の場合と反応の特性が異なる様である。200°C 以下に於て，8～30 mm の酸素水素常温混合気を，反応起的の約 80%が零点反応なり，大半反応するのに数十分以上を要するとといふ。即ち高度可能な恒温稀薄表面反応をなすと言ふ事を意味する。断くの如き事は著者の實験結果からは了解に苦しむ所であつて，Tucholski の川ひた如き形の Pd 板でも，著者と同一の活性度であればものと早く，恐らくは著者と殆ど同様の条件で反応するものと期待される。又 160°C に於て例へば第三図の壓力 0.20 mm の CO に依って被浴された緩拡反応中，酸素水素反応速度と Tucholski の場合の夫を比較すれば，容易に著者の場合の夫の方が反応で早し事が発见される事を期待せる。然に著者の Pd は単に 540°C に熱するだけの處理で上記の現象を起こすに充分であり，又 Pd は肉眼で見て普通の金屬光澤を有してゐるから，特別活性化された狀態

14) M. Faraday, Phil. Trans., 1, 55 (1834): 電極作用研究 (I)。岩波文庫 p. 244。
15) T. Tucholski, Roczniki Chemii, 17, 284, 340 (1937)。
16) T. Tucholski, Z. phys. Chem. (B), 40, 333 (1939)。
あるとは考えられる。従って Tucholski の Pt が恐らく何等かの永久性物を保持しているものであれば、清浄な状態にはなるが、恐らく著者の場合に最も普通で接近して来るものと思像して得られるのである。又 C. Wagner 等の実験でもメスールの反射がないので同様利用し難い。

Pt が以上の如く塩素水素反応を急激に起させるが、断る場合の反応の全部が表面のみにて起こることは限らない。強い表面反応より二次的に発生せしめられる気相反応も恐らく伴生するものと思像される。

以上を要するに、160℃附近に於て，1〜30 mm の如く吸気範囲では，Pt 線（径 0.1 mm 〜0.25 mm）を用いて 10 秒以内に大半が完了する程早く反応し Pt の温度上昇を伴ふ。他の形の Pt を用いても、恒温変化を期待する事は至難をさせるを得ない。此性質は決して著者の場合にのみ現れるべきものではなくして、一般に、少なくとも 160℃附近に於て、清浄な Pt とよくとも 1 mm 以上の塩素水素気腐混合気との組合せに依って起る本質的な性質であろうと考へられるのであって、更に決定的な事は将来の問題とする。

§6 総論

以上の如く，Pt 上の [(CO（微量）)+(2H2+O2)] 系の反応より，CO の酸化反応及塩素水素反応夫々の機構を明らかにしたものである。換言すれば，CO の毒作用が存在し，CO の酸化反応の起つるものに於ける塩素水素酸化，及塩素水素反応の起つるものに於ける CO の酸化反応機構が明らかにされ，又之に基づいて CO の無い系での塩素水素反応機構が推論された。さて不均一系酸化反応一般を考察する時，純粹な物質 A 及 B より同一物質 C を得る場合は理想例であって，(1) 原来避難不純物 D があつて A+B→C 反応の外に，A+D→E なる反応が先行或は平行する場合があり，(2) 又材料物質が A と A’（A に類似する）との混合物であつて，同時に酸化も促進したりする場合，即ち A+B→C 及 A’+B→E なる場合，(3) 出発物質が階段的に変化する場合，即も A+B→C，C+B→E が起き場合等が先づ考へられる。

本実験は第 (1) の場合の典型例であつて，D は急激的に添加した混物 CO と場合であり，CO は自己の酸化に反応抑制物として働き，又他の反応部も塩素水素反応に対して物質として働く。其他の酸素水素及 CO の酸化反応相互の関係が本実験に依り明瞭に示された譜である。第 (2) の場合の例としては，不純和炭化水素の水素添加反応が考へられ，又第 (3) の場合は，炭化水素の酸化が考へられる，斯くの如き場合にも，反応に関與する物質の反応に対する毒作用及抑制作用（或は促進作用，感応作用もあるかも知れず）を明かにすれば，触媒反応機構の研究に寄與するものと考えられる。

