DETERMINATION OF RATE CONSTANTS
OF FIRST ORDER ENZYME REACTION
WITH DISSOCIABLE MODIFIER

BY KVOICHI OZAWA
(Received December 15, 1961)

The Laplace transformation has been applied to the study of the analysis of the rate equations for some first order enzyme reaction systems with some dissociable activator and inhibitor. According to the analytical results the method of determination of rate constants for Michaelis scheme by measuring the lag time has been expanded to the first order enzyme reaction system modified by some dissociable modifier and the new method has been applied to the determination of the rate constants of activation of papain by cysteine using \(\alpha\)-tosyl-L-arginine methyl ester as substrate.

There are many ways of studying the mechanism of the reaction catalyzed by a given enzyme. Among them the determination of rate constants of the reaction, assuming that it proceeds according to an appropriate mechanism, is the most typical one. The rate constant of the formation of some enzyme-substrate complex was determined by Gutfreund from the lag time of presteady-state part of the reaction\(^1\) and also by Slater from the relationship between Michaelis constant and velocity at infinite substrate concentration\(^2\), respectively. The methods which were employed in their works were to determine the rate constant of simple first order enzyme reaction (Scheme I).

\[
E + S \xrightarrow{k_1} \text{ES} \xrightarrow{k_2} p
\]

\[\text{Scheme I}\]

It is excellent to use the lag time for the determination of rate constants, because it gives us the most precise information from the transient state experiments. Some modification is necessary to apply this method to the reactions of other schemes.

The author has studied the analysis of first order enzyme reaction with some dissociable activator and inhibitor. This study has been carried out with the system in which the substrate concentration was very high compared with the enzyme concentration and did not fall so rapidly in the beginning of the reaction. It has been found that three kinds of experimental methods are available for the study of enzyme reactions. Any two of the following constituents, enzyme, substrate and activator or inhibitor, were first mixed and after a certain lapse of time enough

2) E. C. Slater, *ibid.*, 20, 231 (1956)
to reach an equilibrium the rest was added and the reaction was initiated. During the course of the reaction initiated in various manners, distinct difference could be seen only in the beginning of reaction.

The author applied the Laplace transformation to this study and introduced r as the variable for response transform, $F(r)$, of a function $f(t)$, of time, t.

An example of the application of the Laplace transformation will be shown in the first paragraph, (A). The enzyme reaction which yields two resultants will be discussed in the second, (B). The enzyme reaction modified by an activator is classified into several typical cases and discussed in the third, (C). The enzyme reaction modified by an inhibitor is also classified into several cases and discussed in the fourth, (D). The results of the determination of rate constants of activation of papain by cysteine will be presented in the last paragraph, (E).

(A) Scheme I

Gutfreund discussed the rate equations of Scheme I and stated that the lag-time, r, is an important quantity for studying the reaction mechanism\(^1\). We will take it up again as an illustration example of applying the method of the Laplace transformation.

The rate equations are given by

\[
\begin{align*}
\frac{dx}{dt} &= k_1se - x(k_{-1} + k_4) + k_{-e}ep \\
\frac{dp}{dt} &= k_ex - k_{-e}p \\
e_0 &= e + x
\end{align*}
\]

where x, e, s and p are the concentrations of enzyme-substrate complex, free enzyme, substrate and product respectively, and k_1, k_{-1}, k_4 and k_{-e} are the rate constants, whose meanings are shown in Scheme I. We have neglected the terms of the second order, i.e., terms involving ep.

The Laplace transform of a function of t, say $f(t)$, will be denoted by $F(r)$:

\[
F(r) = \int_0^\infty f(t)e^{-rt}dt.
\]

We shall have frequent occasions to apply the following relation:

\[
\int_0^\infty \frac{df}{dt}e^{-rt}dt = rF(r) - f(0+),
\]

where $0+$ means to take the limit at $t=0$ from the right on the time axis. Now (1) can be transformed into the following equations:

\[
\begin{align*}
rX(r) - x(0+) &= \frac{k_{1se}}{r} - X(r)(k_{-1} + k_4 + k_5)
\frac{dP(r)}{dr} - p(0+) &= k_4X(r).
\end{align*}
\]
Determination of Rate Constants of First Order Enzyme Reaction

Substituting the initial conditions: \(x(0^+) = 0 \) and \(p(0^+) = 0 \).

\[
P(t) = \frac{k_r k_s e_0 s}{r^2 (r + k_{fs} s + k_{-1} + k_z)}.
\]

If we develop (5) into a partial fractional formula, we have

\[
P(t) = \frac{-k_r k_s e_0 s}{r(k_z s + k_{-1} + k_{fs})^2} + \frac{k_r k_s e_0 s}{r^2 (k_z s + k_{-1} + k_z)} + \frac{k_r k_s e_0 s}{r^2 (r + k_z s + k_{-1} + k_z)}.
\]

To get an explicit expression for \(p(t) \), we may take the inverse transform of (6). Thus, the first term of the right-hand side gives a constant, the second a term proportional to \(t \) which corresponds to the steady state, and the last an exponential function of \(t \) corresponding to the transient state. In order to obtain the expression for the lag time, we only have to find the intercept of the steady state part of \(p(t) \) extrapolated back to the time axis. It is given by the ratio of the coefficients of \(1/r \) and \(1/r^2 \) with reversed sign in (6).

\[
\tau = \frac{1}{k_z s + k_{-1} + k_z} = \frac{1}{k_z (s + K_M)}.
\]

This result is just the same as Gutfreund’s, as expected.

