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SPECIFIC VOLUME AND VISCOSITY OF METHANOL-WATER

MIXTURES UNDER HIGH PRESSURE

 BY HIRONOBU KUBOTA, SADAHIRO TSUDA, IIASAHIRO h'lURATA 

TAI:ESHI YAa[A]SOTO, YOSHIYUKI TANASA A\D TADASHI itSAIiITA

   New experimental data on the specific volume and the viscosity of methanol-water 

mixtures are presented as functions of temperature, pressure and composition. 

   The specific volume has been measured by means of an improved "high pressure 

burette" apparatus within an error of D.0> percent, covering temperatures from 10 [o 

75'C and pressures up 101000 bar. The viscosity has been obtained by afalling-cylinder 

viscometer with the uncertainty of less thao two percent, covering the same tempera-

ture range and pressures up to 700 bar. 

   The specific volume of this system is found to decrease monotonously with increas-

ing pressure. The experimental results agree well with several literature values. 

The numerical data at each temperature and composition are correlated satisfactorily 

as a (unction of pressure by the Tait equation. The isothermal compressibilities and 

the excess volumes are also determined from the experimental data. It is found that 

n definite minimum appears on the isothermal compressibility versus composition iso-

bars at temperatures lower than 1i°C. The excess volumes are always negative and 

increase with increasing pressure ar lowering temperature. 

   The viscosity of pure methanol and its water mixtures is found to increase almost 

linearly wi[b increasing pressure, whereas that of water decreases with pressure at 10'C 

and 25'C within the present experimental conditions. The viscosity isotherms can be 

represented by a quadratic equation of pressure within the experimental errors. As 

for the composition dependence of the viscosity, a distinct maximum appears near 0.3 

mole fraction of methanol on all isobars at each temperature. The maximum shifts 

slightly to higher methanol fraction with increasing temperature or pressure.

Introduction

   It is well known that alcohol molecules is aqueous solutions give strong influence on the water 

structure 1.2> and that alcohol-water systems show consequently some anomalies in various physical 

properties. 

   Recently, the reliable experimental data of these systems on various physical properties aze 

required for both theoretical works and engineering calculations. Although a number of measure-

ments at atmospheric pressure have been reported, a few are available under high pressure. 

   This paper provides extensive and accurate data on PVT relations and viscosity for methanol-

water binary mixtures as functions of temperature, pressure and composition. Numerical data have 

    (Received Arovember I3, Ip7p) 
      1) F. Franks and D. J. G. Ives, Quart. Rev., 20, 1 (1966) 

     E) G. N6methy and H. A. Schecaga, !. Cbern. Phys., 36, 3382, 3401 (1962)
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been determined at temperatures ranging from 10°C to 75°C, and pressures up to 2000 bar for the 

specific volume, and to 700 bar for the viscosity, employing a modified piezometer and afalling-

cylinder viscometer. Empirical correlation formulas have also been presented for both properties 

using;the present results.

                                 Experimentals 

PVT measaremeats 

   The schematic diagram of the experimental apparatus is shown in Fig. 1. The sample liquid of 

known weight is introduced into a high pressure vessel D and upper part of burette G. The pressure 

is transmitted through mercury nlled in C and G from an oil pump A. The volume change of the 

test liquid is detected from the displacement of a small iron goat on the surface of the mercury 

column by means of a differential transformer. The high pressure vessel D consists of coaxial double 

cylinders as shown in Fig. 2. The inner cylinder is athin-walled sample cell, to the outer wall of 

which somewhat lower pressure is applied separately from the oil pump in order to minimize the 

deformation of the cell a) 

   The vessel D and burette G are immersed in a liquid thermostat controlled within _0.01`C.
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3) B. Le Neindre and B. Vadar (Ed.), "Experimental Thermodynamics", vol. II, p. 421, Butter 
  worths, London (1975)
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The pressure is measured by Bourdon gauges calibrated against a pressure balance. The uncertainty 

in pressure measurements is estimated to be less than 0.1 percent. 

   Using [he displacement of the iron float, the specific volume of the sample liquid is calculated 

by the following equation: 

            v=vo- ~y(dV.p~-(dY',nn+dVnar+dV«u)) (I ) 

where 

             vo: specific volume in cros•g ' of the sample at pressure Ps bar, 

            dV.pp: apparent volume change in cm' of the sample at P bar, 

            dVtun : volume change in cm' of the Connecting tube at P bar, 

            dVn,:: volume change in cros of the high pressure burette at P bar, 

            dl'~.u : volume change in cm° of the thin-walled sample cell at P bar, 

           W: total weight in g of the sample. 

dVr„e, dVson and dV~eu were calculated employing the elasticity theory. The uncertainty of the 

present specific volume values is estimated to be less than 0.05 percent.