尚又炭化水素の燃焼反応に於ける誘導期間（induction period）の存在及燃焼爆発反応の誘起過程と被抑制現象及抑制現象との間に何等かの關係が見出せるかも知れない。
IV 結 論

(1) 酸素水素反応の起るは、Pd 上の酸素吸着 (O₂→Pd 面) の存在する事が不可缺である。

(2) CO の寄与は、Pd に対する CO の拡散的吸着に依って、O₂→Pd 面を小らしめる為に起る。

(3) CO に依る被熱酸素水素反応中、CO は O₂ に依って酸化されて CO₂ となり、次 CO₂ には毒性がない。此 CO の酸化反応も亦 O₂→Pd 面を必要とする。

V 摘 要

(1) Pd 線を觸媒とし、160°C にて 1〜30 mm の當量酸素水素反応を行はしめると易過ぎて解析出来ない。CO を 156/1000 mm Hg せり稀大すると、酸素水素反応に依り顯著な寄与作用を為す。CO の無害なる反応は O₂ に依る酸化反応であって、此反応が進行中酸素水素反応は非常に速くなり、CO の酸化が略完了すると急激な酸素水素反応が始まる。

(2) 反応温度は断りの無い時は 160°C であり、100°C のものも若干ある。

(3) 反応の経過は揮発及 Pd の電気抵抗を同時に測定して追跡した。反応が進む時は抵抗增加から Pd への H₂ の溶解量を知り、之と平衡にある水素の吸着濃度を推定した。

(4) 本研究は (1) 及 (3) を併せて利用し、CO 依依被熱酸素水素反応の機構を明らかにせんとする事を目標とした。

(5) [CO (重量)/Pd (2H₂+O₂)] 系の反応に於ける急激な酸素水素反応に移行する迄の時間到達して、CO の酸化反応の速度を近似的に測る事が出来た。

(6) 新しく CO の酸化反応速度は當量酸素水素混合體の酸素の分圧に略比例して大となり、CO の酸の反応と共に小なる事が分った。又 CO を先に入れ後より O₂ を入れた時より、CO と O₂ とを混じって入れた時の方が反応速度が大である。

(7) CO 依依被熱酸素水素反応中の Pd の抵抗を測定すれば、気相中の H₂ の分圧より期待される値より若干小となる。又同様の條件に於て加湿度を 100°C にすれば、CO の寄与作用は非常に対著して大し、長時間酸素水素反応と CO の酸化反応を共存させる上停止するに至り、此時も H₂ は Pd に溶解して、抵抗増加は H₂ の気相濃度より期待する値の約80%に達する。

(8) Pd 上の反応に依る部分に対する、CO、O₂ 及 H₂ の吸着力を比較すると、CO が最大であって、新しく活性部分に拡散的に吸着し之を區別せんとする。新しく CO の顯著な寄与作用が起こる。此時でも H₂ は Pd 内部へ溶解して行くので、H₂ の吸着してゐる表面（之を H₂→Pd 面と言ふ）も確かにある。即ち活性部分に CO 吸着層（之を CO→Pd 面と言ふ）その他の部分に H₂→Pd 面が生成してゐても、両反応は起こらない。

(9) (6) の結果より考察して、CO の酸化反応は、CO→Pd 面と気相よりの O₂ との結合に
依るものではなく、Pd 上の酸素吸着層 (O2－Pd 面と名付ける) の存在を不可欠とする事が結論された。⑤及⑧の結果は此結論を裏書する。