(B) Scheme II

In Scheme II another reaction which yields two different substances, \(P \) and \(Q \), as products is considered, such as the case of enzymatic hydrolysis. Two lag times, \(\tau_p \) and \(\tau_q \), will be shown.

\[
E + S \xrightarrow{k_{-1}} ES \xrightarrow{k_2} E + Q
\]

Scheme II

The rate equations are given by

\[
\begin{align*}
\frac{dx}{dt} & = k_1 s e + k_{-2} y p - x(k_{-1} + k_z), \\
\frac{dy}{dt} & = x k_2 - y(k_2 + k_{-2} p) k_{-2} e q, \\
\frac{dq}{dt} & = k_2 y - k_{-2} e q, \\
\frac{dp}{dt} & = k_s x - k_{-3} y p, \\
e & = e + x + y.
\end{align*}
\]

Our interest is concerned mainly with the early stage of the reaction, where \(e, p, q \) and \(y \) may be assumed to be very small compared with \(s \). Thus we can omit the terms of the second order, i.e. terms involving \(y p \) or \(e q \). The transforms of \(p(t) \) and \(q(t) \) are now written down as
The Review of Physical Chemistry of Japan Vol. 31 No. 2 (1961)

K. Osawa

follows:

\[P(r) = \frac{k_sk_e e_2 (r + k_s)}{r_d [(r + k_s + k_{-1} + k_2)(r + k_2) + k_sk_2]} \] \hspace{1cm} (9)

\[Q(r) = \frac{k_sk_e e_3 k_5}{r_d [(r + k_s + k_{-1} + k_2)(r + k_2) + k_sk_2]} \] \hspace{1cm} (10)

The coefficients of \(1/r^2\) are common for two response transforms:

\[\left[\frac{dp}{dt} \right]_{t=0} = \left[\frac{dQ}{dt} \right]_{t=0} = \frac{k_sk_e e_2 e_3}{(k_s + k_{-1} + k_2)k_3 + k_sk_2} = \frac{s + k_s(k_{-1} + k_2)}{k_s(k_2 + k_3)} \] \hspace{1cm} (11)

Comparing the last expression of (11) with the well-known formula of the steady state:

\[V = \frac{sV_m}{s + K_M} \] \hspace{1cm} (12)

we can identify \(\frac{k_s(k_{-1} + k_2)}{k_s(k_2 + k_3)}\) with the apparent Michaelis constant, \(K_M\), and \(\frac{k_s k_e k_3}{k_1 + k_s}\) with the maximum velocity, \(V_m\), respectively.

Dividing each coefficient of \(1/r\) in Eqs. (9) and (10) by (11), we obtain two lag times \(\tau_p\) and \(\tau_q\) for the production of \(P\) and \(Q\), respectively:

\[\tau_p = \frac{k_s + k_{-1} + k_2 + k_3}{(k_s + k_{-1} + k_2)k_3 + k_sk_2} \frac{1}{k_s} \] \hspace{1cm} (13)

\[\tau_q = \frac{k_s + k_{-1} + k_2 + k_3}{(k_s + k_{-1} + k_2)k_3 + k_sk_2} \] \hspace{1cm} (14)

and thus

\[\tau_q - \tau_p = \frac{1}{k_3} \] \hspace{1cm} (15)

The values of \(K_M\) and \(V_m\) can be determined from usual steady state experiments, and those of \(\tau_p\) and \(\tau_q - \tau_p\) are also determined by transient state experiments. Four rate constants in Scheme II would be calculated from those four quantities, \(K_M\), \(V_m\), \(\tau_q\) and \(\tau_q - \tau_p\).

(C) Scheme III, Enzyme Reactions with Dissociable Activator

Let us consider Scheme III.

\[
\begin{align*}
\text{E} + \text{S} & \xrightleftharpoons{\kappa_{-1}}^{\kappa_1} \text{ES} \\
\text{E} + \text{A} & \xrightleftharpoons{\kappa_{-3}}^{\kappa_3} \text{EA} \\
\text{EA} & \xrightleftharpoons{\kappa_{-4}}^{\kappa_4} \text{EAS} \\
\text{EAS} & \xrightleftharpoons{\kappa_{-5}}^{\kappa_5} \text{EA} + \text{P}
\end{align*}
\]

\begin{center}
Scheme III
\end{center}
The rate equations are given by

\[
\begin{align*}
\frac{dx}{dt} &= k_x x + k_a y - x(k_a + k_{-1}) + k_{-3} z - k_x x, \\
\frac{dy}{dt} &= k_x e + k_{-4} z - y(k_a + k_{-1}), \\
\frac{dz}{dt} &= k_a + k_{-4} x - z(k_a + k_{-3}) + k_x - k_{-3} z, \\
\frac{dp}{dt} &= k_x x - k_{-3} z.
\end{align*}
\]

(16)

are transformed into,

\[
\begin{align*}
(r + k_{-3} + k_{-4} + k_3)Y(r) - k_a Y(r) - k_3 Z(r) &= x(0 +), \\
(k_3 - k_4)Y(r) + (r + k_3 + k_{-1} + k_3)Y(r) + k_3 Z(r) &= \frac{k_3 e_0}{r} + y(0 +), \\
(k_a - k_{-4} - k_3)X(r) + k_a Y(r) + (r + k_a + k_{-3} + k_3)Z(r) &= \frac{k_3 e_0}{r} + z(0 +),
\end{align*}
\]

(17)

where the terms involving \(k_{-3} \) are omitted because they are second order. From the first three of the Eq. (17) we obtain

\[
X(r) = \frac{N_r}{M},
\]

where

\[
N_r = \begin{vmatrix}
 x(0+) & -k_a & -k_3 \\
 \frac{k_3 e_0}{r} + y(0+) & x + k_3 + k_{-1} + k_3 a & k_3 \\
 k_3 e_0 + z(0+) & k_3 a & r + k_3 a + k_{-3} + k_3
\end{vmatrix}
\]

and

\[
M = \begin{vmatrix}
 r + k_{-3} + k_{-4} + k_3 & -k_a & -k_3 \\
 k_3 - k_{-4} & r + k_3 + k_{-1} + k_3 & k_3 \\
 k_3 a - k_{-3} - k_3 & k_3 & r + k_3 a + k_{-3} + k_3
\end{vmatrix}
\]

Substituting (18) into the last equation of (17) we get the expression for \(P(r) \):

\[
P(r) = \frac{k_3 e_0}{r(r^3 + ar^2 + br + c)}
\]

where \(a, b \) and \(c \) are constants and \(g \) may be either a constant or a function of \(r \).

