<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>タイトル</td>
<td>銅触媒の物理化学的研究（第二報）水素による酸化銅還元の動力学（其の二）反応核の生成</td>
</tr>
<tr>
<td>著者</td>
<td>長谷川 繁夫</td>
</tr>
<tr>
<td>引用</td>
<td>物理化学の進歩 1943年9月30日</td>
</tr>
<tr>
<td>タイムスタンプ</td>
<td>1943-09-30</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/46357</td>
</tr>
<tr>
<td>様式</td>
<td>部門論文</td>
</tr>
<tr>
<td>出版者</td>
<td>京都大学</td>
</tr>
</tbody>
</table>

京都大学学術情報リポジトリ
KURENAI
Kyoto University Research Information Repository

京都大学
KYOTO UNIVERSITY
銅触媒の物理化学的研究（第二報）
水素による酸化銅還元の動力学（その二）
反応核の生成

長谷川 純夫

接触反応に与える触媒の作用がその表面状態、結晶構造等によって著しく影響を受ける事、及び固体内反応に与える固相試料が、同様にその状態により反応速度を異にする事から、ある固相物質の一触媒作用と、その物質自身の與える反応との間に何等かの関係のある事が期待される。かかる関係を示す第一歩として、著者は水素による酸化銅の還元反応速度を静的18方法によって160℃〜280℃に於て測定したのであったが、而してその反応は自動的に進行するもので、反応速度は最初非常に遅いが、次第にその速度を増し、或時間の後に最大となり、再び徐々に減少する事を見た。此の反応は反応核、即ち反応生成物質なる還元核と未反応物質なる酸化銅との境界に於て進行すると考えて、次の反応速度式を導いた。即ち

\[\frac{dx}{dt} = k_a N^a x^a (a-x) \]

(1)

此處に \(x \) は水素吸収の減少、\(a \) は水素の初変、\(K \) 及び \(k_a \) は温度に依つて変える恒数、\(N \) は固相上に存在する反応核の数である。而してこの反応核には、反応の初めより存在するものと、反応の進行中に生成するものが考へられるが、後者の生成が非常におかしいものと假定し、反応の初期には、反応核の数には変化が無いと考えて、結局

\[\frac{dx}{dt} = k_a N_a x_a^a (a-x) = k_x x^a (a-x) \]

(2)

を得た。然に此の反応速度式の適用し得るのは、反応が開始してより反応速度が略々最大となる迄の間であつて、之よりも後の部分は上式より著しく違背する。而も第一報、第二報、曲線2に於ける如く \(\log \frac{dx}{dt} - \log (a-x) \) を横軸、\(\log x \) を縦軸にとって曲線を繋げると、反応の前半はよく直線を示すが、後半部は此の直線よりも著しく上方へ離れる。此の事は、後半に於ては反応速度が(2)により與へられるよりも、一層大なる事を示すものであつて、(2)とは異なる速度式を必要とする説である。本報に於ては、此の後半部に対する速度式を導き、且此の速度增加の原因について考察を試みようと思ふ。

1) 長谷川 純夫, 本誌, 17, 49 (昭和18)。
実験結果

第一報に於ては、反応開始より反応速度が最大になる瞬点の間の反応経過について考察を進め、後半部に対しては少しも触れなかった。以下に於ては同一の結果の後半部について考察して行く。

1. 各種温度における反応

160°, 180°, 200°, 240°, 280°C に於て得られた結果（第一報、第二報）の後半部について、
$$\log \frac{dx}{dt} - \log [x^n(a-x)]$$ 縦軸にとり、$$r$$ を横軸にとって図示すれば、第一図の如くなる。

![Fig. 1. The reactions at various temperatures.](image)

Fig. 1. The reactions at various temperatures.
Exp. No. 1 ○ at 160°C, Exp. No. 2 ○ at 180°C, Exp. No. 3 ○ at 200°C,
Exp. No. 4 ○ at 240°C, Exp. No. 5 ○ at 280°C.