(10) (i) (8) より、CO－Pd 面及 H2－Pd 面が確かに存在すると推定出来る時には、CO の酸化反応も酸素水素反応も起こらない。 (ii) (7) に述べた如く、CO の酸化が起こり得ない時は、酸素水素反応も起こり得ないが、(1) に述べた如く、CO の酸化が起こっている時は、酸素水素反応も起こっている。(iii) (9) に述べた如く、CO の酸化反応は、O2－Pd 面の存在を不可欠とすると言論した。

此等三つの事実及結論より、酸素水素反応も亦 O2－Pd 面を不可缺とするものであると結論する。

(11) 酸素水素混合體の組成の影響を見ると、H2 過剩は反応を抑制するが、之は O2－Pd 面を小にする為であるとして説明される。之に反して H2 不足は反応を促進する。

(12) H2O は 反応を抑制するが、之は Pd に吸着して、O2－Pd 面を小にする為であるとして説明される。

(13) 以上の如き著者の提出せる反応機構は CO の無い恒温反応にも常様するものと仮定すると、従来最有力視されて居る、Pd の酸化還元反応説を含み且つ此説では説明困難である所の H2 の抑制作用を説明する事が出来る。

(14) 160°C 附近に於て、1～30 mm の常態酸水素混和体中では、Pd が清浄であれば、反応が早過ぎて恒温反応が望まれぬ事を論じて他者の結果と比較した。

(15) 其他 [CO (微量)] + (nH2 + nO2) 系の反応に於て起こる総ての現象を、酸素水素反応及 CO の酸化反応何れに対しても、O2－Pd 面が決定的重要なものであると言ふ者へからよく説明出来た。

終りに臨み、終始御慶進なる御指導を賜つた髙橋先生に厚く感謝する次第である。又有益なる御教誨を頂いた後藤博士に謹意を表する。

京都帝国大学
化学研究所
（昭和15年5月25日受領）
ON THE POISONING OF CATALYSTS.

I. The Poisoning Effect of CO on the Oxyhydrogen Reaction on a Pd Wire.

By Sōzaburo Ono.

(Abstract)

In most of kinetical researches of the gas-solid heterogeneous catalysis, only the pressure change during the course of the reaction has been measured, while in the present investigation the measurement of electric resistance is also made. Hydrogen, one of the reactants, is absorbed by Pd in proportion to the square root of the concentration in the gaseous phase, and as this absorbed amount the increase in the electric resistance of Pd is proportional. From this relationship the adsorbed hydrogen concentration on the Pd surface is deduced. To make clear the resistance change by the H₂ absorption, the partial pressure of H₂ should not be too low. Therefore, a stechiometrical oxyhydrogen mixture was allowed to react under the pressure range from 1 to 30 mm Hg. In this case, if the surface of Pd is only kept clean, Pd has highly catalytic activity. For example, at the moment the reactants were introduced at 160°C, a violent reaction took place and was almost completed within 10 seconds, and consequently the resistance of Pd was rapidly and enormously increased owing to the heat evolved thereby (See Fig. 3). Thus the measurement of the resistance did not lead to the deduction of the adsorbed hydrogen concentration during the course of the reaction, because the reaction was not isothermal. Namely, it was found to be impossible to make a good use of this parallel measurement method in the kinetical research of the above reaction, when there was no poison present. And so the following method was used jointly.

It was found that a trace of CO (within about 150/1000 mm Hg.) poisons the reaction and that when CO has been oxidized to CO₂ a violent oxyhydrogen reaction occurs (See Fig. 4). The observation of such an oxyhydrogen reaction poisoned by CO under various conditions enables us to make clear the nature of the reaction on Pd. And by measuring the electric resistance of Pd during the poisoned reaction, the behaviour of H₂ on Pd can be deduced.

Thus, by dint of these two methods it is aimed to elucidate the mechanism of the oxyhydrogen reaction poisoned by CO.

Experiments.

