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1 Introduction

It is known that from a certain finite group of linear transformations and its invariant ring one
can derive automorphic forms. However so far the construction of automorphic forms is mainly
focussed on forms for subgroups of the full modular group. In the present talk we try to extend
the idea to the construction of Jacobi forms. The trial is only beginning. We want to cover as
far as possible cases, but here are small instances for that.

2 Finite groups of linear transformations

Let Gy be the group generated by the linear transformations:

(o) Gopa) (2e)

The group Gy acts linearly on the polynomial ring Clz,y]. Molien series ®¢, () of the subring
Clz, 3] of Clz,y] invariant under the action of Gy is computed to be
e, (1) = 3 dim((Clz,y]%)) ¢

1
(1—t4)(1—-1¢%)

Note: The group Gy can be regarded as the group of invariance for the weight enumerator of
the class of doubly even binary self-orthogonal codes containing all one vector.
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For instances, the polynomial z* + y* corresponds to the code with the generator matrix
(1,1,1,1) and the polynomial z® + 14z*y* + y® corresponds to the Hamming [8,4,4] code.
The ring Clz,y]% is proved to be Cz* + y*, z'y?] = Clz* + *, 2% + 14z*y* + »*]. But we do
not know such interpretation for the groups GG and G below.

(3 a group generated by the linear transformations:

() (60)

Molien series ®g, (t) of the invariant ring C[z,y]%? is computed to be

. 1
D, (t) = Ay

The ring Clz,y]%* is proved to be C[z*, y*].

G @ group generated by the linear transformations represented by the matrices:

(09) (0 5)

Molien series ®g,(t) of the invariant ring Clz, y]%* is computed to he
1

roll) = T

The invariant ring Clz, y]% of G3 is proved to be C[z?, y?].

One observes that
Gy C Gy C Gy,

and ’
Clz,y]% > Clz,y]®* > Clz,y]°".

3 Jacobi’s theta functions

3.1 Definition

Let H= {7 | Im 7 > 0} be the upper half plane, and 7 be a variable on H . Jacobi’s theta
functions are defined by

90 (T, Z) - E (_ 1 )ne‘irinzf-}—Zrinz

neZ,

91(7_’ z) _ _1_ Z(__1)nen'i(n+1/2)z'r-§—7ri(2n+1)z
t nel

92(7’, z) —_ Z eri(n+1/2)2r+7ri(2n+1)z
neZ

93(7‘, z) — Z enin27+2m‘nz

nel



Next we put

for0<:<3.

pq (T, z)
wi(T)

= 9,'(27', '22’),
9,(27‘): 9,(21‘, 0)

il

3.2 Properties of Jacobi’s theta functions
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We present many properties of Jacobi’s theta functions that are reproduction of well-known

formulas.

Proposition 1 It holds that

. 1
83(7-: Z -+ 5)
%ﬁz+3

9 (T z+ 55%‘)
63(7,2 -+ 1)

93(7’, z 4+ T}
1
Oy(1, 2z + 5)

92(7',2 + I‘)

03(, z2+ 3 ! + 2)
92(T,z+ 1)
Ox(T, 2 + 1)

ba(ryz+1+7)
pa(r,z+1)
p3(r, 2+ 1)
pa(T, 2+ 1)

i

\/gez"i”’(so (1,2) = @a(7, 2))
\/?iez""/"(gog(r, z) + pa(7, 2))
V2 (os(7) = ea(7)

\/5 (ps(r) + $2(r))

e—ni(z+r/4}

e—ﬂ'i(Ez-{-r)
Bo(T, 2)
€6y(T, 2)

€6y (T, 2)

93(7_7 z)

= 863(7, z)

fl

i

—0;3(T, 2)
653(7-: Z)

—i€by(r, 2)

—6y(T, 2)
86y(r, 2)
~36,(T, 2)

= @a(r,2)

I

dp3{r, z)

= ‘102{7-7 z)
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4 Modular group and the congruence subgroups

4.1 modular groups

Let N be a positive integer. The principal congruence subgroup I'(N) of level N of the modular
group SL{2,7Z) is defined to be

P(N).—.{a:(z g)eSL(z,Z)](i Z)E(é {1)) (modN)}

Another important classes of congruence subgroups are

To(N) = {a= ( ‘Zj 2) € SL(2,Z)|c=0 (mod N)},

and
I'1{N) = {a: ( i b ) €SL(2,Z)la=d=1 (mod N),c=0 (mod N)},
\ .
We are interested in the groups I'g(2), To(4), T'(2), and I'¢{4) N I'(2). The picture below

describes the relation among some congruence subgroups. Here a downward line implies the
subgroup relation with the relative index attached.

