1. Introduction.

With regard to the design of high pressure chemical plant, the prevention of leakage of the working fluid from joints is of the utmost importance. The work was taken up from this point of view.

2. Previous Works.

A glance over earlier works is not out of place here before entering into detailed description of our present work.

A gasket joint of simple design as shown in Fig. 1 is chosen, because it is fundamental and convenient to apply the results obtained therewith to high pressure joints of particular design in which we have particular interests.

Let $P_0 =$ working fluid pressure,
$\ell =$ thickness of gasket before tightening joints,
$\delta =$ width of gasket before tightening joints,
$P_m =$ initial total bolts load caused by tightening joints,

then, when the working fluid is permitted to exert pressure the force P_m will increase by ΔP_0 and assume the value of P_m. The joint will expand at the same time axially, stretching each bolt by Δl.

Hence,

$$P_{m0} - P_m = \Delta P_0 = A_1 E_1 \Delta l / l$$

where $A_1 =$ total cross-sectional area of bolts,
$l =$ natural length of each bolt,
$E_1 =$ modulus of longitudinal elasticity of bolt materials.

The process will make the gasket recover its thickness by Δl which will reduce the contact force by ΔP_1, making it to assume the new value of P_0, or

$$P_m - P_0 = \Delta P_0 = A_2 E_2 \Delta l / l$$

where $A_2 = \pi (r_2^2 - r_1^2) =$ contact area of gasket,
$E_2 =$ modulus of longitudinal elasticity of gasket materials.

* Member of Japan Society for the Promotion of Scientific Research; 13th Special Committee.
Furthermore, the following relation holds:

\[P_{\text{in}} = P_0 + P_e \]

where \(P_0 \) is the axial force exerted by the fluid pressure \(\rho_0 \), acting upon the area \(A_0 \) as will be discussed in the next section.

Fig. 2 illustrates the diagram of these relations between loads and elongations.

In an ideal case, even if the residual contact (or gasket) force \(P_e \) reduced to nothing under the fluid pressure, the prevention of leakage of the working fluid from joints could be attained; but actually, it is not the case unless the force \(P_e \) or the so-called residual mean gasket pressure \(\rho_0 \) (\(= \rho_0 / A_e \)) assumes the value somewhat larger than the limiting one to be found experimentally.

Accordingly, in every actual case, it is necessary to take an adequate value of the initial total bolts load \(P_{\text{in}} \) in order to prevent the leakage of the working fluid from joints.

Table 1, compiled from the data found in some recent literatures, gives the values of the residual mean gasket pressure on contact surface and the initial bolts load necessary to prevent the leakage from joints.

3. The authors' theory and its application to design.

As shown in Table 1, the values of the initial total bolts load or the residual mean gasket pressure on contact surface vary so widely that the designer finds it very difficult to choose proper ones.

The fact may certainly be due to the diversities of experimental conditions, especially of the manner of tightening the flanges, the dimension ratio of gaskets to flanges (especially the diameter of pitch circle of bolts) and the number of bolts. Furthermore, the assumption of the effective area on which working fluids act may come into question.

In this connection, the authors are of the opinion that the effective diameter of the circle in which working fluids act is the inner diameter of gasket, and that, with regard to the critical leakage pressure, the fact that the distribution of the initial gasket pressure on contact surface is not uniform must also be taken into consideration. Accordingly, the minimum gasket pressure \(\rho_{\text{min}} \) on contact surface will be discussed, being based on the working fluid pressure \(\rho_w \).