From the above equations we can derive the expressions for various quantities which can be determined directly or indirectly from experiments.

Three different programs of the initialization of reaction are introduced here. They are tentatively called enzyme-start, substrate-start and activator-start, which were already explained in the introduction. Corresponding with each program, expressions for \(P(r) \), \(N_r \) and \(r \) for each case, are given by the notations, such as \(P_X(r) \), \(kN_r \) and \(r_X \), for the enzyme-start.
Although \(\tau_S \) and \(\tau_A \) for substrate-start and activator-start respectively can be given by similar equations, it is better to use the differences \(\tau_K - \tau_S \) and \(\tau_K - \tau_A \) in the place of \(\tau_S \) and \(\tau_A \) because it is noticed to become much simpler.

The differences between the lag-times mentioned above, are obtained in the following way.

Since

\[
P_K - P_S = \frac{k_s(rN_x - sN_x)}{r \cdot M},
\]

and this equation contains no term of \(1/r \), we can develop it as follows:

\[
P_K - P_S = \frac{A_0}{r} + \frac{A_1}{s}.
\]

From this we obtain,

\[
A_0 = [P(P_K - P_S)]_{t=0} = k_s \left[\frac{rN_x - sN_x}{M} \right]_{t=0}.
\]

On the other hand we get,

\[
P_K = \frac{A_1}{r^2} + \frac{A_2}{s^2}.
\]

Then

\[
A_1 = [P^2(P_K - P_S)]_{t=0} = k_s \left[\frac{rN_x - sN_x}{M} \right]_{t=0}.
\]

Hence

\[
\tau_K - \tau_S = - \left[\frac{kN_x - sN_x}{r \cdot rN_x} \right]_{t=0},
\]

\[
\tau_K - \tau_A = - \left[\frac{kN_x - aN_x}{r \cdot rN_x} \right]_{t=0}.
\]

Many distinctive cases are obtained from the results of steady-state and transient-state experiments, as follows:

Case i) \(\alpha = 1 \),

Case ii) \(\alpha = 0 \), \(k_{-1}/k_1 = \infty \), \(k_{-2}/k_2 \) is finite, and \(k_{-3}/k_3 \) is finite, \(k_{-4}/k_4 = 0 \),

Case iii) \(\alpha = 0 \), \(k_{-1}/k_1 \) is finite, \(k_{-2}/k_2 = \infty \), and \(k_{-3}/k_3 = 0 \), \(k_{-4}/k_4 \) is finite.

Case iv) \(0 < \alpha < \infty \) and \(\alpha \approx 1 \),

a) \(k_{2s}, k_{-1}, k_{2a} \) and \(k_{-3} \) are much larger than \(k_{2s}, k_{-1}, k_{2a} \) and \(k_{-3} \) respectively,

b) \(k_{2s}, k_{-2}, k_{4a} \) and \(k_{-4} \) are much larger than \(k_{2s}, k_{-1}, k_{4a} \) and \(k_{-3} \) respectively,
Determination of Rate Constants of First Order Enzyme Reaction

c) all rate constants take comparable values with each other, where

\[\alpha = \frac{k_{-1}}{k_s} \frac{k_{-1}}{k_1} = \frac{k_{-1}}{k_4} \frac{k_{-3}}{k_2}. \]

The three initial conditions are expressed as follows:
- Enzyme-start: \(x(0^+)=0, \ y(0^+)=0, \ z(0^+)=0 \).
- Substrate-start: \(x(0^+)=0, \ y(0^+)=0, \ z(0^+)=k_s \alpha e^{\alpha t}/(k_s \alpha + k_{-2}) \).
- Activator-start: \(x(0^+)=0, \ y(0^+)=k_s \alpha e^{\alpha t}/(k_s \alpha + k_{-1}), \ z(0^+)=0 \), except the cases iv) a) and b).

Case i)

If \(1 = k_{s+} = k_{s-} \) and \(\delta k_{s+} = k_{s-} \),

\[N_x = \begin{vmatrix} x(0^+) & - \delta k_s & - \gamma k_s \\ \frac{k_s \alpha e^{\alpha t}}{r} + y(0^+) & r + k_s + k_{-1} + \delta k_s a & k_s \\ \frac{k_s \alpha e^{\alpha t}}{r} + z(0^+) & k_s & r + k_s + k_{-1} + \gamma k_s \\ \end{vmatrix} \]

and

\[M = \begin{vmatrix} r + \gamma k_{-1} - \delta k_{-1} + k_s & - \delta k_s & - \gamma k_s \\ k_s - \delta k_s & r + k_s + k_{-1} + \delta k_a a & k_s \\ k_s - \gamma k_{-1} - k_s & k_s & r + k_s + k_{-1} + \gamma k_s \\ \end{vmatrix} \]

Hence

\[\tau_K - \tau_A = \frac{\gamma(k_s + k_{-1}) + (\gamma - 1) \delta k_s a}{(k_s + k_{-1}) \delta(\gamma k_s + k_{-1}) + (k_{-1} + \delta k_a a)}. \]

As a special case if \(\gamma = \delta = 1 \), Eq. (32) becomes

\[\tau_K - \tau_A = \frac{k_s + k_{-1}}{(k_s + k_{-1}) (k_s + k_{-1} + k_s a + k_{-2})}. \]

Similarly to (32) we obtain

\[\tau_K - \tau_S = \frac{\delta(k_s + k_{-1}) + (\delta - 1) \gamma k_s}{(k_s + k_{-1}) \delta(\gamma k_s + k_{-1}) + (k_{-1} + \delta k_a a)}. \]