Viscosity measurements 

   The viscosity is measured by afalling-cylinder viscometer. The details of the viscometer were 

described elsewhere4l. 

   The apparatus consists of a precisely bored Pyrex glass tube equipped coaaially in a high pres-

sure vessel and a glass cylindrical plummet with hemispherical ends. The plummet is provided with 

four small projecting lugs at each end of [he cylindrical part, which acts as a guide to keep plummet 

concentric when it falls. The falling time of the plummet is determined within-1-0.1 ms by an elet-

Ironic time-in[en~al counter using a He-Ne gas laser beam passed through a pair of optical windows 

and a phototransister. The temperature of the sample is maintained constant within -!-0.05°C by 

circulating a thermostatic fluid through the jacket around the pressure vessel. The pressure is mea-

sured by a Bourdon gauge with the same accuracy as in the case of PVT measurements. 

   The instrument constant and its change with both temperature and pressure are calibrated with 

the aid of the experimental viscosity values under atmospheric pressure obtained by an Ostwald 

viscometer and of the reference viscosity of water correlated by the International Association for 

[he Properties of Steam (1974). The uncertainty of the present viscosity values is estimated to be 

less than 2.0 percent.

Materials 

   Methanol used was obtained from Wako Pure Chemical Industries Ltd. The reported purity is 

more than 99.56 in volume. Methanol and water were purified several times by the fractional 

distillation. 

   The mixtures of methanol and water were prepared by weighing, using an analytical balance 

     4) Y. Taaaka, T.Yamamoto, Y. Satomi, H, Kubota and T. Makita, Rev. Phyr. Chem. Japan, 47, 12(1977)
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with a sensitivity of ±O.lmg. Therefore their composition, mole fraction of methanol, 

substantially accurate within 0.01%. 

               Table 1 The SpecifirVolume of Metbaml-Water Mixtures in cm3/g
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Results and Discussion

Specific rolu+ne 

   A part of experimental results is given in Table 1 ̀ , where P, v and X denote pressure in bar, 

specific volume is cm'/g and mole fraction of methanol in the mixtures, respectively. Specific 

volume values at 10°C and 75°C are also plotted in Figs. 3 and 4, together with the literature values 

for pure water. The specific volume decreases monotonously with increasing pressure throughout 

the experimental conditions at each composition. At the experimental temperatures except ii`C, 

the present results of pure water is found to agree quite well with the values given by Chen et al.=~, 

Kell et al.al and Grindley e[ al.~l The discrepancy between the present results and literature values 

at 75`C is witbin 0.0945. For the mixtures, there exist reliable data only at 25°C and 1000 bar by 

Gibsons> and 25`C and 1013 bar by ivforiyoshi e[ als> As for the compression, literature values differ 

from the present results by less than 1.4646 and 0.9195, respectively. 

    For each temperature and composition, the specific volume data are correlated as a function of 

pressure by the Tait equation 
            "°vev =C to B+P 2 
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• Data of X-O .15, 0.30, 0.35 at IO°C and 75'C, and of X-O.IO, 0.15, 0.35 at 25'C and 50'C are available 
 an request. 

5) C. Chen, R.A. Fine and E J. Millero, J. Am. Chem. Sat., 57, 1551 (1935) 
6) G. S. Bell and E. R'halley, PGiI. Tsans. Roy. Sot., A25S, 565 (1965) 
7) T, Grindley and J. E. Lind, Jr., J. Chern. Pkys., 54, 3933 (1971) 
8) R. E. Gibson, J. dnr. Chem. Sot., 57, 1551 (1935) 
9) T. Moriyoshi, Y. Dforishi[a and H. Inubushi, J. CGem. Thermadynarnics, 9, 577 (1977)
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Table ? CoeBuients of the Tai[ £quatioo
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where vo is the specific volume at a pressure Po, and B and C are constants. The obtained Tait 

equations could reproduce experimental data with an average deviation of 0.03%. The coefficients 

for the Tait equation are listed in Table 2. 

