<table>
<thead>
<tr>
<th>Title</th>
<th>The after-effect of hydrostatic pressure on the color centers in alkali halides</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Kiyama, Ryo; Shimizu, Kiyoshi</td>
</tr>
<tr>
<td>Citation</td>
<td>The Review of Physical Chemistry of Japan (1955), 25(1): 10-15</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1955-08-01</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/46719</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>
THE AFTER-EFFECT OF HYDROSTATIC PRESSURE ON THE COLOR CENTERS IN ALKALI HALIDES

BY RYO KIYAMA AND KIYOSHI SHIMIZU

Introduction

The authors reported in the previous papers1-2 on the after-effect of hydrostatic pressure on the color centers formed in alkali halides by exposure to RaBr₂ and by electrolysis. Now, the authors have investigated the after-effect of hydrostatic pressure on the formation of the R- and M-bands by exposure to F-light for NaCl crystal colored by γ-ray irradiation from the source of Co⁶⁰ and KCl, KBr and KI crystals colored by electrolysis, and confirmed the shift of the band peaks after the compression which was reported in the previous papers.

Experimentals

Preparation of samples The large single crystals used in this investigation were synthesized from the commercial reagents having the reagent proof by S. Kyropoulos' method. The specimens of each crystal were cleaved in size of 3.6x6x13mm for NaCl and of 5x8x13mm for KCl, KBr and KI from the same crystal blocks.

Procedure In order to investigate the after-effect of hydrostatic pressure on the formation of the R- and M-bands by the exposure to the F-light and on the position of the peak of absorption bands, the comparison between the compressed colored sample and that of one atmospheric pressure was performed.

The coloration of NaCl specimens was performed by the irradiation with γ-ray from radioactive Co⁶⁰. The NaCl specimens were exposed at the interval of 20mm from the γ-ray source (20mm curie) in the dark at room temperature for 67 days. The coloration of KCl, KBr and KI specimens was performed by the electrolysis with a pointed cathode of nichrome and a flat anode of platinum at elevated temperatures (550'~700°C) and after coloration the colored specimen was rapidly quenched in the dark. Two pieces of

* This investigation has been done by K. Shimizu, being in the postgraduate course, under the direction of Prof. R. Kiyama.
1) S. Minomura, This Journal, 24, 28 (1954)
the sample containing the nearly equal concentration of F-center were cleaved for the spectral measurement in size of about 1.4×5×13 mm from the central colored region of the specimen.

V-center was produced in KI specimens by electrolysis at 550° and 600°C with a flat cathode and a pointed anode of platinum.

In order to increase or develop the R- and M-bands the colored samples were exposed to the F-light (NaCl, 460 mμ for 5 minutes; KCl, KBr and KI, 558 mμ, 625 mμ and 685 mμ for 20 minutes respectively) by means of the Beckman model D U Quartz Spectrophotometer.

The compression of the samples was performed at 10,000 kg/cm² for 24 hours (NaCl) and 7,500 kg/cm² for 48 hours (KCl, KBr and KI) in mobil oil at room temperature by the ultra high pressure apparatus³. After compression, the oil on the surface of the samples was washed down with petroleum ether.

The absorbance of the colored samples, \(\log_{10}(I/I_0) \), where \(I_0 \) is the light transmitted through the non-colored sample and \(I \) is the light transmitted through the colored sample, was measured against the wavelengths at the interval of 5 or 10 mμ in the vicinity of the peak of the absorption band and at the interval of 20 mμ in the other region. The position of the peak of the absorption band was determined by extrapolation of the straight line on the mid-points of the band width.

Results

Increase of the R- and M-bands

The absorption spectra of the compressed colored sample and the colored sample of one atmospheric pressure of four alkali halides (NaCl, KCl, KBr and KI) before and after the exposure to the F-light are shown by curves 1, 3 (compressed) and curves 2, 4.

3) R. Kiyama and S. Minomura, This Journal, 22, 49 (1952)
The effect of temperature of electrolysis is as follows. Before the F-light exposure, the M-band is produced in KCl at 600° and 700°C and its absorbance increases with increasing temperature of electrolysis (curves 2 in Figs. 2 and 3). In KI, the M-band is produced at 650°C (curve 2 in Fig. 7), but at 550°C it cannot be observed (curve 2 in Fig. 6). In KBr, the M-band is not produced at 600° and 700°C (curves 2 in Figs. 4 and 5). By the F-light exposure, the ratio of the increment of the integrated absorption ($\Delta \int \log I_q / Dv \, cm^{-1}$) in R- and M-bands (in KI, the sum of increment of the R- and M-bands) to the decrement of the integrated absorption.

