<table>
<thead>
<tr>
<th>Title</th>
<th>High pressure syntheses of aromatic aldehydes (The co-operative researches on the fundamental studies of the liquid phase reactions at high pressures)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Takezaki, Yoshimasa; Teranishi, Hiroshi; Sugita, Nobuyuki; Kudo, Kiyoshi</td>
</tr>
<tr>
<td>Citation</td>
<td>The Review of Physical Chemistry of Japan (1968), 38(1): 69-78</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1968-11-20</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/46917</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
HIGH PRESSURE SYNTHESES OF AROMATIC ALDEHYDES

BY YOSHIASA TAKEZAKI, HIROSHI TERANISHI, NOBUYUKI SUGITA AND KIYOSHI KUDO

Kinetic studies have been made on the syntheses of aromatic aldehydes from toluene, m-xylene and anisole and carbon monoxide in the HF-BF₃ reaction system.

Rate determinations were conducted under the condition in which the liquid phase reaction was rate-determining, which could be realized by reducing the concentration of the substrate remarkably.

As to the liquid phase reaction of each aldehyde formation, the rate is of the first order with respect to the dissolved CO and to the complex, respectively.

The rate constants, \([\text{min}^{-1} (\text{kg/cm}^2)^{-1}]\), obtained at 0°C are \(8 \times 10^{-2}\) for toluene, \(2.6 \times 10^{-2}\) for m-xylene and \(4.6 \times 10^{-5}\) for anisole.

Introduction

The Gatterman-Koch reaction to synthesize aromatic aldehydes from aromatic hydrocarbons and carbon monoxide with the catalyst, such as AlCl₃-HCl, is interesting from the viewpoint of reaction kinetics.

Since no kinetic study seems available on this reaction in the HF-BF₃ reaction system, the following kinetic studies have been made in this laboratory:

\[
\begin{align*}
\text{CH}_3\text{C}_6\text{H}_4\text{H} + \text{CO} & \xrightarrow{\text{HF-BF}_3} \text{CH}_3\text{C}_6\text{H}_4\text{CHO} & (p\text{-tolualdehyde}), \\
\text{CH}_3\text{C}_6\text{H}_4\text{C}_6\text{H}_4\text{H} + \text{CO} & \xrightarrow{\text{HF-BF}_3} \text{CH}_3\text{C}_6\text{H}_4\text{CH}_3\text{CHO} & (2,4\text{-dimethylbenzaldehyde}), \\
\text{CH}_3\text{C}_6\text{H}_4\text{OH} + \text{CO} & \xrightarrow{\text{HF-BF}_3} \text{CH}_3\text{C}_6\text{H}_4\text{CHO} + \text{CH}_3\text{C}_6\text{H}_4\text{CHO} & (o\text- and } p\text{-anisaldehyde)
\end{align*}
\]

The details of these studies reviewed here have been published as given in ref. 2).

Experimental

Material

HF : Manufactured by Daikin Kogyo Co. Ltd. (purity $>99.7\%$)
BF_3 : Manufactured by Baker and Adamson Works (U.S.A.) (purity 99.5%)
CO : Generated by the decomposition of formic acid with the hot sulfuric acid (purity $>98\%$)

Toluene, m-Xylene, Anisole: Purified by distillation of the c.p. reagent (purity $>98\%$).

Procedure

The measured amounts of the liquefied HF and an aromatic compound were charged in an evacuated autoclave, made of stainless steel and equipped with a magnetic stirrer and baffle.

After the autoclave attained the experimental temperature, the required quantity of BF_3 gas was introduced to it under stirring to establish the dissolution equilibrium. Subsequently, CO gas was added.

The reaction took place while stirring at a fixed speed and maintaining a constant total pressure by the continuous supply of CO. At the desired reaction time, the autoclave was cooled immediately, and the gases exhausted, then the produced aldehyde was analyzed by the hydroxylamine method and gas chromatography.

Kinetic Measurement

The results are given in Table 1 of the preliminary experiments carried out in order to examine the effect of stirring speed on the reaction rate.