The principal part of the apparatus is shown in Fig. 1. The reaction vessel is a Tetsujin glass tube, the catalyst being a Pd wire 0.1 mm in diameter and about 22 cm in length. The pressure was read by the deflection on a glass Bourdon gauge. The resistance was measured by means of a Wheatstone bridge. For the lubricant of the taps was used Apiezon Grease-N,
and the U-tube was cooled with liquid oxygen. The constancy being kept within 0.1°C at 160°C., 0.03 mm Hg of the H₂ pressure could be detected from the resistance. Pd was remarkably poisoned by various substances, but by the use of the said grease for the taps and the keeping of Pd clean by careful pretreatments, the degree of activity of Pd was reproducible during the course of a series of experiments. Unless specially mentioned the experimental temperature was 160°C.

Experimental results and their consideration.

A typical example of the poisoning effect of CO on the oxyhydrogen reaction is given in Fig. 4. Let us take the pressure decrease as the ordinate in the upper part of the figure and the resistance increase in the lower part and then take the time as the abscissa. As seen from the curve in the left side, the introduction of 18 mm of a stoichiometrical oxyhydrogen mixture leads to the occurrence of a rapid reaction which is almost completed within 10 seconds: the resistance is rapidly increased from the first, until at last it causes the galvanometer to scale out. On the other hand, if 0.14 mm of CO is preliminarily introduced, it poisons the reaction remarkably as shown in the right side. It is ascertained that during the poisoned reaction CO is oxidized by O₂ to be CO₂, which is not poisonous. If the pressure decrease during the poisoning is caused only by the oxidation of CO, it should be 0.07 mm, but as seen from the slow change part of the pressure curve it is in fact much larger. This shows that parallel with the oxidation of CO the oxyhydrogen reaction proceeds and the rate of the latter reaction is much larger than that of the former. As soon as CO is consumed, there occurs a rapid oxyhydrogen reaction. This phenomenon will be discussed later. And the resistance curve shows that the absorption velocity of H₂ in the poisoned reaction is slightly lower than in the case of H₂ alone, but within 20 seconds an absorption equilibrium is established and the resistance values are a little smaller than those expected from the partial pressure of the hydrogen in the gaseous phase. In the figure, for example, the mark ○ refers to the theoretical value, which differs from the observed one. This difference is probably due mainly to the reduction of adsorbed H₂ concentration caused by the adsorption of CO on Pd. As for the influence of the temperature on the poisoning effect of CO, with the fall of temperature the degree of the poisoning becomes higher. Under the same experimental conditions as in Fig. 4, except a temperature of 100°C, the pressure change by any reaction does not take place for 4 hours and the measurable oxyhydrogen reaction occurs after more than 20 hours. Thus both the oxidation of CO and the oxyhydrogen reaction are entirely inhibited at first, while the solution of H₂ takes place and the resistance increase reaches about 80% of the value expected from the partial pressure of the hydrogen present in the gaseous phase. It was also found that if CO was not present in the above system, the oxyhydrogen reaction was so rapid that the iso-thermal reaction could not be expected to occur as in the case at 160°C.

Behaviours of gases on Pd: From the above experimental results the behaviours of CO, O₂ and H₂ on Pd may be inferred as follows. It is clear that such a remarkable poisoning
by CO may be easily attributed to the selective adsorption of CO on the active part of Pd which is capable to cause the oxyhydrogen reaction. Therefore, it is certain that a Pd surface covered with CO, which will be denoted as the CO—Pd surface hereafter, can exist on the active part. The fact that the oxyhydrogen reaction and the oxidation of CO are entirely inhibited at 100°C as already mentioned may be understood by presuming that the active part of Pd would be completely covered with CO. Even in such case, there is certainly a Pd surface covered with H₂, which will be designated as the H₂—Pd surface hereafter, because the increase in resistance indicates the solution of H₂ in Pd. Namely, in such case as the CO—Pd surface is formed on the active part and the H₂—Pd surface on the other part, both the oxyhydrogen reaction and the oxidation of CO are entirely inhibited. The fact may be attributed to the absence of the O₂ layer adsorbed on the active part of Pd, owing to the complete covering of that part with CO. This O₂ adsorbed surface will be designated as the O₂—Pd surface hereafter. At 160°C, however, both the above reactions can proceed from the first. It may be also explained as follows. Owing to the temperature increase, the covering force of CO becomes weaker and therefore the O₂—Pd surface may be permitted to exist on the active part of Pd and cause the both reactions. With the purpose of ascertaining the truce of the supposition that both the reactions require the O₂—Pd surface, the following experiments were carried out. At first the characteristics of the oxidation of CO was examined.