And if \(\gamma = \delta = 1 \),

\[\tau_K - \tau_S = \frac{k_s + k_{-1}}{(k_s + k_{-1}) (k_s + k_{-1} + k_s a + k_{-2})}. \]

In this case \(\tau_K \) is considerably complicated. Even if \(\gamma = \delta = 1 \), and if \(k_s \ll k_{-1} \),

\[\tau_K = \frac{B_1 \gamma + B_2 \gamma^2 + B_3 \gamma + 2B_4 + 2B_5}{B_1 B_2 (B_1 + B_2)}, \]

where \(B_1 = k_s + k_{-1} \) and \(B_2 = k_s a + k_{-2} \).
Case ii)
Since \(y = 0 \),

\[
N_x = \begin{vmatrix} x(0+) & -k_x k_y \\ \frac{1}{r} & r + k_x k_y + k_x k_y + k_y r \\ \end{vmatrix}
\]

and

\[
M = \begin{vmatrix} r + k_x k_y + k_y r & -k_x k_y \\ k_x k_y - k_y r & r + k_x k_y + k_y r \\ \end{vmatrix}
\]

Hence

\[
\tau_r = \frac{k_x k_y + k_y r + k_x r + k_y r}{k_x k_y (k_x k_y + k_y r) + k_y r (k_x k_y + k_y r)}
\]

and

\[
\tau_N - \tau_S = \frac{1}{k_x k_y}
\]

Case iii)
Since \(z = 0 \),

\[
N_x = \begin{vmatrix} x(0+) & -k_x k_y \\ \frac{1}{r} & r + k_x k_y + k_x k_y + k_y r \\ \end{vmatrix}
\]

and

\[
M = \begin{vmatrix} r + k_x k_y + k_y r & -k_x k_y \\ k_x k_y - k_y r & r + k_x k_y + k_y r \\ \end{vmatrix}
\]

Hence

\[
\tau_r = \frac{k_x k_y + k_y r + k_x r + k_y r}{k_x k_y (k_x k_y + k_y r) + k_y r (k_x k_y + k_y r)}
\]

and

\[
\tau_N - \tau_A = \frac{1}{k_x k_y + k_y}
\]

Case iv) a)
For the slower reaction, we obtain

\[
\frac{d(x + z)}{dt} = \frac{dx}{dt} \left(1 + \alpha \frac{K_S}{s} \right) = \frac{ya}{r} \left(\frac{K_S}{s} k_x + k_z \right) - x \left(\alpha \frac{K_S}{s} k_x + k_z \right)
\]

\[
\left(\alpha \frac{K_A}{s} \right) \left(\frac{K_S}{s} k_z + k_y \right)
\]

\[
= \left(\alpha \frac{K_A}{s} \right) \left(\frac{K_S}{s} k_z + k_y \right)
\]

where \(K_S = k_x / k_z \) and \(K_A = k_x / k_z \). It is assumed that \(k_z \) is negligible compared with \(k_x \).

Then

\[
\frac{dx}{dt} = \left(\frac{a e_b}{1 + \frac{K_S}{s}} \right) - x \left(\frac{a}{1 + \frac{K_S}{s}} + \frac{\alpha K_A}{1 + \frac{K_S}{s}} \right) \left(\frac{K_S}{s} k_z + k_y \right).
\]
Determination of Rate Constants of First Order Enzyme Reaction

From the Laplace transform of this equation,

\[X(r) = \frac{a e^r}{(1 + K_a/s)(1 + \alpha K_a/s)} \left(\frac{K_s}{s} k_1 + k_3 \right) + x(0+) \]

The initial conditions are as follows:

Enzyme-start: \(x(0+) = 0 \),

Substrate-start: \(X(0+) = \frac{k_a e^r}{(k_a + k_{-2})(1 + \alpha K_a/s)} \).

Hence

\[\tau_K = \frac{1}{\left(-\frac{a}{K_a/s} + \frac{\alpha K_A}{1 + \alpha K_A/s} \right) \left(\frac{K_s}{s} k_1 + k_3 \right)} \]

and

\[\tau_K - \tau_A = \frac{1 + \frac{K_s}{s}}{(\alpha + K_A) \left(\frac{K_s}{s} k_1 + k_3 \right)} \]

In the case of the faster reactions, only the experiment for the substrate-start reaction is available. This is equal to the case of Scheme I except enzyme concentration. In this case the enzyme concentration is expressed as \(k_a e^r/(k_a + k_{-2}) \) in place of \(e_0 \) in the case of Scheme I.

Hence

\[\tau_s = \frac{1}{k_s(s + \alpha K_a)} \]

Since \(k_{21} \) are masked by the slower reactions, it is difficult to determine them, as long as the objects of the determination are set on the velocity of formation of the last product or the concentration of active complex.

Case iv) b)

From the style of the Scheme III, this case may be treated as the case a).

For the slower reaction \(\tau_K \) and \(\tau_K - \tau_A \) becomes

\[\tau_K = \frac{1}{\left(-\frac{a}{K_a/s} + \frac{\alpha K_A}{1 + \alpha K_A/s} \right) \left(\frac{K_a}{a} k_1 + k_2 \right)} \]

and

\[\tau_K - \tau_A = \frac{1 + \frac{K_A}{a}}{(s + K_a) \left(\frac{K_a}{a} k_1 + k_3 \right)} \].
For the faster reaction

\[\tau_A = \frac{1}{k_{a}(a + \alpha K_A)} \]

(53)

Case iv) c)

\[\tau_K - \tau_S \]

\[\tau_K - \tau_A \]

(54)

(55)

where

\[k_{N'X} = \begin{vmatrix} 0 & -k_{a} & -k_{s} \\ k_{s} & k_{s} + k_{-1} + k_{a} & k_{s} \\ k_{a} & k_{2} & k_{2} + k_{-2} + k_{s} \end{vmatrix} \]

(56)

(D) Scheme IV, Enzyme Reaction with Dissociable Inhibitor

Let us consider Scheme IV.