此の図より見ると、反応開始より或時刻迄は、横軸に平行な直線となるが、此の時刻附近より徐々に此の平行直線より上方へ離れ始め、之を過ぎると、或る傾斜を有する直線となる。而して曲線が水平直線より離れ始めるのは一定反応速度が最大となる所である。換言すれば、此の反応は、反応速度の最大点を屈折点とする二次曲線より成り、その前半は横軸に対於て平行、後半は傾斜を有する直線となる。而して反応温度が異れば、此の直線の傾斜が異り、反応温度が高くなる程、直線の傾斜は大となる。今

$$\log \frac{dx}{dt} - \log [x^n(a-x)] = \log K'$$

（3）

と置く。反応の前半に於ては $$\log K'$$ 常数なる故、此の水平直線が縦軸を裁る點を $$\log K$$。
とすれば、此の部分に対して、

$$\log \frac{dx}{dt} - \log \left[k_0 (a-x) \right] = \log K_n$$

となり、結局より、

$$\frac{dx}{dt} = K_n e^{x_n (a-x)}$$

が得られる。即ち前半に対しては (2) なる式が適合する。此の事は既に第一報に於て詳細に報告した通りである。

次に後半部の直線に対してその傾斜を \(x'' \) とし、反応速度の最大とする迄の時間を \(t \) とすれば、\(t \) 以後に於ける \(\log K'' \) と \(t \) との直線関係より、

$$\log K'' = x'' (t^2 - \tau^2) + \log K_n$$

と置く事が出来る。之より

$$K' = K_n e^{x_n (a-x)}$$

此處に \(x' = x'' \times 2.303 \)、上式を (3) に代入して、

$$\frac{dx}{dt} = K_0 e^{x_n (a-x)} \frac{2.303}{10} (a-x)$$

$$K_0 = k_0 N_0 x_n$$

となる故

$$\frac{dx}{dt} = k_0 x_n e^{x_n (a-x)} \frac{2.303}{10} (a-x)$$

(4)

此處に \(x = \frac{1}{8} x' \)、又 \(x'' \)、\(x' \)、\(x'' \) は夫々恒数であって、反応の速度、酸化剤試料の状態等によって異なる。此の関係より見れば、後半部に対する反応速度式は、前半部に対する速度式と根本的に異なるものでなく、之に \(e^{x_n (a-x)} \) なる項の加はつたものに等しい、換言すれば、此の項は (2) なる速度式が後半部に対しても適用し得る様に施した補正項であると見做される。此の補正は後に述べる如く、\(N_0 \) に対して施されものと考えることが出来る。従て (1) と (4) とを比較すれば

$$N = N_0 e^{x_n (a-x)}$$

(5)

が得られる。反応の \(t < \tau \) 即ち反応速度が最大になる迄は \(N \approx N_0 \) で、反応の最初に存在する核の数は殆ど変化しないと考えられるのであるが、\(t > \tau \) 即ち、反応速度が最大となって再び徐々に減少し初める様になると、核の数は上式で與えられる如く次第に増加して来るため、反応速度は (2) によって與えられるよりも次第に増加するのである。上述の如く (5) は \(t > \tau \) に於て始めて成立つものであって、それ迄は核の増加は起らない。新く考えると、\(\tau \) は
核の生成の誘導期間を考える事がある。核にxは反応核の生成速度に関係する恒数であろう、第一図の直線の傾斜x''より求める事が出来る。此の値を示せば第一表の如くなる。

Table I.
The reactions at various temperatures.

<table>
<thead>
<tr>
<th>Exp. No.</th>
<th>Reaction temp. (°C)</th>
<th>$\frac{1}{T}$</th>
<th>Initial pressure (mmHg)</th>
<th>x''</th>
<th>log x''</th>
<th>τ (sec.)</th>
<th>$x''\tau^2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100</td>
<td>2.310 × 10^{-3}</td>
<td>175.0</td>
<td>4.540 × 10^{-3}</td>
<td>8.6395</td>
<td>1793</td>
<td>0.139</td>
</tr>
<tr>
<td>2</td>
<td>180</td>
<td>2.938 × 10^{-3}</td>
<td>175.2</td>
<td>1.344 × 10^{-2}</td>
<td>7.1271</td>
<td>1146</td>
<td>0.165</td>
</tr>
<tr>
<td>3</td>
<td>200</td>
<td>2.113 × 10^{-3}</td>
<td>176.9</td>
<td>3.255 × 10^{-7}</td>
<td>7.5119</td>
<td>682</td>
<td>0.151</td>
</tr>
<tr>
<td>4</td>
<td>240</td>
<td>1.949 × 10^{-3}</td>
<td>175.0</td>
<td>9.000 × 10^{-7}</td>
<td>7.9342</td>
<td>336</td>
<td>0.134</td>
</tr>
<tr>
<td>5</td>
<td>250</td>
<td>1.803 × 10^{-3}</td>
<td>176.6</td>
<td>1.577 × 10^{-6}</td>
<td>6.1962</td>
<td>300</td>
<td>0.141</td>
</tr>
</tbody>
</table>