(1) = SL(2,Z)

3 index

I'e(2)
2 N2
r(?) To(4)

|2
I'(4)

The generators of some of these groups are computed to be
11 0 -1
o= (o) (17))
_ 11 1 -1 -1 0
r = ((03)-( )3 2)
11 10 -1 0
01 /7 2 1))’V 0 -1

i
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no = (310 3)(3 %)
- ((53)-(32)(5 %))
i = {(31).(3 (7 4)
(23 ) 2))
reonre) = (3 3).(50)(4 1))

4.2 A definition of modular forms

A holomorphic function f(r) on H is called a modular form of weight  for a group I' C SL(2, Z)
if it satisfies the conditions:
a b

(1 f (%) = (er +d)*f(r) for ( . d ) erl,
and

(2) holomorphic at each cusp of T'.
We denote by My(T) the linear space of modular forms of weight k belonging to I'.

4.3 A summary of known results

Proposition 2 We have the following isomorphisms between the rings

Clz, 9] = Clz* + ¢, 2% 25 @ M(To(2))

kEZ>o
0 N
Clz, 4] = Clz*,9"] =2 D Ma(To(4))
kEZ)D
N N
Clogl® = Cl%,0] 25 @ Millo(4)NT(),

keZxo

where the isomorphism is realized by sending © to @s(T) and y to ¢, (7) respectively.

These are not new results. Actually the first and second lines are due to Maher[9], and the
third line is due to Hiramatsu [8].

4.4 Yet another group

Let Gy be the group generated by a linear transformation ( [1) (z) ) Then it can be eas-

ily proved that the invariant ring Clz,y]%* equals Cle,y%]. We set a map from Cfz,y*] to
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Brez Mr(To(4), 1x) by substituting z = @s(7) and y = @3(r), where Mp(T'o(4),1z) is a linear
space of modular forms discussed in H. Cohen [5]. Coben showed that

Mk(FQ(4),_1k) = {C[{?C’-(T)? ‘7?2(7)]1

where Fy(7) = 148(2;7.)) with Dedekind’s eta function 5(r). We show
nt(2r

Proposition 3 It holds that .
p3(r) = 2 Fa(7).

A proof is done by using the infinite product expansions of both ,(7) and 7(r):

n(r) = g%

o

(1 __qm) qg= ezm'-r

i
v

™m.

o |

ea(r) = 2% [ (1—¢™™)(1 4+ ™)

m=1

il

5 Diagonalized groups

Let Gy @ (1 be the group generated by the linear transformations:

¢ 000 1000
0100 0 72 0 0
00 ¢ 0 0010}
0001 0 00 <
b 72 0 0 0100
100 0 1 000
0006 ¢’ 0001
0010 0 0 ¢ 0

The ring of invariants for G; & G; is denoted by
R =Clz,y,u, ’UlGl@Gl.
Molien scrics for Gy @ G4 is computed to be

14 3¢% + 1348 + 9412 4 418

P00, (t) = (1—t4)2(1 = #8)2

Primary invariants (i.c. the polynomials implied by the numerator of Pgy 06, (t)) of Ry arc
given by

a:4+y4
ut + ot
z® +4°,
u® + o8
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Secondary invariants (i.e. the polynomials implied by the denominator of ®¢,4q,(t)) are

given by

Q16,6

18,10

16,8

ll

I

il

I

I

It

il

i

H

I

H

1,

220 + 202,

Sy + y3v,

zu® + yvs,

gt + 228 R + gt

u® + 22yfuv? + 2280t 4 P,
230 + 22yutt® + U + P,
2542 + 20%5%uv + g5,

ztut + 2iyur® + ey + gyt
z2ub + Z:zcg,nf‘v3 + yivﬁ,

st 4yt

TP + Pyl

2,2
ziulot +y2u4212,

z*yPu + 3ytu,
Suvt + y3u4v,
P .
zudv® + yuted,

2,42

a:"u6+as4y uv ~1—azr‘)y4 2yt

wliv® 4+ ¢80,
2Pt + oy + ol + 2P,
ms‘u3't}4+fﬂ3y2u'06 +$2y3u67)‘+y5‘&4'03,
zﬁyuQ,vS +w4y3v5 +_x3y4u5 +my6u3v'2,
2ut + 2yt + P + yPutd,
2Tu® + otPute + 2ytunt + g7,
25030+ PPt + 2P iUt
:c7yu,U3 +x4y4u4 + w‘ly‘lv-l +13y7u3?),
st 4 shyute® + ot + ytuted,
SHu® + 225200 + 2ttt +
222y U + oPeb,