Scheme IV

The rate equations are given by

\[
\begin{align*}
\frac{dx}{dt} &= yk_{i} + zk_{s} - x(k_{-3} + k_{-4}), \\
\frac{dy}{dt} &= ek_{i}s + xk_{-4} - y(k_{-1} + k_{2}i) + k_{-ep} - k_{dy}, \\
\frac{dz}{dt} &= ek_{i} + xk_{-3} - z(k_{-4} + k_{3}s), \\
\frac{dp}{dt} &= k_{dy} - k_{-ep}, \\
e_{s} &= e + x + y + z.
\end{align*}
\]

(57) is transformed into
Determination of Rate Constants of First Order Enzyme Reaction

\[
\begin{align*}
(r + k_{-3} + k_{-1})X(r) - k_iY(r) - k_sZ(r) &= x(0+) , \\
(k_s - k_{-3})X(r) + (r + r_s + k_{-1} + k_i + k_s)Y(r) + k_sZ(r) &= \frac{k_s \sigma_0}{r} + y(0+) , \\
(k_i - k_{-3})X(r) + k_iY(r) + (r + k_i + k_{-3})Z(r) &= \frac{k_i \sigma_0}{r} + z(0+) , \\

rP(r) &= k_iY(r) .
\end{align*}
\]

From (58) we obtain

\[
Y(r) = N_r M ,
\]

where

\[
N_r = \begin{vmatrix}
 r + k_{-3} + k_{-1} & x(0+) & -k_s \\
 k_s - k_{-3} & \frac{k_s \sigma_0}{r} + y(0+) & k_i \\
 k_i - k_{-3} & \frac{k_i \sigma_0}{r} + z(0+) & r + k_i + k_{-3} + k_s \\
\end{vmatrix}
\]

and

\[
M = \begin{vmatrix}
 r + k_{-3} + k_{-1} & -k_i & -k_s \\
 k_s + k_{-3} & r + k_i + k_{-3} + k_i + k_s & k_i \\
 k_i + k_{-3} & k_i & r + k_i + k_{-3} + k_s \\
\end{vmatrix}
\]

Since

\[
rP(r) = k_iY(r) ,
\]

we get an expression of the same form as in the paragraph (C). Therefore, the lag times and those differences for this case are obtained in the way similar to (C). The following typical cases are possibly distinguishable.

Case v) \(\alpha = 1 \).

Case vi') \(\alpha = 0, k_{-3}/k_i \) is finite, \(k_{-3}/k_s = \infty, k_{-3}/k_i = 0 \). \(k_{-3}/k_s \) is finite.

Case vii') \(\alpha = \infty, k_{-3}/k_i \) and \(k_{-3}/k_s \) are finite, \(k_{-3}/k_s \) and \(k_{-3}/k_i \) are finite.

Case viii') \(0 < \alpha < \infty \) and \(\alpha \neq 1 \).

a) \(k_i, k_{-1}, k_{-3}, k_s \) and \(k_{-3} \) are much larger than \(k_i, k_{-3}, k_i \) and \(k_{-3} \) respectively.

b) \(k_i, k_{-1}, k_{-3} \) and \(k_{-3} \) are much larger than \(k_i, k_{-3}, k_s \) and \(k_{-3} \) respectively.

c) all rate constants take comparable values to each other.

where

\[
\alpha = \frac{k_{-3}}{k_i} \cdot \frac{k_{-3}}{k_s} \cdot \frac{k_{-3}}{k_i} .
\]

The three starting conditions are expressed as follows:

Enzyme-start; \(x(0+) = 0, y(0+) = 0, z(0+) = 0 \).

Substrate-start; \(x(0+) = 0, y(0+) = 0, z(0+) = k_i \sigma_0/(k_i + k_{-3}) \).

Inhibitor-start; \(z(0+) = 0, y(0+) = k_i \sigma_0/(k_i + k_{-3}), z(0+) = 0 \),

except the cases viii) a) and b).

Case v)

If \(\gamma k_{-3} = k_{-3} \) and \(\delta k_{-3} = k_{-3} \).
\[N = r + \gamma k_{-1} + \delta k_{-2} \]
\[k_{1s} - \delta k_{-2} \]
\[k_{1i} - \gamma k_{-1} \]
\[r + k_{1s} + k_{-1} + \delta k_{1i} + k_{n} \]
\[k_{1i} \]
\[\gamma k_{1s} \]
\[\gamma k_{1i} \]
\[\gamma k_{1s} + k_{-1} + k_{1i} + k_{-2} + \gamma k_{1s} \]

and
\[M = r + \gamma k_{-1} + \delta k_{-2} \]
\[k_{1s} - \delta k_{-2} \]
\[k_{1i} - \gamma k_{-1} \]
\[r + k_{1s} + k_{-1} + \delta k_{1i} + k_{n} \]
\[k_{1i} \]
\[\gamma k_{1s} \]
\[\gamma k_{1i} \]
\[\gamma k_{1s} + k_{-1} + k_{1i} + k_{-2} + \gamma k_{1s} \]

Hence:
\[\tau_{K} - \tau_{R} = - \frac{k_{1i}(\gamma k_{1s} + k_{-1} + (1 - \gamma)k_{1s})}{k_{1s}(k_{1s} + k_{-1})}\frac{\gamma k_{1s} + k_{-1} + \gamma k_{1s}}{k_{1s}(k_{1s} + k_{-1}) + \gamma k_{1s}}. \]

As a special case, if \(\gamma = \delta = 1 \), Eq. (65) becomes
\[\tau_{K} - \tau_{R} = - \frac{k_{1i}(k_{1s} + k_{-1})}{k_{1s}(k_{1s} + k_{-1})(k_{1s} + k_{-1} + k_{1i} + k_{-2})}. \]