Measuring of the oxidation rate of CO: The oxidation of CO in the above system is low in its velocity even in considerable excess of O₂, as seen from Fig. 4 (P₀₂=4.45 mm, P_CO=0.14 mm). Therefore it is difficult to follow such a reaction of a system whose pressure change is small for its high total pressure.

But by measuring t₁, the time interval elapsing before the occurrence of the rapid oxyhydrogen reaction in the [CO (trace) + (2H₂+O₂)] system, and regarding it as the time demanded for oxidation of CO, the velocity of the oxidation of CO could be approximately determined. Fig. 5 shows the relation between t₁ and the pressure of CO introduced to the system (the pressure of the stoichiometrical oxyhydrogen mixture introduced = constant). If the pressure of CO is below 33/1000 mm, no poisoning occurs; hence t₁=0. If the pressure is above that value, the poisoning will appear, and with the rise of the pressure t₁ will be rapidly increased. Fig. 6 shows the relation between the 1/t₁ and the partial pressure of O₂ in the stoichiometrical oxyhydrogen introduced to the system (the pressure of CO = constant). 1/t₁ means the approximate velocity of the oxidation of CO. From the curve, it is clear that the oxidation rate of CO is almost proportional to the partial pressure of O₂. This is the case when a stoichiometrical oxyhydrogen mixture has been introduced after CO. Next, it was also made clear that the reaction takes place more rapidly when a mixture of CO and O₂ is introduced to the reaction vessel (in the case shown as the mark ×) than when CO is introduced first and then O₂ is introduced (in the case shown as the mark ○).

Mechanism of oxidation of CO: The fact that the reaction is not brought forth by the collision of O₂ from the gaseous phase with the CO—Pd surface is easily proved as follows.
In Fig. 5, if the adsorption concentration of CO is constant, under the pressure range from 33/1000 to 156/1000 mm Hg, it must increase in proportion to the amount of the CO introduced, because the partial pressure of O₂ is constant. In other words, the curve obtained is to be a straight line. But it is more appropriate to consider that the adsorption concentration of CO should increase with the rise of pressure from 33/1000 to 156/1000 mm, and so the curve is expected to have a concavity for the abscissa and become a straight line after the adsorbed concentration of CO has reached to the saturation value. The fact, however, is contrary to this expectation. As clear from Fig. 5, the curve has a convexity: the greater the CO pressure becomes, the smaller the reaction rate. This proves that the collision of O₂ from the gaseous phase with the CO—Pd surface never brings about a reaction. Moreover, the fact that the reaction velocity is higher when a mixture of CO and O₂ is introduced than when O₂ is introduced after CO justifies the above conclusion. Hence, the O₂—Pd surface is indispensable to the oxidation of CO.

Mechanism of oxyhydrogen reaction: As mentioned in the experiment at 100°C, though the existence of the CO—Pd surface and the H₂—Pd surface on Pd in the [(CO) + (2H₂ + O₂)] system can be easily deduced, neither the oxidation of CO nor the oxyhydrogen reaction can take place. Namely, when the oxidation of CO can not take place, the oxyhydrogen reaction also can not take place. Moreover, the author has made clear the two following points. First, when the oxidation of CO can take place, the oxyhydrogen reaction also can take place. Secondly, the oxidation of CO needs the O₂—Pd surface formed on the active part. Consequently, it is clear that the O₂—Pd surface is also indispensable for the oxyhydrogen reaction.