第一表第五行に見る如く、x'' 即ち核の数の変化の割合は反応温度が高い程大となる。此の事は當然想像されることであって、又従来の研究によっても認められて来た。一方なる誘導期間は、反応の開始より反応速度が最大となる迄の時間であるが、之はそのx''曲線より見る如く（第一表、第二表）、反応温度が高くなる程小となる。然るに第八行目に示された如く、$x''\tau^2$の値は反応温度には無関係に略々等しい値をとることが知る。

2. 初圧の影響

180°Cに於ける反応の初圧を種々変化させ、実験版の場合の結果（第一報、第五表）について、

$$
\frac{d\log x}{dt} = \log [x^3(z-x)] - \int
$$

を作れば第図の如くなる。之等の結果に対しても、同様にその後半部には（4）なる速度式が適用される事がわかる。面して此の場合の直線の傾斜は第二表の如くなる。

Table II.
Influence of initial pressure.

<table>
<thead>
<tr>
<th>Exp. No.</th>
<th>Reaction temp. (°C)</th>
<th>Initial pressure (mmHg)</th>
<th>x''</th>
<th>τ (sec.)</th>
<th>$x''\tau^2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>180</td>
<td>115.0</td>
<td>2.02 × 10^{-2}</td>
<td>1014</td>
<td>0.220</td>
</tr>
<tr>
<td>7</td>
<td>175.2</td>
<td>1.45 × 10^{-7}</td>
<td>1231</td>
<td>0.216</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>234.5</td>
<td>1.11 × 10^{-2}</td>
<td>1429</td>
<td>0.223</td>
<td></td>
</tr>
</tbody>
</table>

(2) 第二表以下に於ては、反応の後半部のみを示し、前半の水平部分は図示しなかった。
直線の傾斜 x'' は反応温度が同一であるとき、その初圧によって変化する。即ち、初圧が小なる程傾斜は大となり、又一方反応速度の最大となるに要する時間 τ は初圧の大なる程大である。然に $x''\tau^2$ なる値をとれば、初圧の大小に拘らず互に等しい値を得る。

3. 温度処理の影響

前記 847°C にて 5 時間加熱してある試料酸化銅を、797°C にて温度処理を施すと、反応速度は著しく減少し、その影響は処理時間の長い程著しいことを見た。而してその関係の速度式は何れも (2) によって與えられ、温度処理の影響を受けたのは唯 K_n のみであった。即ち処理時間の長い程 K_n は小となり、このため反応速度が小となるのである、此場合反応速度は等しく、従て反応速度極数 n は同一と考えられるから、結局温度処理によって N_n の減少を招き、之が処理時間の長い程著しいためであることを結論した。

かいる温度処理を施せる試料につれて得た結果 (第一報、第七図) の後半部分に対して \[
\log \frac{dx}{dt} - \log (x^m - x) \approx f
\]
の曲線をとれば第三図の如くなり、同様に (4) がよく適する事がわかる。此の図に得られる直線の傾斜 x'' は處理時間の大なる程小となる。一方処理時間が大なる程 K_n は小となるため、反応速度が最大となるに要する時間 τ は大となる。此の場合について $x''\tau^2$ の値を比較するに、第三表に見える如く一定となる。故に、處理時間の大なる程 $x''\tau^2$ は大となる。

4. 反応生成物質の影響

反応生成物質の存在が反応を促進することは、既に多数の研究に於て認められていることで、本實験に於ても此の影響を見るために、一度反応させたものを再生化することに

Table III.