Similarly we obtain
\[\tau_{K} - \tau_{R} = \frac{\gamma k_{1s}(k_{1s} + \delta k_{-2}) + \gamma k_{1s} + \delta k_{1s}}{k_{1s}(k_{1s} + k_{-1})(k_{1s} + \delta k_{-2} + \gamma \delta k_{1s} + k_{1s})}. \]

And if \(\gamma = \delta = 1 \),
\[\tau_{K} - \tau_{R} = \frac{\gamma k_{1s}(k_{1s} + \delta k_{-2}) + \gamma k_{1s} + \delta k_{1s}}{k_{1s}(k_{1s} + k_{-1})(k_{1s} + \delta k_{-2} + \gamma \delta k_{1s} + k_{1s})}. \]

In this case \(\tau_{K} \) is considerably complicated, even if \(\gamma = \delta = 1 \), and if \(k_{n} < k_{-1} \),
\[\tau_{K} = \frac{B_{1}^{2} + B_{2}^{2} + B_{1}k_{1s} + 2B_{1} + 2B_{2} + B_{s}B_{1} + B_{s}B_{1}}{k_{1s}B_{1}B_{1}(B_{1} + B_{1})}. \]

where \(B_{1} = k_{1s} + k_{-1} \) and \(B_{2} = k_{1i} + k_{-1} \).

Case (vi)
Since \(s = 0 \),
\[N = r + k_{-1} \]
\[k_{1s} - k_{-1} \]
\[k_{1i} \]
\[x(0+) \]
\[k_{1i} \]
\[x(0+) \]
\[k_{1i} \]

and
\[M = r + k_{-1} \]
\[k_{1s} - k_{-1} \]
\[k_{1i} \]
\[r + k_{1s} + k_{-1} + k_{1i} + k_{n} \]

Hence
\[\tau_{R} = \frac{k_{-1}(k_{1i} + k_{-1}) - k_{1i}k_{1s}}{k_{-1}(k_{1s} + k_{-1} + k_{1i}) + k_{1i}k_{1s}} \]

and
\[\tau_{K} - \tau_{R} = \frac{1}{k_{1s} + k_{-1}}. \]
Determination of Rate Constants of First Order Enzyme Reaction

Case vii)

Since \(x=0 \),

\[
N_r = \frac{k_1 x t k_0}{r} + r(0+) k(s)
\]

(74)

and

\[
M = \begin{vmatrix}
 x + k_t s & k_u + k_s & k_0 s \\
k_i + k_0 s & r & k_i + k_u \\
\end{vmatrix}
\]

(75)

Hence

\[
- \frac{k_1}{r} - \frac{k_i + k_u}{k_u(k_i + k_u) + k_0 s}
\]

(76)

(77)

\[
\frac{k_1}{k_u(k_i + k_u) + k_0 s}
\]

(78)

Case viii) a)

Considering the slower reaction, the following differential equation is obtained.

\[
\frac{d(e + y)}{dt} = \frac{dy}{dt} \left(1 + \frac{K_s}{s} \right) = \left(\frac{x K_r}{s} \right) + y \left(\frac{K_i}{s} \right) + y \left(\frac{K_s}{s} \right)
\]

(79)

where \(K_s = k_i/k_0 \) and \(K_r = k_u/k_0 \). It is assumed that \(k_u \) is negligible compared with \(k_u \).

Then

\[
\frac{dy}{dt} = \left(\frac{K_r e_i}{1 + K_s} \right) + y \left(\frac{K_i}{1 + K_s} \right) + y \left(\frac{K_s}{1 + K_s} \right)
\]

(80)

From the Laplace transform of Eq. (80), we obtain

\[
Y(r) = \frac{\alpha K_i e_i}{1 + K_s} \left(\frac{K_s}{1 + K_s} k_s + k_u \right) + y(0+) \]

(81)

The initial conditions are as follows;

Enzyme-start: \(y(0+) = e_0/(1 + K_s/s) \).
Substrate-start; $y(0+) = \frac{k_i}{k_i + k_{-1}} \frac{e_0}{1 - \frac{K_S}{s}}$.

Hence

$$\tau_K = \frac{1}{\left(1 + \frac{K_s}{s} + \frac{k_i}{1 + \frac{K_s}{s}}\right)\left(\frac{K_s}{s} k_i + k_f\right)},$$

and

$$\tau_K - \tau_S = -\frac{k_i}{\alpha K_f (k_i + k_{-1})} \frac{1 + \alpha \frac{K_c}{s}}{\left(\frac{K_s}{s} k_i + k_f\right)}.$$ (83)

Regarding the faster reaction of Scheme IV, it is easily understood that the experiment without any inhibitor conforms to this case.

Case (vi) b)

Taking account of the slower reaction, we obtain

$$\frac{d(y + s)}{dt} = \frac{dy}{dt} \left(1 + \alpha \frac{i}{K_f} \right) = es \left(\frac{i}{K_f} h_0 + k_1\right) - y \left(\alpha \frac{i}{K_f} k_{-2} + k_{-1}\right)$$

$$= (es - yK_s) \left(\frac{i}{K_f} k_3 + k_1\right) = \frac{e_0 - y \left(1 + \alpha \frac{i}{K_f}\right)}{1 + \frac{i}{K_f}} S - yK_s \left(\frac{i}{K_f} k_3 + k_1\right).$$ (84)

Then

$$\frac{dy}{dt} = \left(1 + \frac{i}{K_f}\right) \left(1 + \alpha \frac{i}{K_f}\right) \left(\frac{y - s}{1 + \frac{i}{K_f} + 1 + \alpha \frac{i}{K_f}} - \frac{K_s}{1 + \frac{i}{K_f}}\right) \left(\frac{i}{K_f} k_3 + k_1\right).$$ (85)

From the Laplace transform of Eq. (85), we obtain.