<table>
<thead>
<tr>
<th>Reaction</th>
<th>T (°C)</th>
<th>P_{CO} (kg/cm²)</th>
<th>P_{BF_3} (kg/cm²)</th>
<th>Ar/HF (mole ratio)</th>
<th>Time (min)</th>
<th>Stirring speed (rpm)</th>
<th>Yield of aldehyde (M.%,)</th>
<th>Controlling conditions for the liquid phase reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>p-Tolualdehyde from toluene</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>1/60</td>
<td>3.0</td>
<td>260</td>
<td>4.1</td>
<td>charge mole ratio toluene/HF $<1/600$, stirring speed ≥ 780 rpm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>730</td>
<td>18.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1500</td>
<td>61.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>780</td>
<td>32.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1420</td>
<td>32.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.2</td>
<td>780</td>
<td>52.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1300</td>
<td>51.5</td>
<td></td>
</tr>
<tr>
<td>2,4-Dimethylbenzaldehyde from m-xylene</td>
<td>0</td>
<td>3</td>
<td>5</td>
<td>1/60</td>
<td>5</td>
<td>900</td>
<td>22.5</td>
<td>charge mole ratio m-xylene/HF $<1/90$, stirring speed ≥ 900 rpm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1400</td>
<td>38.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>730</td>
<td>29.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>900</td>
<td>32.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1200</td>
<td>32.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1700</td>
<td>32.0</td>
<td></td>
</tr>
<tr>
<td>Anisaldehyde from anisole</td>
<td>40</td>
<td>180</td>
<td>13</td>
<td>1/32</td>
<td>20</td>
<td>530</td>
<td>13.9</td>
<td>charge mole ratio anisole/HF $<1/32$, stirring speed ≥ 750 rpm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>730</td>
<td>30.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>990</td>
<td>31.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1500</td>
<td>28.6</td>
<td></td>
</tr>
</tbody>
</table>

Note: Ar represents toluene, m-xylene or anisole.
High Pressure Syntheses of Aromatic Aldehydes

In both syntheses of p-tolualdehyde from toluene and of 2,4-dimethylbenzaldehyde from m-xylene, the gas-liquid contact was found rate determining at the concentration of 1/60 (charge mole ratio: toluene or m-xylene/HF). At this concentration, the effects of CO pressure on the rates for both reactions are examined under the fixed stirring speed as shown in Fig. 1. The initial rates are proportional to CO pressure under this condition as seen in Fig. 2; the diffusion of CO gas into the liquid-film is inferred to be rate-determining.

Fig. 1 Effect of CO pressure under gas diffusion-controlled condition

(i) 0°C, \(P_{CO} 3 \text{ kg/cm}^2 \), stirring speed 750 rpm
(ii) 0°C, \(P_{CO} 5 \text{ kg/cm}^2 \), stirring speed 1100 rpm

Fig. 2 Examination of CO pressure under the diffusion-controlled condition

- - : p-tolualdehyde formation
- - : 2,4-dimethylbenzaldehyde formation
The conditions enabling the liquid phase reaction to be rate-determining, are given in the last column of Table I, and the kinetic studies given in this report hereafter are those made under these conditions.

The effect of CO pressure, BF₃ pressure and temperature are given in Figs. 3, 4, 5 and 6, respectively.

The syntheses of anisaldehydes require higher CO pressure and temperature than in the tolu-aldehyde and dimethylbenzaldehyde syntheses.
High Pressure Syntheses of Aromatic Aldehydes

Fig. 5 Effect of BF3 pressure
(i) 0°C, Pco 1 kg/cm², charge mole ratio toluene/HF = 1/600
(ii) 0°C, Pco 3 kg/cm², charge mole ratio m-xylene/HF = 1/130
(iii) 22°C, Pco 185 kg/cm², charge mole ratio anisole/HF = 1/31, ald. denotes anisaldehyde

Fig. 6 Effect of temperature
(i): Pco 1 kg/cm², PBF3 1 kg/cm², charge mole ratio toluene/HF = 1/600.
(ii): Pco 1 kg/cm², PBF3 5 kg/cm², charge mole ratio m-xylene/HF = 1/130.
(iii): Pco 185 kg/cm², charge mole ratio anisole/HF = 1/32.

Discussion

The initial rate equations have been derived from the following considerations.

1) The respective aldehyde is produced by the reaction of the complex with dissolved CO as shown in (1) and (2), and the rate is the first order with respect to the complex and CO pressure.
Y. Takesaki, H. Teranishi, N. Sugita and K. Kudo

\[\text{BF}_3 \text{ (gas)} \quad \frac{1}{K_{\text{BF}_3}} \]

\[
\text{Ar(d)} + \text{HF} + \text{BF}_3 \text{ (d)} \xrightarrow{K} [\text{ArH}^+ \cdot \text{BF}_3^-], \quad (1)
\]

\[\text{CO (gas)} \quad \frac{1}{K_{\text{CO}}} \]

\[
[\text{ArH}^+ \cdot \text{BF}_3^-] + \text{CO (d)} \xrightarrow{k} [\text{Aldehyde} \cdot \text{H}^+ \cdot \text{BF}_3^-], \quad (2)
\]

where \(\text{Ar(d)} \) represents toluene, \(m \)-xylene or anisole, \(K \) the equilibrium constant for the complex formation, \(k \) \((\text{kg/cm}^3)^{-1} \text{min}^{-1} \) the rate constant, \(H_{\text{BF}_3} \) the Henry constant \((\text{kg/cm}^3)^{-1} \text{min}^{-1} \) of \(\text{BF}_3 \) dissolution in \(\text{HF} \) and \(H_{\text{CO}} \) the Henry constant of \(\text{CO} \) \((\text{kg/cm}^3)^{-1} \text{min}^{-1} \) in \(\text{HF} \).