<table>
<thead>
<tr>
<th>Exp. No.</th>
<th>Time of heat treatment (hr.)</th>
<th>Reaction temp. (°C)</th>
<th>Initial pressure (mm.Hg)</th>
<th>x''</th>
<th>τ (sec.)</th>
<th>$x''\tau^2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>0</td>
<td>180</td>
<td>175.2</td>
<td>1.45×10^{-7}</td>
<td>1221</td>
<td>0.216</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>178.2</td>
<td>1.39×10^{-7}</td>
<td>2800</td>
<td>0.941</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>5</td>
<td>178.3</td>
<td>6.59×10^{-8}</td>
<td>4074</td>
<td>1.094</td>
<td></td>
</tr>
</tbody>
</table>
く、反応生成物質、即ち還元鉄と共懸系中に残して引続いて反応を行はしめ、その影響を見た（第一報，第九則）。かいる反応生成物質の存在によって反応速度は著しく増大する事が認められたが、かいる生成物質添加の影響を受けた反応の結果に対しても、(4)が適用されるか否かを検して見るに第四則及び第四報の如くなる。此の場合にも前半の速度式として(3)なる式がよく適合することは既に第一報にて報告した。即ち、反応生成物質の影響は、還元処理の場合と同様に電気 K_r にのみ現れ、生成物質の量が大なる程 K_r は大となる。而も反応速度恒数 K 是変化しないを考へられるから、結局生成物質添加により K_r が増加し、從て反応速度が大となるのであると結論した。第四則及び第四報より、此の場合にも後半部に対しで同様に(4)なる速度式が適用し得る事がわかる。而して反応生成物質の量が多くなる程 x 質大となり、r は小となる。一方 x 質 r 2 も等しくなるならず、生成物質の量が多くなる程小となる。

<table>
<thead>
<tr>
<th>Exp. No.</th>
<th>Treatment</th>
<th>Reaction temp. (℃)</th>
<th>Initial pressure (mm Hg)</th>
<th>x</th>
<th>r (sec.)</th>
<th>x^2r^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Oxidized before experiment.</td>
<td>180</td>
<td>178.8</td>
<td>1.08×10^7</td>
<td>1514</td>
<td>0.401</td>
</tr>
<tr>
<td>13</td>
<td>Unoxidized and performed immediately after Exp. No. 12.</td>
<td>*</td>
<td>177.9</td>
<td>5.84×10^6</td>
<td>500</td>
<td>0.148</td>
</tr>
<tr>
<td>14</td>
<td>Unoxidized and performed immediately after Exp. No. 13.</td>
<td>*</td>
<td>178.1</td>
<td>6.41×10^6</td>
<td>451</td>
<td>0.130</td>
</tr>
</tbody>
</table>

考 察

第一報に於て論じた如く、固體反応が自発的経過を追って進行するに際し、考察に入れなければならない要素として、1. 反応の初めに存在する核の数。2. 核の成長の速度。3. 核の生成の速度等がある。

反応の初めに存在する核が非常に多数である場合、即ち固體表面が核で覆われている様な場合には、反応は結晶表面より内部へ一様に進行して行く結果、後に示す如く自発的なものとな
ならない、又この核の数が減少し、反応の開始に到るまでも存在しない場合には、その初速度は非常に緩慢となり、核の生成の速度が問題となる。核の成長及び生成の速度は互に相対的な関係を有するものと考えられる。生成の速度が成長の速度に比べて非常に大なる時は、反応の最初の段階に於て、既に各結晶核の表面が核に蔽われると考えられるから、その反応は最後まで核が多数に存在した場合と同様となる。次に核の成長の速度が生成の速度に比較して非常に速くなる場合には、生成する核は直に反応し、反応速度は核の生成の速度に支配される事になり、之も自発的なものとならない。結局反応が自発的な経過をする為には、1. 最初に存在する核の数が比較的少しであり、2. 核の生成の速度が小さく、3. 核の成長の速度は核を満足する事なく速である事が必要である。而して発生する場合、反応速度は核の成長速度に比例する事になる。

斯る事情、及び反応は反応生成物質と未反応物質との界面に於て進行すると云ふ従来の結果を考慮に入れて、反応の前半部に対しては
1. 反応は未反応物質と反応生成物質、即ち反応核との界面に於て進行する。
2. 反応の初めに存在する核の数が核を満足する事なく、而も同一の結晶核に存在する核の間の距離は大であつて核の成長は独立であり、相互作用、即ち核の接触が起らない。
3. 反応の進行は核の成長の速度に比例し、核の生成は重要でなく、従て核の数は殆ど変化が認められる。但して假定の下に(2)になる反応速度式を得たのである。

然らぬ状態反応の全核に亘って適用して見ると、反応の開始よりその速度の最大値はよく一致するが、それ以後は実際の反応速度が(2)によって期待されるよりも大くなって来る為に適用する事が出来なくなる。而して前述の如く後半部に対する速度式としては最早(2)は適用され、(4)が適用される事を見たのである。斯くの如く、反応の途中に於てその速度式が突然変化する原因として、上に與へた假定が、反応が進行した為に、後半部に於ては最早成立たなかった為か、又は何か新しい状態を示すためであると考えられる。次に上記の假定について検討して見る。