These considerations lead to a set of equations of more general applicability than the usual ones, as follows:

Let the distribution of the initial gasket pressure on contact surface be expressed by the equation,

\[\rho(x) = \rho_0 \left(1 - \frac{x}{d_e}
ight) \]
<table>
<thead>
<tr>
<th>No.</th>
<th>Working fluid pressure p_0 kg/cm²</th>
<th>Temperature °C</th>
<th>Gasket</th>
<th>Effective dia. (cm) & area (cm²) on (\frac{F_0}{p_0}) kg</th>
<th>Hydraulic end force (\frac{F_0}{p_0}) kg</th>
<th>Initial tightening force (\frac{F_0}{p_0}) kg</th>
<th>Nominal dia.</th>
<th>Number</th>
<th>Total sectional area (\frac{A_b}{p_0}) cm²</th>
<th>(\frac{p_0}{p_0})</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10.0</td>
<td>400</td>
<td>-</td>
<td>18 (Mean dia.) 25 1-4 (25,520)</td>
<td>(76,560)</td>
<td>5.0</td>
<td>13/8</td>
<td>-12</td>
<td>52.08</td>
<td>-</td>
<td>An example of design. Steam-jeeps joints.</td>
</tr>
<tr>
<td>2</td>
<td>17.6*</td>
<td>-</td>
<td>15.2*</td>
<td>24.6* 293.1* (20* Mean dia.) 314.2</td>
<td>5,522*</td>
<td>8.66*</td>
<td>41/4</td>
<td>-10.7</td>
<td>0.61</td>
<td>-</td>
<td>An example of design. Screwed flanges.</td>
</tr>
<tr>
<td>3</td>
<td>17.6*</td>
<td>121.9*</td>
<td>119.5*</td>
<td>1393* Outer dia. 231,650* 244,900*</td>
<td>1.06</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>8.79*</td>
<td>-</td>
<td>An example of design. Pressure vessels.</td>
</tr>
<tr>
<td>4</td>
<td>8.79*</td>
<td>41.6*</td>
<td>45.4*</td>
<td>301* 42.6* (Inner dia. of Vessels) 129.7</td>
<td>11,430*</td>
<td>22,860*</td>
<td>-</td>
<td>-</td>
<td>(380) (4.3)</td>
<td>-</td>
<td>An example of design. Steam cylinder head.</td>
</tr>
<tr>
<td>5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Outer dia. 1.5-1.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Proposal based upon experiences.</td>
</tr>
<tr>
<td>6</td>
<td>10-100</td>
<td>20-350</td>
<td>12.8*</td>
<td>14.0* 40.24* 120.0 (Inner dia.) 1134</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>(2.77) (2.77)</td>
<td>-</td>
<td>Experiments. Metal gasket (<30°C) & gas or other non-metal gaskets (<50°C).</td>
</tr>
<tr>
<td>7</td>
<td>10-160</td>
<td>400 & 500</td>
<td>12.0*</td>
<td>14.0* 3.81* 4.45* 3.81* (Inner dia.) 114.4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.85</td>
<td>-</td>
<td>Experiments. Soft iron gasket & stainless steel V/F gasket. Gasket section is not rectangular.</td>
</tr>
<tr>
<td>8</td>
<td>352*</td>
<td>1477</td>
<td>3.81*</td>
<td>4.45* 4.15* 3.81* (Inner dia.) 114.4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Experiments. Copper gasket.</td>
</tr>
<tr>
<td>9</td>
<td>112</td>
<td>487</td>
<td>18.7*</td>
<td>23.0* (140.8) 13.0* (Outer dia.) 415.5</td>
<td>146,100*</td>
<td>205,000*</td>
<td>1.40</td>
<td>15/16</td>
<td>12</td>
<td>(4.19)</td>
<td>Experiments. Akro-metal gasket.</td>
</tr>
<tr>
<td>10</td>
<td>-</td>
<td>-</td>
<td>19.7*</td>
<td>22.5* 92.8* 19.7* (Outer dia.) 399.4</td>
<td>44,910*</td>
<td>51,250*</td>
<td>1.49</td>
<td>5/8</td>
<td>16</td>
<td>(6.84)</td>
<td>Experiments. Experiments. Lead, aluminum, copper and other metal gaskets.</td>
</tr>
<tr>
<td>11</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Outer dia. 1.5-3.0 3-5 1.42-2.76</td>
<td>1.35</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2-4</td>
<td>General description. Flanges of large dimensions.</td>
<td></td>
</tr>
</tbody>
</table>