   The isothermal compressibilities ; 

          tqr-- v ~ a /7• ~3) 
calcttlaled using the Tait equation, at 10'C and 75'C, are plotted against the mole fraction of metha-

nol in Figs. i and 6, respectively. It is found that a definite minimum exists near X=0.15 at 10°C 

and IS°C, but these minima fade out gradually as the temperature increases. At 75°C these minima
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disappear completely. This anomaly was also found in the ethanol-water system as reported in 

previous paper<>. 
   Excess volumes are also calculated at each experimental temperature by the following equa-

tion 

           S'"=l'mi:- { Vv.ou•Xt V ~.,.dl -~) (4) 

The results of 25°C and 75°C are given in Figs. 7 and 8, respectively. At all the experimental con-

ditions, excess volumes obtained are always negative, and it seems that pressure makes the excess 

volumes less negative and, in a sense, the mixture appcoaches the ideal solution with increasing 

pressure. At 25°C, the present results agree well with the literature valuesto), 
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   The experimental results are tabulated in Table 3. The data obtained at atmospheric pressure 

are plotted as a function of composition in Fig. 9, where other experimental data11-ts) are also 

plotted for comparison. Each viscosity isotherm bas a maximum at a composition near X=0.30 

0.35. Agreement with the available data is satisfactory at 10°C and 23`C. However the discrepancy 

among [hem is somewhat notable at 50`C, where [he largest deviation between the data of Sabeis et 

al.tx> and those of Traubela7 fs about 11% near the maximum. The present data agree quite well 

     10) M. L. \tcGlashan and A. G. N'illiamson, J. Chern. Eng. Data, 2I, 196 (1976) 
     ll) S. Z. dlikhail and W. R. Kimel, J. Chern. Eag. Dafa, 6, 533 (1961) 

     12) T. N. Yergavi<h, G. LV. Swift and F. Kurata, J. Che+u. Eng. DNa, 16, 222 (1971) 
     13) S. N. Sabnis, W. V. Bhagwat and A. B. Ranugo, !, hrdian Chern, Soc., 25, 575 (1948) 

     14) J. Traube, Bar., 19, 871 (1886)



The Review of Physical Chemistry of Japan Vol. 49 No 2 (1979)

6fi H. Kubota, S. Tsuda, M, Murata. T. Yamamota ,Y. Tanaka and T. Makita

Table 3 The Viscosity of Me[banol-Water Mixtures in 10'a Pass

Temp.

.C

Y

Lee
.\"=O. UU X=0.15 X=0?6 X • 0.30 X=0.35 S= 0.60 C•OAS .\' • LD

10

1.0

99.1

197.2

295.2

]93.3

491.4

589.4

68T.5

1.311 4
].301

I.292

1.z84

1 ~ia

1.270
1.268

].284

2.360

2.36i

2.37A

2.381

2.399

2.40E
2.428

2.449

2.551

2.588

2.63i

2.667

2.:08

2.733

2.ii6

2592

2,600

2,Sii

2,fi 16

2,656

R,i3T

2,:93

2, 848

2.902

2,419

2.491

2.563

2.6Z4

3.689

2.i67

2.895

2.908

1.9 Tf

2.044

2.095

z.lsa

z.azs

z.a7s

2.346
2.3B4

1.272
1 .]2i
1 .9 T4
1.426
1.472
lsze
1.681
1.823

0.8953

O.i394

0.7841

0.8147

0.861I

o.ee39

0.9164

0.9508

25

L0
99.1

I9T.2
295.2
99],3
491.4
589.4
687s

0.8911+

0.8895

0.8882

0.8872

0.8866

0.8864

0.8066

O.BBT2

1 A61

L 464
I a69

L468

Lii9

1.495

1.503

1.508

1.581

1.611

].626

1.6i6

l .fi 6i

1.686

1.:06
1. i3!

LSii

L61T

1.631

1.637

1.6i4

L698

I.i23
L i4i

1, 53fi

1.620

1, 634

L6i5

1.710

1. T63

1.788

L 918

1.325

1.362

1.909

1.93T

1.902

1.529

1 .ST2

1.61i

0.9031

0.9TT0

1.012

1.048

1.087

1.124

1.189

1.19T

0.5959

0.59ST

O.Ba20

0.600

O.BT]O

0. T008

0. T3]0

0. T558

5D

].0

99.1

197.Z

295.2

399.3

49I A

58TA

68i.5

O. S460+

0.5486

0.5504

0.5523

0.S S4i

0.5581

O.SSB3

0.5805

DRBI]

o.aao2

0.8103

0.818T

0.~13

o. a?Bi

0.8307

D.8340

0.93i5

0.849T

e.as2t

0.8882

0.8i54

0.88i0

0.8951

0.9096

0.8923

D.BS55

D.as3e

0.8920

0.9002

0.9149

0.9205

0.9302

0.0335

0.8962

0.8i33

0.8937

o.9ose

0.9192

0.9193

0.9364

O.T551
O.iTBD

0.7 BT5

0.8238

D. B3as

0.8561

D.BSaz

O.aa92

0.5780

0.6012

O.61T8

0.6318

Ds4TT

O.BT10

0.6649

0.7074

0.394T

0.411 B

D.4zao

0.4481

0.4883

0.4 T9B

0.5090

0.6192

i6

1.0
89.1

19i
295:
393!3
491.4
589.4
8aT.5

0.3783+

0.9808

0.9832

0.3857

0.3882

0.3908

0.9999

D.9seD

D.495N

O.i02;i

O.SLSi

D.i235

0.5341

O.SiI?