同一の結晶が反応の途中で突然変化する事は考へられないから、假定1. の変化は先に述べた通り、即ち後半に於て反応は未反応物質と反応生成物質との界面で進行するものであると考へるべきである。

次に假定2. に於ては、核の成長が止まつて共膜の間の距離は充分大である為、核の間の接触は起らず、各核は独立に成長すると考へたのであるが、今核の成長が次第に大となって、従てその相互距離が小となり、遂に互に接触が起つた場合について考へて見る。斯る接触の結果、各結晶核は反応生成物を以て蔽われ、第五図の如く

Fig. 5.
Progress of reaction, the whole surface of cupric oxide being covered with nuclei.
反応は一様に表面から内部へ向って進行する様になる。今各酸化物鉱石の一層の質量を \(m' \) とし、鉱石の伏数を \(n \) とすれば、一層の鉱石の内部に未反応として残る酸化物の量 \(x'' \) は

\[
x'' = \frac{m' - e'x}{n}
\]

\(e' \) は反応させる水素の量を酸化物に換算する恒数である。反応はこの未反応物質と反応生成物質との界面に於て吸着水素との間に起る。而して此の界面の面積は \(a'' \) に比例し、吸着水素の量は水素の吸着が弱いと考えると、気相中の水素の吸着 \(a - x \) に比例するから、未反応物質 \(x'' \) の減少する速度は大式で與へられる。

\[
\frac{dx''}{dt} = \frac{d}{dt}\left(\frac{m' - e'x}{n}\right) = \frac{e'}{n}\frac{dx}{dt}
\]

\[
= k'\left(\frac{m' - e'x}{n}\right)^{\frac{1}{n}}(a - x)
\]

之より

\[
\frac{dx}{dt} = k'\frac{n}{e'}\left(\frac{m' - e'x}{n}\right)^{\frac{1}{n}}(a - x)
\]

\[
= k'\frac{n^{1/4}}{e'}(m' - e'x)^{1/4}(a - x)
\]

\[
= k'\frac{n^{1/4}}{e'}(M - e'x)^{1/4}(a - x)
\]

此處に \(M \) は酸化物の全量とする。反応速度の最大點か、丁度核の接觸が起つた時であるとすれば、後半に於ける速度は前半に於けるものとは異り、上の如きものにする管である。Roginsky und Schult は過マンガン酸カリ鉱石の熱分解に於て、その反応速度に極大の現れる事を見出し、此の點は核の生長の結果且接触の起こり始めた點であるとして、上と同様な考へ方に従てその前後に於て異なる速度式を提出し、それがよく実験結果と一致する事を見た。今の場合に於て試料としてとった酸化物の量 \(M \) は非常に多いもの、之に比して一同の反応に於て使用する水素の量は少量である。即ち \(M \gg e'x \)、従て \(M \) に比して \(e'x \) を無視して考へる事が出来る。而して \(k', e', n, M \) は常数なる故

\[
\frac{dx}{dt} = k'\frac{n^{1/4}}{e'}M^{1/4}(a - x) = k''(a - x)
\]

となり、後半に於ては反応速度は気相中の水素の圧力ののみに比例し、反応速度は無関係となる管である。是に論じたる如き、反応の初めに存在する核の数が非常に多い場合、及び核の生成速度が生長速度に比べて非常に大なる場合も亦鉱石は核により著はれる事となり、之と同様に進行するものをそれぞれ。此等の場合には最初から自発的な経過を示す中、反応速度は一旦反

鋼管製の物理化学的研究（第二報）

ようとして現れる管である。然るに実際に於ては此の式は実験結果を満足しない。更に若し断くの如く酸化銅の表面が酸に反応速度の最大點に於て反応生成物質によって酸はれてしまつたものとすれば、之を再び酸化させる反応を行うしめた場合には、早反応は持続的な経過を取らず、上式に従って一次反応となる管である。然るに実際に行った実験に於ては、第一報、第九節に見る如く、明に反応速度の最大を示し、その速度式は他の場合と同様（2）及び（4）が適用しうるから、反応の後半に於て上の如き反応核の接觸が退る事は考へられず、假定2は後半部に於いて適用しうるものと考えられる。即ち管は反応の全般に互って独立に生長して行くものである事が結論される。上の如く假定1、假定2はその値後半部に対しても成立つと考へられる。次に假定3について考えて見る。前半に於て、此の反応の速度を支配するものは拡散や吸着の速度ではなく、管の反応の速度である事を論じたが、若し後半部に於て吸着や拡散の速度が反応速度を支配する様になったとすれば、その速度式は（4）とは全く異なるものとなえる事が考へられる。然るに此處に得た（4）なる式は（2）とは殆ど異なる。踏え、e^{(a-\alpha)}が増加せるだけである。断く考へると、この場合にも同様に、反応速度と核の生成との相関が比例して進むものであると思われる。