Note: 1. Symbol * designates the numerical values converted from \(\times 10^6 \) unit to metric unit.
2. Numerical values bracketed by () are the values presumed.
3. \(\frac{F_0}{p_0} = (\text{Working fluid pressure}) \times (\text{Effective area}) \) \& \(\frac{F_0}{p_0} = (\text{Initial}-\text{Force})/\text{Area} \); in general, they are distinct respectively from \(F_0 \) \& \(p_0 \) used in the authors' equations.
where \(\rho \) is the distance between the centre of any bolt and any point on the elementary corresponding area \(A_i \), \(B_i \), \(E_i \), \(A_2 \) of contact surface as shown in Fig. 3, namely,

\[
\rho = \frac{c}{\rho^3}
\]

(4)

\[
\rho = \sqrt{r^2 - 2R \cos \theta + R^2}
\]

(5)

in which \(c \) and \(n \) are constants, the former being determined by boundary conditions and the latter experimentally.

From Eq. (4) & (5), it follows that:
STUDIES ON HIGH PRESSURE GASKETS

\[p = \frac{c}{\sqrt{(r^2 - 2rR \cos \theta + R^2)}} \] \hfill (6)

The equation of equilibrium of forces acting upon the area \(A_1 B_1 B_2 A_2 \), i.e.,

\[\frac{\theta_0}{2\pi} P_{bl} = \int_{0}^{\theta_0} \int_{\theta_1}^{\theta_2} \rho r dr d\theta \]

and the above equation (6) leads to the following equation,

\[P_{bl} = \frac{2\pi c}{\theta_0} \int_{\theta_1}^{\theta_2} \int_{\theta_1}^{\theta_2} \frac{\gamma dr d\theta}{\sqrt{(r^2 - 2rR \cos \theta + R^2)}} \] \hfill (7)

From this equation (7) the constant \(c \) is determined and so Eq. (6) gives the initial gasket pressure at any point. For example, at the point \(B_3 \) where the pressure is minimum,

\[P_{min} = P_{min} = \frac{\theta_0}{2\pi} \frac{P_{bl}}{I_n \sqrt{(r^2 - 2rR \cos \theta + R^2)}} \] \hfill (8)

in which

\[I_n = \int_{\theta_1}^{\theta_2} \int_{\theta_1}^{\theta_2} \frac{\gamma dr d\theta}{\sqrt{(r^2 - 2rR \cos \theta + R^2)}} \] \hfill (9)

Table 2 gives some values of the integration of \(I_n \).

<table>
<thead>
<tr>
<th>(r_1)</th>
<th>(r_2)</th>
<th>(n)</th>
<th>(n)</th>
<th>(n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>4.3</td>
<td>0.0734</td>
<td>0.0163</td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td>0.154</td>
<td>0.0350</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.7</td>
<td>0.241</td>
<td>0.0562</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.9</td>
<td>0.336</td>
<td>0.0805</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\((R=8.5, \theta_0=\pi/8) \)

When the working fluids act, the minimum initial gasket pressure on contact surface caused by tightening joints reduces to the value:

\[P_{min} = (1-a) P_0 / A_0 \]

where \(a \) is defined by

\[\Delta P_0 = a P_0 \]

or \[\Delta P_0 = (1-a) P_0 \]

Hence, remembering the relations expressed in Eq. (1) & (2), it follows that
To prevent entirely the leakage of the working fluid from joints, the next equation must hold, i.e.,

\[p_{\text{min}} - (1 - a) \frac{P_0}{A_y} \leq 0 \]

or \[p_{\text{min}} \geq (1 - a) \frac{P_0}{A_y} \] ..(12)

On the other hand, from various experiments and experiences as described in the former section, it is apparent that the initial tightening force \(P_{\text{ti}} \) should be greater than the hydraulic force \(P_0 \); hence, we can put in general

\[P_{\text{ti}} = P_0 + x P_0 A_y \] ..(13)

where \(x \) is the coefficient of additional force.