2) Judging from the selective formation of \(p \)-tolualdehyde from toluene and of 2,4-dimethylbenzaldehyde from \(m \)-xylene, the complex type (I) is presumably formed from toluene, and the type (II) from \(m \)-xylene by (1).

\[
\begin{aligned}
\text{CH}_3 & \quad \text{H} \\
\text{H} & \quad \text{BF}_3 \\
\end{aligned}
\]

(1)

\[
\begin{aligned}
\text{CH}_3 & \quad \text{H} \\
\text{H} & \quad \text{BF}_3^{-} \\
\end{aligned}
\]

(II)

The initial amount of toluene complex (I) or \(m \)-xylene complex (II) relative to the charged substrate, represented by \(C_0 \), is given by (3).

\[
K = \frac{C_0}{(1 - C_0)H_{\text{BF}_3}P_{\text{BF}_3}}. \quad (3)
\]

In this equation, the concentration of \(\text{HF} \) is omitted since the large excess amount of \(\text{HF} \) is used. Then, the initial rate, \(v_0 \), is

\[
v_0 = kH_{\text{CO}}C_0f_C = \frac{K_{\text{BF}_3}P_{\text{BF}_3}}{1 + K_{\text{BF}_3}P_{\text{BF}_3}}f_C. \quad (4)
\]

where \(f_C \) denotes the fugacity of \(\text{CO} \).

3) Both \(o \)- and \(p \)-anisaldehyde are produced from anisole, so the formations of both \(o \)- and \(p \)-complex of anisole are assumed, i.e.,

\[
\begin{aligned}
\text{CH}_3\text{OBF}_3 & \quad \text{H} \\
\text{H} & \quad \text{BF}_3^{-} \\
\end{aligned}
\]

(5)

\[
\begin{aligned}
\text{CH}_3\text{OBF}_3 & \quad \text{H} \\
\text{H} & \quad \text{BF}_3^{-} \\
\end{aligned}
\]

(6)
High Pressure Syntheses of Aromatic Aldehydes

The initial amount of the o-complex \((\equiv C_{o})\) and the p-complex \((\equiv C_{p})\) are given by (7) and (8).

\[
K_{o} = \frac{C_{o}^{0}}{(1 - C_{o})HBF_{3}PBF_{3}} \quad (7)
\]

and

\[
K_{p} = \frac{C_{p}^{0}}{(1 - C_{p})HBF_{3}PBF_{3}} \quad (8)
\]

where \(K_{o}\) denotes the equilibrium constant for (5), \(K_{p}\) for (6), and \(C_{o} = C_{o}^{0} + C_{p}^{0}\).

Then, the initial rates are

\[
\nu_{o} = k_{1}HCOC_{o}fCO \quad \text{for the total aldehyde formation,} \quad (9)
\]

\[
\nu_{o} = k_{2}HCOC_{p}fCO \quad \text{for the o-aldehyde formation,} \quad (10)
\]

and

\[
\nu_{p} = k_{3}HCOC_{o}fCO \quad \text{for the p-aldehyde formation.} \quad (11)
\]

Combining these with (7) and (8), we obtain

\[
\nu_{o} = k'_{1}\frac{(K_{o} + K_{p})HBF_{3}PBF_{3}fCO}{1 + (K_{o} + K_{p})HBF_{3}PBF_{3}} \quad (12)
\]

\[

\nu_{p} = k'_{2}\frac{PBF_{3}}{1 + (K_{o} + K_{p})HBF_{3}PBF_{3}} fCO \quad (13)
\]

and

\[
\nu_{p} = k'_{3}\frac{PBF_{3}}{1 + (K_{o} + K_{p})HBF_{3}PBF_{3}} fCO \quad (14)
\]

where \(k'_{1} = k_{1}HCO\), \(k'_{o} = k_{2}K_{o}HCOHBF_{3}\) and

\(k'_{3} = k_{3}K_{p}HCOHBF_{3}\).