最後に問題となるのは核の数である。前半に於ては核の生成は重要ではなく、殆どその数には変化がなくと考えられる事が出来る。然るに実際に場合には、勿論核が新しく生成する事は可能である。核の生成による核の数の増加は（2）に於ける \(N \) の増加となり、最早 \(N \) を常数とする事が出来なくなるであろう。而も \(N \) が増加する事により、當然実際の反応速度は（2）にて導かれるよりも大となる管である。而して（4）に得た実験式は（2）とは本質的に異なるものでないから、（3）なる反応速度式に e^{(a-\alpha)}なる補正を施したものと考えられる。然るに式中の \(a = \frac{1}{2} \) は、反応核と未反応物質との面際の面積、 \(a = \frac{1}{2} \) は吸着水素の量に相当する数、之等の数が後半に於て生ずる補正を必要とする如く変化することは考えられない。一方反応核が独立に生長して行くものとすれば、核の数の増加によって変化を受けるものは単に \(K \) のみであって、速度式の形には変化しない管である。而も反応速度恒数 \(k \) は同一条件の下では同一であるから、結局 e^{(a-\alpha)}は核の生成による核の数の変化に対する補正を見اورず事が出来る。一方（1）は任意の時刻に於ける核の数 \(N \) に対する速度式であるから、（4）と（1）とを比較して、結局（5）なる関係を得る事になる。換言すれば（5）は任意の時刻に於ける核の数を與える実験式である。

以上の結果より核生成の速度式として、

\[
\frac{dN}{dt} = k_N \tag{8}
\]

を得る。之より
\[
\ln N = -\frac{1}{2} x_0 t^2 + \phi
\]

\(t=\tau \) の時, \(N = N_0 \) なる故, \(\phi = \ln N_0 - \frac{1}{2} x_0 \tau^2 \) となり,

\[N = N_0 e^{(\tau - \tau_0)}\]

此處に \(x = -\frac{1}{2} x_0 \) とする。

斯くの如く, 核の生長と共に核の生成の伴う事は, 固體反応の最も一般的な形であると思われるが, 従来研究された固體分解反応に於ても, その反応が核の生成を考慮に入れなくてはならない場合が屡々見出される。即ち, 含水炭酸カルシウム結晶の脱水反応, \(\text{CaCO}_3 \cdot 6\text{H}_2\text{O} \rightarrow \text{CaCO}_3 + 6\text{H}_2\text{O} \)。重酸カリ結晶の脱水反応, \(\text{K}_2\text{H}_2\text{O}_4 \cdot \frac{1}{2} \text{H}_2\text{O} \rightarrow \text{K}_2\text{H}_2\text{O}_4 + \frac{1}{2} \text{H}_2\text{O} \)。炭化石炭の脱水反応, \(\text{CaCO}_3 \rightarrow \text{CaCN}_2 + \text{C}_2 \) に於ては核の生成速度が, 存在する核の数に比例する。又 Wischin は実験に於ける核の生成速度を算測し, これが \(x \) に比例する事を見出している。

然らに之等の研究に於ては, 單に核の生成に対する実験式を與へたに過ぎず, その機構に関しては等穏されて居らぬ。唯 Mott は彼の電子伝導理論によって, Wischin の結果, 及び Garner and Maggs の金屬定物の光分解の結果より, その反応及び核生成の機構を提出した。勿論かかる金屬定物の分解と酸化鈷の還元反応とはその事情を異にするものであるが, 第一報に於ては Mott の理論に依って還元機構を論じたものであった。此の反応に於ては核生成の速度式は定物と金物とは異なる故, その機構を同様に考察する事は出来ない。然れども核の生成機構に関しては, 上の実験結果のみから論ずる事は勿論と思われるから, 之については触れられない事にする。

（6）より明らかなる如く，x 従つて x^2 は核生成の速度定数を x_0 に比例する。故に log x^2 と反応温度の温度 $1/T$ との閲界より核生成の見掛の活性化熱を求める事が出来る。此の関係は第6図の如くなり，之より 14 kcal なる値を得る。此の結果についても核生成の機構が明らかにならなければ何も言ふ事は出来ない。