2Tt 4 225P 0 + oyt +
$3y4u’l}8+2$2'y5u6v3+y7u42’5,

shyute® + 2283 ute® + oSyt + oty
20350 + mytutv,
$9yu3v3+m7y3uv5 +m6y4u6 +$6y4uzv4
tatyPute? + 2t + adyTut + 2y0u?,
$6uﬁv4+$5yu?v3+ﬂ:4y2u4v6+

34505 + alytubet + eytuy’ + yPuted,

z8utv?* + 28y2ub® + 2255 ud® +

22y
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2.’133?,{5165?)3 +$2y6u2,06 + ysu4v4

Let G3 @ G, be the group generated by the linear transformations:

1 00 0 1000
0100 02 0080
00 2¢ 0y’ 0010
0 0 0 1 0 00 4

The ring of invariants for G, @ Gy is denoted by
R, = Clz,y,u, v]%29%,

Molien series for Gy @ G, is

. 1+ 6¢* + 9t8
b¢,00,(t) = Ao
PrimaryInvariants of the group G, @ G, arc
G40 = 134,
d4,0 - y47
C4a = U*a
d4}4 = ’04
and secondary invariants of Gy @ G, are
co = 1,
€49 = i
dyo = y*?,
Ci1 = 55316,
ey = zul,
d4,1 = y3T’,
d4,3 = Z/’US;
e = atytute?
Cs,3 = $2y3u2v,
Cs,s = $2yu2?J3,
d8.3 = 2}33:1}2'11/02,
ds,s = myzuavz,
e = z°yiuw,
dga = :c3yuv3,
€ge = 5593“3'0,

csg = wyued
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Let G3 @ 3 be the group generated by the linear transformations:

-10 0 0O 1 0 0 0O
0 1 0 0 0 -1 0 O
0 0 -1 0}’ 0 0 1 0
0 0 0 1 0 0 0 -1

The ring of invariants for Gz & Gj3 is denoted by
Rs = Clz,y,u, v]%®C%,
Molien series for G3 @ G3 is computed to be

1+22 4+ ¢4
Po,0a6, (t) = Ao ER

Primary iuvariants of the group are given by;

2
fZ,U = T ]
2
G20 = ¥,
2
fr2 = v,
2
92,2
and secondary invariants are
foo = 1,
f2,1 = zu,
g21 = Yy,
fop = myww

6 From finite groups to Jacobi forms

6.1 Definition of Jacobi form

Let T be a subgroup of SL(2,7Z). A holomorphic function f(7,2) defined on HxC is called a
Jacobi form of weight & and index m for a group I' X Z% if it satisfies

ar z vk 2mimez a b
(3) f (C‘r:g’ c1'+d) = (CT + d)keZ /(c1'+d)f(7_’z) for ( c d ) € P7

and

(4) f(r,2 + A7+ p) = e72mmOH2 £ (1 2) for any (A, u)-€ Z2. A

For a subgroup I' of the modular group we let Jac(k,m,T" X Z*) to denote Jacobi forms of
weight k and index m associated with the group I" x 72,
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6.2 A result

Proposition 4 We have the following injective wsomorphisms between the rings

Clz,y,u, )%« @ Jaclk,m,To(2) x Z?)

k€ Zso,m>0
N M
Clz,y,u,v]9®% < @  Jac(k,m,To(4) x Z2)
k€Zivo,m>0
N N
Cle,y,u,0]%%% < @ Jac(k,m, (To(4) NT(2)) x 22),
kGZ)O

where the isomorphism is realized by sending z to @3(r) ,y to (1), u to w3(7,2) and v to
2(T, z) Tespectively.

7 Jacobi forms associated with I'g(4)
Let G4 @ G4 be the group generated by the lincar transformation:
1000

0+« 00
0010}
000 :

then we know that

6[31 U, U]G‘;@G& = RZ @ 92027{2 23] vy3’}22 ] y’USRg,

where Ry = Clz,y*,u,v*]. To u we associate @3(7,z), and it gives Jacobi forms of weight
and index 1 for T'g(4) and character 1. In the same way we have

vt = (7, 2)* Jacobi forms of weight 2 and index 4

y*® = 0a(7)2p2(r, 2)* Jacobi forms of weight 2 and index 2
v o) pa(r, 2) Jacobi forms of weight 2 .and index 1
yv® = a(T)e(, 2)° Jacobi forms of weight 2 and index 3

For the proof of these statements we need algebraic properties of the automorphic factor of the
Jacobi forms.
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