Table 2. Equilibrium constants for the complex formation reaction and Henry constant of BF₃ gas in HF

<table>
<thead>
<tr>
<th>Complex formation reaction</th>
<th>Equilibrium constant (K)</th>
<th>(T^\circ)C</th>
<th>Henry constant of BF₃ gas ((\text{kg/cm}^2)^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toluene(d)+HF+BF₃(d)</td>
<td>900</td>
<td>0</td>
<td>4.86×10⁻²</td>
</tr>
<tr>
<td></td>
<td>1,200</td>
<td>-9</td>
<td>6.61×10⁻³</td>
</tr>
<tr>
<td></td>
<td>1,600</td>
<td>-20</td>
<td>8.67×10⁻³</td>
</tr>
<tr>
<td>m-Xylene(d)+HF+BF₃(d)</td>
<td>86.5*</td>
<td>0</td>
<td>4.86×10⁻²</td>
</tr>
<tr>
<td></td>
<td>200*</td>
<td>-20</td>
<td>8.67×10⁻³</td>
</tr>
<tr>
<td></td>
<td>590*</td>
<td>-40</td>
<td>1.58×10⁻²</td>
</tr>
<tr>
<td>Anisole(d)+HF+BF₃(d)</td>
<td>61.1**</td>
<td>40</td>
<td>2.95×10⁻³</td>
</tr>
<tr>
<td></td>
<td>75.9**</td>
<td>32</td>
<td>3.30×10⁻³</td>
</tr>
<tr>
<td></td>
<td>100**</td>
<td>22</td>
<td>3.98×10⁻³</td>
</tr>
</tbody>
</table>

Note: * These values are at the HF solution saturated with a complex and m-xylene.

** These values represent the equilibrium constant of \((K_{o} + K_{p})\), since the separate determinations of \(K_{o}\) and \(K_{p}\) are impossible.
Table 3: Examination of BF₃ pressure effect

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Condition</th>
<th>Observed initial rate</th>
<th>Calculation</th>
<th>Rate constant $k' HCO$</th>
<th>$P'_{BF₃}$ (kg/cm²)</th>
<th>ν'_0 (mole %·min⁻¹)</th>
<th>C'_0 (mole %)</th>
<th>$k' HCO$ [(kg/cm²)⁻¹·min⁻¹]</th>
</tr>
</thead>
<tbody>
<tr>
<td>p-Tolualdehyde from toluene</td>
<td>$0°C$</td>
<td>1.14</td>
<td>21.1</td>
<td>6.8×10^{-2}</td>
<td>0.0475</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P_{CO}</td>
<td>2.71</td>
<td>29.6</td>
<td>9.2×10^{-2}</td>
<td>0.0860</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.0</td>
<td>6.55</td>
<td>81.0</td>
<td>8.1×10^{-2}</td>
<td>0.203</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>7.32</td>
<td>92.9</td>
<td>7.9×10^{-2}</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.4-Dimethylbenzaldehyde from m-xylene</td>
<td>$0°C$</td>
<td>1.41</td>
<td>17.8</td>
<td>2.6×10^{-2}</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P_{CO}</td>
<td>2.53</td>
<td>31.8</td>
<td>2.7×10^{-2}</td>
<td>1.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.54</td>
<td>45.4</td>
<td>26.0</td>
<td>2.6×10^{-2}</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.19</td>
<td>68.6</td>
<td>2.5</td>
<td>2.5×10^{-2}</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.55</td>
<td>71.8</td>
<td></td>
<td>2.5×10^{-2}</td>
<td>6.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>o- and p-Anisaldehyde from anisole</td>
<td>$22°C$</td>
<td>0.274</td>
<td>65.0</td>
<td>4.7×10^{-3}</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P_{CO}</td>
<td>0.525</td>
<td>152</td>
<td>4.6×10^{-3}</td>
<td>3.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.690</td>
<td>200</td>
<td></td>
<td>4.8×10^{-3}</td>
<td>8.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C'' (mole %·min⁻¹)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C'' (mole %)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$k' HCO$ [(kg/cm²)⁻¹·min⁻¹]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$C' = \frac{100P_{BF₃}}{1+(K_a+K_p)HBF₃P_{BF₃}}$, representing the initial value for the complex.

C'_0: Initial amount of the complex relative to the charged substrate.

Equilibrium constants for the complex formations and Henry constant of BF₃ are reproduced in Table 2, which were reported in the previous papers.

Now, according to the derived rate equations, the results will be examined. As can be seen in Fig. 7, there exists a linear relationship between the respective initial rate and CO fugacity as expected from the rate equations.

Results of the examination of the BF₃ pressure on the rates are given in Table 3, showing the correctness of the derived rate equations as to the effect of BF₃ pressure.