前述の如く，反応速度が最大となる時間 t は，核增加の起る誘導期間と考えるべき事が出来るのであるが，核の增加に対して断る誘導期間の存在する事は，之が核の構造の如何に拘らず，核の生成に対して重要な役割を有する事を想像せしめる。反応開始より t なる時間を経て初めて核の生成が始まる事は，核生成し始めると考えに，ある條件を満足せしめる必要がある事を示唆する。即ち t なる時間の間に酸化銅表面では何等かの変化が起き，之がある一定状態に達して初めて核の生成が起こるのである。而して核の生成には核一定状態に達する事が必要なる条件である。断る一定状態に如何なるものであるかと云ふ事については何等の示唆をも與へることは出来ないが，（5）に於ける e^{At}, e^{At} は夫々 t 及び に於ける酸化銅の状態を表すものと考へるべき事が出来る，反応温度の変化によって x, t は夫々変化する事は容易に想像されるが，一方第一表より見ると如く x^2 は等しいなる。然るに此の場合反応の開始時に於て N_0 従つて酸化銅の状態はすべて等しいと考えられるから，核增加の始まる時に於ける x^2 は當然等しくなる事が期待され，これも実験結果と一致する。

同様に水素の初圧を変化させた場合にも x, t は夫々異る事を見たが，而も xt^2 は初圧の如何に拘らず一定である。此の場合も反応の初めに於ける核の数 N_0 は互に等しいと考へられるから，此事実も上之の考察の結果と一致する。

試料に温度処理を施した場合について考へて見ると，此の場合も當然 x が変化する事が想像される。然るに此の場合には温度処理の温度が長い程 N_0 が小さくなる。従つて今斯る状態のものか核增加の必要條件を一定状態に達するためには，一層大きな内部変化を必要とする事が考へられ，従つて温度処理の長時間なる程 x^2 が大となるべきを期待せしめる。此の事は実験事実とよく一致する。

一方反態生成物質に添加した場合は核の数 N_0 が大となる故，上の場合とは逆に逆に一定状態に達する事が出来る結果 xt^2 が小となる管であつて，実験結果も此の期待に背かない。以上の如く核の増加は，表面が或る一定状態に達して初めて起こるものと考えられるのであるが，此の場合に於ても前述の如く，核の生成はすべて独立に進行するものでなければならない。而して此處に於て言ふ表面の一定状態については，上の実験結果からは何も言ふ事は出来ないが，その内容の表面状態に於ける次の事実は當然であつて，核の增加の始まる時の状態，並びに 1 なる誘導期間と核生成の機構とその間に密接な関係のある事は當然である。
要約

1. 水素による酸化鋼還元の速度は反応速度の最大となる点の前後に於てその速度式を異にする事を認めた。
2. 後半の速度式として
\[\frac{d\sigma}{dt} = K_{\text{v}}e^{-(\frac{1}{2} + \beta)} \rho \kappa (\lambda - \delta) \]
を得た。
3. 後半部の反応速度式が上の如くなるのは後半に於て核の数が
\[N = N_{0} e^{(\beta - \gamma)} \]
に従って増加するためである。
4. 核生成の見掛の活性化熱として 14 kcal を得た。
5. 種々の条件に於ける \(x r^2 \) の値を比較して、核が増加する際には表面がある状態に達しなければならぬと考えた。

本研究を通じて終始御懇懇なる御指導と御鞭撻を賜った 恩師京帝帝大学堀場信吉先生に衷心より感謝の意を表する。

明治専門学校
應用化学教室

(昭和18年5月10日受理)
PHYSICO-CHEMICAL STUDIES ON COPPER CATALYST. (II)

The Kinetics of the Reduction of Cupric Oxide by Hydrogen.

By Sigeo Hasegawa.

(Abstract)

In order to throw light upon the relation between the catalytic activity of copper and the reaction involved, the author has followed statically the velocity of reduction of cupric oxide by hydrogen. It was found that the reaction proceeded autocatalytically and the velocity reached maximum after a certain lapse of time. The velocity formulae differ in the courses before and after the velocity maximum. To the first part, the empirical formula

\[
\frac{dx}{dt} = K_0 e^{ax} (a - x)
\]

(1)

is applied, where \(a \) is the initial pressure of hydrogen, \(x \) the decrease in hydrogen pressure and \(K_0 \) a constant. In the second part the velocity is much greater than that in the formula (1).