And now it is a question whether the active part consists only of the O₂—Pd surface in the oxyhydrogen mixture, or whether it consists of the CO—Pd surface and the O₂—Pd surface in the presence of CO. As will be mentioned later, in excess of H₂, the slight retardation by H₂ is observable and so it is probable that there also exists H₂—Pd surface on the active part. But the reaction necessarily requires the O₂—Pd surface. It is unknown yet where H₂, the reaction partner of O₂ comes from: whether from the gaseous phase, from the interior or from the surface of Pd. But, as it is probable that O₂ has plenty of H₂ as the reaction partner, it is not unreasonable to assume that the area of the O₂—Pd surface determines the reaction velocity.

Explanation of the scale-out: The scale-out of the galvanometer and also the rapid decrease in pressure as seen from the right side curves of Fig. 4 will be explained. The fall in the pressure of CO caused by the oxidation leads to the enlargement of the O₂—Pd surface. When this enlargement reaches a certain critical value, the heat of the oxyhydrogen reaction overcomes the cooling from Pd and the temperature of Pd begins to rise. Any rise of temperature of Pd will accelerate the oxyhydrogen reaction on the one hand and enlarge the O₂—Pd surface by inducing the evaporation of CO on the other hand. The latter effect, of course, favours the oxyhydrogen reaction. Consequently, by the overlapping of these two effects the
temperature of Pd will be increased. Thus the temperature of Pd and the reaction velocity may be rapidly increased, and then at last the abrupt pressure decrease and the sudden resistance increase may be simultaneously caused.

Retarding effect of \(H_2 \) or \(H_2O \) on the oxyhydrogen reaction: The retarding effect of hydrogen on the oxyhydrogen reaction is shown in the curves at the lower part of Fig. 8. Under the constant pressures of \(CO \) and \(O_2 \), the processes of the reaction were examined in the following three cases: the stoichiometrical ratio, excessive \(H_2 \), and deficient \(H_2 \). The figure shows only the change by the oxyhydrogen reaction (the change by the oxidation \(CO \) is reduced by rough estimation). Now from the consideration of the property of the scale out, it can be expected that the pressure of the gas in the system and its composition considerably affect the value of \(t \). In excess of \(H_2 \), the heat conductivity of the gas is larger than that in the stoichiometrical ratio and so is also the critical surface reaction rate needed to bring forth the scale out: in other words the \(O_2 \)—Pd surface needed to induce the abrupt pressure change; should be larger. Therefore, \(t \) in excess of \(H_2 \) is expected to be larger than that in the stoichiometrical ratio. If excess of \(H_2 \), however, affects only the heat conductivity, the slowly decreasing part of the pressure curve should coincide with that in the stoichiometrical ratio except in the last stage. But, in fact, in excess of \(H_2 \) the rate of the reaction is lower from the first, which proves that excess of \(H_2 \) certainly retards the surface reaction. This may be easily attributed to the diminution of the area of the \(O_2 \) —Pd surface owing to the excess of \(H_2 \).

In the same manner, it becomes clear that \(H_2O \) also slightly retards the oxyhydrogen reaction. This may be also attributed to the reduction of the \(O_2 \) —Pd surface owing to the adsorption of \(H_2O \) on Pd.