The reaction velocity for anisaldehydes formation is much slower than those for tolualdehyde and dimethylbenzaldehyde formation.

From the temperature effect on rates, given in Tables 4 and 5, the apparent activation energies...
High Pressure Syntheses of Aromatic Aldehydes

![Graph]

Fig. 7 Examination of CO pressure
(i): 0°C, P_{HF} 1 kg/cm². (ii): 0°C, P_{HF} 5 kg/cm². (iii): 40°C, P_{HF} 12.8 kg/cm²

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Fixed conditions</th>
<th>T</th>
<th>Initial velocity v_0 (mole% min⁻¹)</th>
<th>Initial amount of complex C_0 (mole%)</th>
<th>Rate constant $k H_{CO}$ [(kg/cm²)⁻¹ min⁻¹]</th>
<th>Activation energy (kcal-mole⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>p-Tolualdehyde from toluene</td>
<td>P_{CO} 1 kg/cm²</td>
<td>0</td>
<td>6.55</td>
<td>81.0</td>
<td>8.1×10^{-2}</td>
<td>7.6</td>
</tr>
<tr>
<td></td>
<td>P_{HF} 1 kg/cm²</td>
<td>-7</td>
<td>3.90</td>
<td>88.8</td>
<td>4.4×10^{-2}</td>
<td>8.1</td>
</tr>
<tr>
<td></td>
<td>toluene/HF = 1/600</td>
<td>-10</td>
<td>2.62</td>
<td>93.3</td>
<td>2.8×10^{-2}</td>
<td></td>
</tr>
<tr>
<td>2,4-Dimethylbenzaldehyde from m-xylene</td>
<td>P_{CO} 7 kg/cm²</td>
<td>0</td>
<td>11.0</td>
<td>68.6</td>
<td>2.5×10^{-2}</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P_{HF} 3 kg/cm²</td>
<td>-20</td>
<td>5.32</td>
<td>88.7</td>
<td>8.5×10^{-3}</td>
<td>8.1</td>
</tr>
<tr>
<td></td>
<td>m-xylene/HF = 1/130</td>
<td>-30</td>
<td>1.51</td>
<td>98.0</td>
<td>2.2×10^{-3}</td>
<td></td>
</tr>
</tbody>
</table>

* charge mole ratio

<table>
<thead>
<tr>
<th>Reaction</th>
<th>P_{CO} (kg/cm²)</th>
<th>f_{CO} (kg/cm²)</th>
<th>P_{HF} (kg/cm²)</th>
<th>T</th>
<th>Initial rate v_0 (mole% min⁻¹)</th>
<th>C (mole%)</th>
<th>Rate constant $k H_{CO}$ [(kg/cm²)⁻¹ min⁻¹]</th>
<th>Activation energy (kcal-mole⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>o-Anisaldehyde from anisole</td>
<td>185</td>
<td>190</td>
<td>12.8</td>
<td>40</td>
<td>1.44</td>
<td>383</td>
<td>6.7×10^{-2}</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>190</td>
<td>192</td>
<td>10.5</td>
<td>32</td>
<td>0.92</td>
<td>284</td>
<td>4.9×10^{-3}</td>
<td></td>
</tr>
<tr>
<td></td>
<td>185</td>
<td>190</td>
<td>12.8</td>
<td>40</td>
<td>0.93</td>
<td>383</td>
<td>3.0×10^{-3}</td>
<td></td>
</tr>
<tr>
<td>p-Anisaldehyde from anisole</td>
<td>185</td>
<td>190</td>
<td>12.8</td>
<td>40</td>
<td>0.93</td>
<td>383</td>
<td>4.2×10^{-3}</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>190</td>
<td>192</td>
<td>10.5</td>
<td>32</td>
<td>0.56</td>
<td>284</td>
<td>3.1×10^{-2}</td>
<td></td>
</tr>
</tbody>
</table>

* cf. Table 3

(kcal/mole) are obtained to be 7.6 for the formation of tolualdehyde, 8.1 for dimethylbenzaldehyde and 9 for anisaldehydes. Though the rate equations can explain the effects of reaction variables, as described above, there can be another possible mechanism such as the substitution reaction of uncom-
plexed aromatics by formyl cation. This mechanism can offer the expression of the same type as presented in this paper with respect to CO pressure and BF$_3$ pressure except for the value of the rate constant. More detailed discussion on the mechanism will be published later.

Acknowledgements

The authors wish to express their sincere thanks to the Ministry of Education for the Scientific Research Grant.

Institute for Chemical Research
Kyoto University
Kyoto, Japan