The reaction in the first part may be assumed to proceed as follows: (1) There occurs a reaction between adsorbed hydrogen and cupric oxide at the interface of reduced copper as the reaction nucleus and cupric oxide. (2) In the beginning of the reaction, the nuclei on the cupric oxide crystal are small in number, and they are never in contact with one another. (3) The progress of the reaction is proportional to the velocity of the growth of the nuclei and there is no change in their number. From these assumptions is derived the reaction velocity formula

\[
\frac{dx}{dt} = K_0 N_0 e^{ax} (a - x)
\]

(2)

where \(k_0 \) is the constant and \(N_0 \) the number of the reaction nuclei at first. Assuming \(k_0 N_0 e^{ax} = K_0 \), the formula (2) becomes identical with the formula (1), and the variations in \(K_0 \) according to the change of the reaction temperature, the heat treatment of cupric oxide or the addition of the reduction product, reduced copper, can be well explained by these assumptions.

The results obtained at 160°, 180°, 200°, 240° and 280°C are graphically shown taking \(\log \frac{dx}{dt} - \log e^{ax} (a - x) \) as the ordinate and \(t^2 \) as the abscissa (Fig. 1). The curve consists of two parts—a straight line parallel to the abscissa and an inclining straight one. From this figure the following formulae are deduced:

\[
\frac{dx}{dt} = K_0 e^{ax} (a - x)
\]

(1)

for the first part of the reaction, and
\[
\frac{dx}{dt} = K_0 e^{(\alpha - \eta \beta) x} (a - x)
\]

for the second part, where log \(K_0 \) is the intersect of the ordinate by the horizontal line, \(x'' = 0.4343 x' \) the inclination of the latter straight line and \(\tau \) the time when the two straight lines intersect each other. It happens that \(\tau \) is equal to the time for the velocity to reach a maximum. In comparison of (1) and (3), it is seen that (3) does not radically differ from (1), but it is nothing but (1) with the correction term \(e^{x''(\alpha - \eta \beta)} \). With rising temperature, \(x'' \) becomes larger, while \(x'' \tau^2 \) is constant independent of the reaction temperature (Table I).

The formula (3) is also applied when the initial pressure of hydrogen is varied (Fig. 2), and the higher the initial pressure is, the smaller is \(x'' \), while \(x'' \tau^2 \) remains unchanged (Table II).

Moreover, the formula (3) is applicable not only when the sample is heated at 797°C (Fig. 3), but also when it is continuously allowed to react without being reoxidized (Fig. 4). In the former case, the longer the heating is, the smaller is \(x'' \) and the larger is \(x'' \tau^2 \) (Table III). In the latter case the larger the amount of the reduced copper is, the larger is \(x'' \) and the smaller is \(x'' \tau^2 \) (Table IV).

It is probably due to the failure of some of the above assumptions that the formula for the first part cannot be applied to the second part and it is necessary to make a correction by \(e^{x''(\alpha - \eta \beta)} \). From the experimental results it is deduced that (1) and (2) of the three assumptions are applicable to the second part of the reaction and it should be considered that new nuclei are formed during the course of the reaction. The number of the nuclei does not change during \(\tau \), but after the lapse of \(\tau \) it increases according to

\[
N = N_0 e^{(\alpha - \eta \beta) x}
\]

and the increase in the number of the nuclei needs an induction period \(\tau \).

In the formula (5), the terms \(e^{x''(\alpha - \eta \beta)} \) are considered to represent the surface condition of cupric oxide at \(\tau \) and \(x \) respectively. It is found that at different reaction temperatures the values \(x \) and \(\tau \) differ, but \(x'' \tau^2 \) remains constant. Such is also the case with different initial pressures. In these cases, the number of nuclei \(N_0 \) can be regarded as equal, namely, the surface condition of cupric oxide is the same at the start of the reaction. Therefore, \(x'' \tau^2 \) is expected from the formula (5) to be equal at the time when the number of the nuclei begins to increase. On the contrary, when the decrease in the number of the nuclei \(N_0 \) is caused by heating, \(x'' \tau^2 \) should become larger in order to reach the same state. And the enlargement of \(N_0 \) by the addition of reduced copper should lead to the diminution of \(x'' \tau^2 \). In fact, as seen in the tables, these expectations are satisfied with the experimental results.

The apparent activation energy of the formation is found, from the values of log \(x \) at various temperatures, to be 14 kcal/mol (Fig. 5).

The Department of Applied Chemistry,
Meidi College of Technology.

(May 15, 1943)