Fig. 2 Absorption spectra of KCl before and after the exposure to the F-light (Temp. of electrolysis, 600°C)

* Curve 1: before exposure 7.500 kg/cm²
* Curve 2: before exposure 1 atm

Fig. 3 Absorption spectra of KCl before and after the exposure to the F-light (Temp. of electrolysis, 700°C)

* Curve 1: before exposure 7.500 kg/cm²
* Curve 2: before exposure 1 atm

References:
4) H. Ivey, Phys. Rev., 72, 341 (1947)
The After-Effect of Hydrostatic Pressure on the Color Centers in Alkali Halides

The Review of Physical Chemistry of Japan Vol. 25 No. 1 (1955)

tion in the F-band shows higher value with increasing temperature of electrolysis (curves 2 and 4 in Figs. 2~7, cf. Table).

The effect of high pressure is as follows. It is shown by comparing curves 1 and 3 (compressed) with curves 2 and 4 (1 atm) in each figure that the ratio of the increment of the R- and M-bands to the decrement of the F-band in the compressed sample by the F-light exposure is larger than that in the sample of one atmospheric pressure (cf. Table). The fact that the rate of enhancement in the R and M-bands by the F-light exposure becomes larger by applying the hydrostatic pressure to crystals or by quenching crystals from higher temperature, may be attributed to the facts that the internal strain is produced by such manipulation and the density of the lattice defects, especially the cluster of vacancies, is increased.

The shift of peaks of absorption band The peak wavelength of the F-band of compressed sample shifts to the shorter wavelength side by about 1 m/ in NaCl, 2~3 m/ in KCl and KBr, and 1~2 m/ in KI from that of the sample of one atmospheric pressure. In KCl, the peak wavelength of M-band of compressed sample shifts to the longer wavelength side by ~2 m/ from that of the sample of one atmospheric pressure. In NaCl, KBr and KI, the absorbance of the M-band is, as shown in the figures, so low that the shift of peak can not be observed. In this experiment, the spectral measurement in the vicinity
of the peak was performed at the interval of 10 μm and the position of the peak was determined by extrapolation of the straight line on the mid-points of the band width, although in the previous papers the spectral measurement was performed at the interval of half grade of the wavelength notched in the spectrophotometer and the shifted position of the band peak was shown by the short wavelength edge of the flat peak which was caused by the overlapping of the absorption bands in the shifted and normal positions. Therefore, the quantity of the F-band obtained in this experiment results in smaller values in comparison with those in the previous papers\(^{1,2}\).

The absorption spectra\(^{*}\) of V-center produced in KI by electrolysis at 500°C and 600°C are shown by curves 1 and 2 in Fig. 8. Two peaks which locate at 353 μm or 355 μm and about 290 μm are shown in the V-band. The peak of the short wavelength side is indicated by the approximate wavelength because of no discrete structure. The peak wavelength of both peaks shows satisfactory agreement with Mollwo's data\(^{6}\). The peak of the band in the long wavelength side shifts from 353 μm (550°C) to 355 μm (600°C) with increasing temperature, but the shift of peak by compression (7,500 kg/cm\(^2\), 48 hours) can not be observed.

* The measurement of this part was performed by Mr. M. Oura.

\(^{6}\) E. Mollwo, Ann. Phys., 29, 397 (1937)
The After-Effect of Hydrostatic Pressure on the Color Centers in Alkali Halides

Fig. 8 Absorption spectra of V-band of KI
Temp. of electrolysis
curve 1: 550°C
curve 2: 600°C

Table Pressure effect on the variation of F-, R- and M-centers' absorption,
\[\Delta \approx \int f_1(\nu) d\nu \text{cm}^{-1} \], by the exposure to the F-light

<table>
<thead>
<tr>
<th>NaCl</th>
<th>Band</th>
<th>Pressure</th>
<th>F-</th>
<th>M</th>
<th>R</th>
<th>(\Delta M/\Delta F %)</th>
<th>(\Delta R/\Delta F %)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1 atm</td>
<td>11.9</td>
<td>0.57</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10,000 kg/cm²</td>
<td>12.2</td>
<td>1.09</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KCl</td>
<td></td>
<td>1 atm</td>
<td>5.6</td>
<td>3.5</td>
<td>2.5</td>
<td>62.5</td>
<td>44.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7,500 kg/cm²</td>
<td>6.4</td>
<td>4.4</td>
<td>2.9</td>
<td>68.8</td>
<td>45.3</td>
</tr>
<tr>
<td>KBr</td>
<td></td>
<td>1 atm</td>
<td>1.4</td>
<td>0.054</td>
<td>0.60</td>
<td>3.9</td>
<td>42.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7,500 kg/cm²</td>
<td>1.7</td>
<td>0.42</td>
<td>0.92</td>
<td>24.7</td>
<td>54.1</td>
</tr>
<tr>
<td>KI</td>
<td></td>
<td>1 atm</td>
<td>9.6</td>
<td>6.4</td>
<td>6.4</td>
<td>66.7</td>
<td>8.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7,500 kg/cm²</td>
<td>10.9</td>
<td>8.0</td>
<td>8.0</td>
<td>73.4</td>
<td>8.9</td>
</tr>
</tbody>
</table>

The authors are partly indebted to the Department of Education for the Grant in Aid for Fundamental Scientific Research.

The Laboratory of Physical Chemistry,
Kyoto University