Double scale-out: In the case of a higher partial pressure of \(O_2 \) in the stoichiometrical oxyhydrogen mixture than shown in Fig. 8, there appears a new phenomenon, which supports the above reaction mechanism of both the oxyhydrogen reaction and the oxidation of \(CO \). In Fig. 10 (\(P_{CO} \) =constant), as the pressure of \(O_2 \) is gradually raised until \(P_{O_2}=5.37 \) mm, \(t \) continuously decreases. If \(P_{O_2}=5.50 \) mm, however, the introduction of oxyhydrogen mixture causes in an instant the scale-out; namely \(t=0 \). In this case the residual pressure indicates the presence of the oxygen and hydrogen yet unreacted. Such a scale-out is denoted by the mark \(\times \) in the figure. After that the reaction proceeds so slowly and in 888 seconds the second scale-out of the galvanometer takes place; here all the reaction is completed. \(T \), the time between these two scale-outs, is denoted by the mark \(\bigcirc \) in the figure. This phenomenon is designated as the double scale-out. And whenever the pressure of \(O_2 \) is higher than \(5.50 \) mm, this double scale-out is always observed. This may be explained as follows.

As already mentioned, the transformation from the slow oxyhydrogen reaction to the rapid one and the scale-out of the galvanometer may be caused by a condition in which the area of the \(O_2 \) —Pd surface develops into the critical value. In the case of Fig. 6 and also in the case of \(P_{O_2}=5.37 \) mm of Fig. 10, the area of the \(O_2 \) —Pd surface is not sufficient to bring
forth the rapid reaction from the first and therefore there is some finite time interval needed for the development of this area into the critical value. In the case of $P_{O_2}=5.50$ mm of Fig. 10, however, this area may be sufficient to bring forth the rapid reaction from the first and may make the temperature rise induce the evaporation of CO. Accordingly, in spite of the presence of considerably large amount of CO in the system, the initial poisoning does not occur. The progress of the oxyhydrogen reaction leads to the fall of the partial pressure of O_2 and also to the fall of the temperature of Pd. Then the residual CO is adsorbed on the active part of Pd and poisons the oxyhydrogen reaction. The oxidation of CO proceeds parallel with the slow oxyhydrogen reaction. Then the diminution of the CO—Pd surface area caused by the oxidation of CO will make the O_2—Pd surface area become sufficient to bring forth the rapid oxyhydrogen reaction. Here the second scale-out takes place. Thus the second scale-out of the double scale-out is of the same nature with the scale-out previously mentioned.

Effect of the composition of the oxyhydrogen mixture on the scale-out: When H_2 is in excess, for example in the case of $P_{O_2}=3.92$ mm and $P_{H_2}=18.72$ mm, the double scale-out does not appear, in spite of a considerably high total pressure. Besides, t_1 in this case is larger than that in the case of the stochiometrical ratio such as $P_{O_2}=3.92$ mm and $P_{H_2}=7.84$ mm. From these results it may be easily understood how decisive a condition the area of the O_2—Pd surface is in these scale-out phenomena.

On the contrary, in excess of O_2, e.g., $P_{O_2}=9.60$ mm and $P_{H_2}=4.29$ mm, only one scale-out takes place at first as denoted by the mark \odot in Fig. 10. This result may be explained as follows. Owing to the high pressure of O_2, the area of the O_2—Pd surface may be large sufficient to bring forth the rapid reaction from the first and moreover owing to the large excess of O_2, it may maintain a considerable value throughout the reactions; hence CO may not be so adsorbed by Pd as to poison the oxyhydrogen reaction. Thus this kind of scale-out is of the same nature with the first scale-out of the double scale-out.

In conclusion, these new phenomena may be well explained by supposing that the O_2—Pd surface is a decisive factor for both the oxyhydrogen reaction and the oxidation reaction of CO.

Conclusion.

(I) The O_2—Pd surface is indispensable for the oxyhydrogen reaction.

(II) The poisoning effect of CO on the reaction is caused by the diminution of the area of the O_2—Pd surface owing to the selective adsorption of CO on the active part of Pd.

(III) While CO is poisonous for the reaction, it is oxidized by O_2 into CO_2, which is not poisonous. The oxidation of CO also requires the O_2—Pd surface.

Institute for Chemical Research,

Kyoto Imperial University.

(May 22, 1943)