$$\mathcal{Y}(s) = \frac{e_0 \left(\frac{i}{K_f} h_0 + k_1\right)}{\left(1 + \frac{i}{K_f}\right) \left(1 + \alpha \frac{i}{K_f}\right)} + y(0+)$$

$$y(t) = \frac{y(0+)}{r + \left(\frac{s}{1 + \frac{i}{K_f}} + \frac{K_s}{1 + \alpha \frac{i}{K_f}}\right) \left(\frac{i}{K_f} k_3 + k_1\right)}.$$ (86)

The initial conditions are as follows:

- Enzyme-start; $y(0+) = 0$
- Inhibitor-start; $y(0+) = \frac{k_i e_0}{(k_i s + k_{-1}) \left(1 + \alpha \frac{i}{K_f}\right)}$

Hence
Determination of Rate Constants of First Order Enzyme Reaction

\[\tau_E = \frac{1}{s + \frac{k_s}{1 + \frac{i}{K_I} + 1 + \alpha \frac{i}{K_I}}} \]

and

\[\tau_E - \tau_S = \frac{k_i \left(1 + \frac{i}{K_I}\right)}{\left(\frac{i}{K_I} k_3 + k_i \right) \left(k_3 + k_i\right)} \]

For the consideration of the faster reaction an experiment for inhibitor-start should be tried. In this condition the following differential equation is deduced.

\[\frac{dy}{dt} = s k_{-4} - y k_{i+} = \left(\frac{e_0}{1 + \frac{k_s}{s}} - y k_{-4} \right) - y k_{i+} = \frac{e_0 k_{-4}}{1 + \frac{k_s}{s}} - y k_{i+} \]

From the Laplace transform of Eq. (89), we obtain

\[V(t) = \frac{e_0 k_{i+} / r}{s + k_{i+} + k_{-4}} + y(0 +) \]

where \(y(0 +) = e_0 / (1 + K_s/s) \).

Hence

\[\tau_i = \frac{1}{k_{i+} + k_{-4}} \]

Case viii) c)

\(\tau_E \) is given by the same equation as (22), and \(\tau_E - \tau_S \) and \(\tau_E - \tau_I \) are given by

\[\tau_E - \tau_S = \frac{k_{i+} k_{-4}}{k_{i+} + k_{-4}} \begin{vmatrix} k_{-4} & -k_s \\ k_{i+} & k_{-4} - k_s \end{vmatrix} \]

\[\tau_E - \tau_I = \frac{-k_s}{k_{i+} + k_{-4}} \begin{vmatrix} k_{-4} & -k_s \\ k_{i+} & k_{-4} - k_s \end{vmatrix} \]

where

\[e N_Y = \begin{vmatrix} k_{-4} + k_{-4} & 0 & -k_s \\ k_{i+} & k_{i+} & k_{i+} \\ k_{i+} & k_{i+} & k_{i+} + k_s \end{vmatrix} \]

(E) Experiment

Papain is a well-known phytoproteinase. The activity of the enzyme is proved to have originated from thiol groups in the enzyme molecule. As SH group is the reduced from of
-S-S-, it has been observed by many investigators that this enzyme is activated by some reductants, for instance, H₂S, cysteine, CN⁻. As hydrolysis, the specific reaction catalyzed by papain, is known to be caused by the combination of the substrate with SH groups of the enzyme produced by reduction, the mechanism of reaction by papain may be classified into Friedenwald's coupling activation. The author et al. studied about the mechanism of hydrolysis of α-benzoyl-L-arginine amide catalyzed by papain and confirmed that the above was held well. In this article, the experimental results obtained about the reaction mechanism of papain upon α-tosyl-L-arginine methyl ester (TsAME) using cysteine as the activator, are shown. It was found, however, that, when TsAME was used as the substrate, papain combined with substrate molecule even before occurring of the reduction by the activator and that the factor α was larger than 1. In this paragraph the EA does not mean papain-cysteine complex but papain activated by cysteine.

Materials

Papain was prepared from a commercial dried papaya latex by the purification method of Emil L. Smith, with the modification of EDTA 2Na salt used in place of cysteine. The preparation was purified several times by the salting-out method with NaCl. and was stored in a state of packed solution or as about 1 per cent clear solution.

TsAME was prepared by the method of Bergman, Fruton and Pollok.

Determination of proceeding of reaction

The method of Schwert, Neurath, Kaufman and Snoke, was employed. The reaction vessel

![Reaction vessel diagram](image)

6) G. W. Schwert, H. Neurath, S. Kaufman and J. E. Snoke, *ibid.*, 72, 211 (1948)
Determination of Rate Constants of First Order Enzyme Reaction

used for this experiment is shown in Fig. 1. Water kept at constant temperature from a bath with a thermostat was circulated throughout the experiments. The reactions were started by the following three programs: enzyme-start, substrate-start, activator-start. About 1 µl of N NaOH solution was added to a reaction mixture at every step of determination. The materials and instruments used in these experiments are shown in Table 1.

Table 1 Materials and instruments

<table>
<thead>
<tr>
<th>Material</th>
<th>ml</th>
<th>Final concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>l) Substrate</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>ii) Buffer</td>
<td>1</td>
<td>With 1/1000M EDTA 2Na</td>
</tr>
<tr>
<td>iii) Activator</td>
<td>1</td>
<td>1/20~1/1000M</td>
</tr>
<tr>
<td>iv) Enzyme</td>
<td>1</td>
<td>1.23 x 10^-4 M</td>
</tr>
<tr>
<td>v)</td>
<td></td>
<td>1N NaOH</td>
</tr>
<tr>
<td>vi) pH Meter</td>
<td></td>
<td>Beckman model GS, using sensitivity switch turned on B</td>
</tr>
<tr>
<td>vii) Microburette</td>
<td></td>
<td>Mitamura Riken Industry</td>
</tr>
<tr>
<td>viii) Stirrer</td>
<td></td>
<td>A small glass rod stirrer driven by an AC toy motor with a flexible shaft derived from camera release</td>
</tr>
</tbody>
</table>

a) Enzyme-start: In this case, the substrate, the buffer solution and the activator were first mixed and pH was adjusted to 6.0. The zero-time was chosen to be the time of the addition of the enzyme solution.

b) Substrate-start: Buffer solution, activator and enzyme were mixed first. pH was adjusted also to 6.0 and the mixture was preincubated for 30 minutes or more. The zero-time is the time of the addition of the substrate. pH of substrate solution was also adjusted to 6.0 before addition.