0.645d

O.i939

0.5610

0.56fi2

0.5iifi

0.5 Bifi

0.6977
0.6089

0.5555
0,56iT

D.57ae

D.6909

0.6029
D,6141

0.636D

0.550T
0,5G40
0, 5762
0.5901
osaz4
0,6141
D_62 TO

0.5220
0.53T7
O, SSOG
0, 5631
osiel
0.5929
0.6053

O.iOTT

0.4284

0.44 G4

0.4T25

o.4soT

0.50T5

Dszsfi

0.3130

0.3268

0.3421

0.3581

D.3 TZe

0.30T9

0.4038

~ [APS (39]J]

2.5

z.o

1.5

n 

O 
T .o 

7

~.~

O.i

a

a

o ma
9

 IO'C

   ~8m~ 

  2i'C

o0c 8. 
     ;o ~ 

  50'C
B°

a
0 4

Fig, 9 Composition dependence of the 
aol-Hater mixtures at LO bar 

  Q :This work ) : 14) 
 ~ : 11) p : l3) 
  ~r : 12) ~ : t 6) 
 •:13) ®:17)

visrnsity of

.~ 
o~

18) 
l9)

\tetha-

0 0.2 

 bfole

   0,4 

iractioo

O.fi 0,8 

of Methanol

1.0

IS) 
16)

A. E, 

A. E.

Dunstnn, Z. Phys. C4am., 49, 

Dunstan and F. B. T. Thole

590 (1904) 
!. Chern, $Oq, 95, 1556 (1909)



The Review of Physical Chemistry of Japan Vol. 49 No. 2 (1979)

                  Specific Volume and Viscosity of Methanol-Water Mixtures 67 

with the results of Yergovich et al.t9 at 10°C and those of Mikhail et aLttl at 25°C and SO°C 

obtained by the modified Ostwald viscometer. 

   The pressure dependences of the viscosity of this mixture at 10-C and 75°C are shown in Fig. 
10. So far as we know, there exist no experimental viscosity data for this binary system under high 

pressure. On the other hand, three sets of experimental data are found in IiteratureTO`~ for pure 
methanol under pressures as shown in Fig. 11. Although the overlap of experimental conditions is 

limited, the consistence between our data and others is reasonable in view of the distances between 

[he viscosity isotherms and their gradients. 

   The viscosity isotherms both is Fig. 10 and Table 3 show the following Features: 
   1) The viscosity of mixtures always increases with pressure almost linearly, whereas the pres-

      sure coefficient of viscosity, (8r,18P)T for pure water is slightly negative at 10`C and 25°C 

       within the present pressure range. 

   2) (8r~/r7P)T increases with the mole fraction of methanol at each temperature. 

   3) (8r~/8P)T decreases with rising temperature for the mixture of a constant composition.
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Table 4
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* For 7SC isotherms
. Eq. (S) is valid from 99 to G88 bar.
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The viscosity isotherms can be represented by a quadratic equation of pressure: 

          tl=Br t BsPt BsIJ° (3) 

where n is the viscosity in 10_s Pa•s (=cP) and.P [he pressure in bar. The empirical coefficients for 

each mixture are listed in Table 4, with the average and the maximum deviations of the experi-

mental data from the equation. 

   The composition dependence of the viscosity under high pressure is shown in Fig. 12. The 

viscosity isobars have the following features: 

   1) The composition dependence of the viscosity is evident at low temperatures, but it dimi-

      nishes gradually with rising temperature. 

   Z) Each isobar has a maximum near the composition of X=0.300.35. The maximum shifts 

      slightly to higher methanol fraction with rising temperature or increasing pressure. The 

      shift is more explicit at low temperatures. 

   These characteristic behaviors of viscosity for methanol-water mixtures under pressures are 

quite similar to those of ethanol-water system as reported in our previous paper4>. The large posi-

tive departure in the viscosity-composition isobars from those of regular solutions, in which the 

additive law is held approximately, shows that the interaction between unlike molecules is seriously 

strong, as well as the behavior of the excess volume in Figs. 7 and S. Nater and alcohol molecules 

form various complex "clusters" according to the composition of mixtures, in addition to the "ice-
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bergs" of water molecules themselves and the association of alcohols. It is quite interesting that the 

maximum of viscosity and the minimum of excess volume occuc at different compositions of mix-

tures. 
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