In earlier works the coefficient \(x \) was regarded as independent of the dimension ratio of joints. But, the theoretical considerations based upon non-uniform distribution of initial gasket pressure lead to the conclusion that \(x \) depends upon the dimension ratio of joints.

Let the ratio \(A_y/A_x \) be denoted by \(a \), then from Eq. (13) we obtain

\[P_{\text{ti}} = (a + x) P_0 A_y \] ..(14)

On the other hand,

\[P_{\text{ti}} = \frac{p_{\text{min}}}{A_y} A_y \] ..(15)

hence, from Eq. (14) & (15) we have

\[a + x = \frac{p_{\text{min}}}{P_0} = \frac{p_{\text{min}}}{p_0} \frac{P_0}{A_y} \] ..(16)

To prevent entirely the leakage of the working fluid from joints, it must hold at least as the postulate of Eq. (12) that

\[p_{\text{min}} = (1 - a) \frac{P_0}{A_y} = (1 - a) \frac{P_0}{A_y} \]

or \[\frac{p_{\text{min}}}{P_0} = (1 - a) a \] ..(17)

Accordingly, from Eq. (16) & (17) we obtain following equation,
STUDIES ON HIGH PRESSURE GASKETS

\[x = \left\{ (1 - a) \frac{\rho_m - \rho_{\text{min}}}{\rho_{\text{min}}} \right\} a \quad \ldots \ldots (18) \]

For the special case of \(a = 0 \),

\[x = \left(\frac{\rho_m}{\rho_{\text{min}}} - 1 \right) a \quad \ldots \ldots (18a) \]

or, remembering Eq. (17)

\[x = \frac{\rho_m - \rho_{\text{min}}}{\rho_{\text{in}}} \quad \ldots \ldots (18b) \]

Fig. (4) shows how the value of \(x \) varies with the dimension ratio of \(R/\gamma_1 \) and the experimental constant \(n \) in the case of \(R/\gamma_1 = 2.07, \theta_0 = \pi/8 \) & \(a = 0 \); by which we can readily recognize the facts mentioned above.

With a set of equations thus obtained, we can now easily design the gasket joint of simple type in the following way.

First assume the main dimensions of joints and the number of bolts, as the inside and outside diameter of vessels and the working fluid pressure \(\rho_0 \) are given and also the constant \(n \) is known***.

Then we find the value of \(\rho_m/\rho_{\text{min}} \) from Eq. (8) & (15), calculating the value of \(I_n \) by Eq. (9). The coefficient of additional force, \(x \), will also be determined by Eq. (18) with the value of \(a \) computed from Eq. (11). The minimum value of the initial tightening force \(P_{\text{si}} \) will be thus obtained. If the value of \(P_{\text{si}} \) thus found is not appropriate in view of the strength of bolt materials, the first assumption should be modified and the calculation be repeated. In this way we can finally decide the adequate main dimensions of joints and the corresponding initial tightening force.

As above mentioned, theoretical considerations based upon non-uniform distribution of initial gasket pressure have led to a set of equations of more general applicability than the usual ones. With the aid of these equations we can find the numerical values requisite in the design of the gasket joint of simple type.

The present paper is the contribution by a member of the Committee to the Sexangin of Dr. S. Horiba who is the Head of the 15th Special Committee of Japan Society for the Promotion of Scientific Research.

*** In our preliminary experiments where \(R/\gamma_1 = 2.07, \theta_0 = \pi/8 \) & \(a = 0.05 \), the value of the constant \(n \) fell near 1.8.