![Fig. 2 Hydrolysis of TsAME, catalyzed by cysteine activated papain at 40°C and pH 6.0](image)

Each reaction mixture contained 1/10 TsAME, M/20 cysteine and 1.23 x 10^-4 M papain.
c) Activator-start:—Substrate, buffer and enzyme were mixed first. The same pH was adopted. The mixture was preincubated for 30 minutes or more. The zero-time is the time of the addition of the activator. pH of the activator solution was adjusted to 6.0.

Lineweaver-Burk plot

Fig. 2 shows some of the experimental results obtained. A linear relationship should be noticed to be held between the concentration of the product and the lapse of time when the substrate concentration is sufficiently high except in the beginning of the reaction. Abnormality in the relationship is observed probably owing to the inadequate concentration of the substrate. The initial velocity, therefore, is difficult to be determined from these results. To make the Lineweaver-Burk plot from them, the following method is applied.

A relationship between $\frac{1}{V}$ and $\frac{1}{s}$ was calculated from the experimental data, p versus $\frac{1}{V}$, and it is plotted. Fig. 3 shows a model for several experimental data of one fixed concentration of the activator. The two groups of similar curves above and below the oblique broken line correspond to the experimental results of enzyme-start and substrate-start respectively. Each curve has a sharply bended part and a straight part which has a slope similar to each other. The former is the initial part of the reaction and the latter is the steady state part.

![Fig. 3 Method of Lineweaver-Burk plot employed](image)

Fig. 4 A plot of $\frac{1}{V}$ against $\frac{1}{s}$ for hydrolysis of TsAME, catalyzed by cysteine activated papain

![Fig. 4 A plot of $\frac{1}{V}$ against $\frac{1}{s}$ for hydrolysis of TsAME, catalyzed by cysteine activated papain](image)
Determination of Rate Constants of First Order Enzyme Reaction

And these latter parts are the parts of the same straight line, by the extrapolation of which Lineweaver-Burk plot is obtained. This treatment is based on an assumption that the concentration of the product has no effect on the reaction. Fig. 4 was obtained by this method, from which Fig. 5 was derived. The intersection of plot is in the third quadrant and indicates that $1 < \alpha < \infty$. The experimental results of the activator-start corresponded completely to those of the enzyme-start and it is presumed that the equilibriums of $E + S \rightleftharpoons ES$ and $EA + S \rightleftharpoons EAS$ are accomplished in a very short time compared with the other equilibriums and the transient state part, in which these equilibriums take part, is unable to be traced by Schwert's method.

The Case vi) a) is conformable to determine the rate constants of this case.

Rate constants

As has been stated it is unable to know directly the initial velocity from the experimental data and also from the other quantities concerned with the various properties of the reaction system, for example, the lag time. Hence the data were corrected by,

$$\frac{1}{s_2} + \frac{1}{K_s} \left(\frac{1}{V_t} + \frac{1}{V_m}(\alpha - 1) \right) = \frac{1}{V_m}(\alpha - 1) = \frac{1}{V_{10}}, \quad (05)$$

where s_0 and s_t are the substrate concentrations at zero time and time t respectively, and V_t is the hydrolytic velocity at time t and V_{10} is the corrected velocity of V_t by the initial substrate concentration.

The relationship among these values is shown in Fig. 6. The corrected curve of the time
versus the reaction velocity is available from plotting $v(t)$ versus t.

Fig. 7 was obtained from Fig. 2 by this correction, which shows sharp changes in the initial parts and then constant values for steady state parts. By integrating these figures and plotting the product concentration versus time, Fig. 8 was obtained. From these treatments, the lag time is derived.

The rate constants of activation of papain by cysteine and other constants, shown in Table 2, were calculated from a pair of simultaneous for the lag times which were obtained by the experiments of different substrate concentrations.

Table 2 Various constants of hydrolysis of TsAME, catalyzed by cysteine activated papain at 40°C and pH 6.0

<table>
<thead>
<tr>
<th>Constant</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_s</td>
<td>$1.74 \times 10^{-2} M$</td>
</tr>
<tr>
<td>x</td>
<td>5.9</td>
</tr>
<tr>
<td>k_1</td>
<td>$2.15 \times 10^{-1}/mol/sec$</td>
</tr>
<tr>
<td>k_2</td>
<td>$4.32 \times 10^{-2}/mol/sec$</td>
</tr>
<tr>
<td>K_A</td>
<td>$2.1 \times 10^{-2} M$</td>
</tr>
<tr>
<td>k_3</td>
<td>4.1mol/mol/sec</td>
</tr>
<tr>
<td>k_{-3}</td>
<td>$4.51 \times 10^{-1}/sec$</td>
</tr>
<tr>
<td>k_4</td>
<td>$5.35 \times 10^{-2}/sec$</td>
</tr>
</tbody>
</table>
Summary

1. The Laplace transformation has been applied to analyze the properties of the rate equations for some first order enzyme reaction systems.

2. The method of determination of rate constants for Michaelis scheme by the lag time has been expanded to the first order enzyme reaction system modified by some dissociable modifier, which is classified in several groups from its properties of steady state and transient state.

3. The rate constants of activation of papain by cysteine using \(\alpha \)-tosyl-L-arginine methyl ester as substrate has been determined.

The author would like to thank Prof. W. Jono, Prof. T. Yamamoto and Prof. S. Tanaka for valuable discussions.

Department of Chemistry
Faculty of Science
Kyoto University
Kyoto, Japan