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A special value of the spectral zeta function
of the non-commutative harmonic osci ilators

(非可換調和振動子のゼータの特殊値)

Hiroyuki Ochiai(落合啓之) *

Abstract
The non-commutative harmonic oscillator is a $2\cross 2$-system of harmonic oscil-

lators with a non-trivial correlation. We write down explicitly the special value at
$s=2$ of the spectral zeta function of the non-commutative harm onic oscillator 1n
terms of the complete elliptic integral of the first kind, which is a special case of a
hypergeometric function.

1 Introduction
The non-commutative harmonic oscillator $Q=Q(x, \partial_{x})$ is defined to be the second-
order ordinary differential operator

$Q(x, \partial_{x})=[\alpha 0$ $\beta 0](-\frac{\partial_{x}^{2}}{2}+\frac{x^{2}}{2})+[01$ $-10](x \partial_{x}+\frac{1}{2})$ .

The first term is two harmonic oscillators, which are mutualiy independent, with
the scaling constant $\alpha>0$ and $\beta>0$ , while the second term is considered to be the
correiation with a self-adjoint manner. The spectral problem is a2 $\mathrm{x}2$ system of
the ordinary differential equations

$Q(x, \partial_{x})u(x)$ $=$ Au(r)

with an eigenstate $u(x)$ $=[u_{1}(x)u_{2}(x)]\in L^{2}(\mathrm{R})^{\oplus 2}$ and a spetrum A $\in$ R. It is
known [8] that under the natural assumption $\alpha\beta>1$ on the positivity, which is also
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(1)

assumed in this paper, the operator $Q$ defines a positive, self-adjoint operator with
a discrete spectum

$(0<)\lambda_{1}\leq\lambda_{2}\leq..$ . $arrow+\infty$

The corr\‘esponding spectral zeta fimction is defined to be

$\zeta_{Q}(s)=\sum_{n=1}^{\infty}\lambda_{n}^{-s}$ .

An expression of the special vaiue $\zeta Q(2)$ is obtained in [2] in terms of a certain con-
tour integral using the solution of a singly confluent type Herm differential equation.
It would be indicated that these special values are complicated enough and highly
transcendental as reflecting the transcendence of the spectra of the non-comrnutative
harmonic oscillator.

However, in this paper, we prove the $\mathrm{f}\mathrm{o}\mathbb{I}\mathrm{o}\mathrm{w}\mathrm{i}\mathrm{n}\mathrm{g}$ simple expression:

$\zeta_{Q}(2)=\frac{\pi^{2}}{4}\frac{(\alpha^{-1}+\beta^{-1})^{2}}{(1-\alpha^{-1}\beta^{-1})}(1+(\frac{\alpha^{-1}-\beta^{-1}}{\alpha^{-1}+\beta^{-1}}2F1(\frac{1}{4},$ $\frac{3}{4};1;\frac{1}{1-\alpha\beta}))^{2})$ .

where $2F_{1}$ is the Gauss hypergeometric series. We also have an expression by using
the complete elliptic integral of the first kind as

$\zeta_{Q}(2)=\frac{\pi^{2}}{4}\frac{(\alpha^{-1}+\beta^{-1})^{2}}{(1-\alpha^{-1}\beta^{-1})}(1+(\frac{\alpha^{-1}-\beta^{-1}}{\alpha^{-1}+\beta^{-1}}I_{0}^{2\pi}\frac{d\theta}{2\pi\sqrt{1+(\cos\theta)/\sqrt{1-\alpha\beta}}})^{2})$ .

(2)
In this sense, the speciai value $\zeta Q(2)$ is written in terms of a hypergeometric series,
whi& is much tractable and known. Note that each spectrum is related with the
monodromy probiem of Heun’s clifferential equation, which is far from hypergeo-
metric, see [5], [6]. Only thle total of spectra has an extra simpie form in some
sense.

Here is a brief organization of the paper; In Section 2, vxe recall the expression
of $\zeta Q(2)$ given in [21, and derive more explicit formula of the generating function
appearing in that expression. We prove in Section 3 our main results, the equations
(L) and (2). The proof depends on several formulae of hypergeometric series not
only for $2F_{1}$ but also for $3F_{2}$ such as Clausen’s identity.

2 An expression of the generating function
We start from the series-expression of the special value $\zeta Q(2)$ of the non-commutative
harmonic oscillator given in [2, (4.5a)]

$\zeta_{Q}(2)=Z_{1}(2)+\sum_{n=0}^{\infty}Z_{n}’(2)$ .
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We introduce notations. Recall that $\alpha>0,$ $\beta>0$ with $\alpha\beta>1$ . Let us introduce
the parameters $\gamma=1/\sqrt{\alpha\beta}$ and $a=\gamma/\sqrt{1-\gamma^{2}}=1/\sqrt{\alpha\beta-1}$ as in [2, (4,1)]. Note
that they satisfy $0<\gamma<1$ and $a>0$ .

The term $Z_{1}(2)$ is given in [2, (4.5b)] and $Z_{n}’(2)$ are given in [2, (4.9)] as

$Z_{1}(2)$ $=$ $\frac{(\alpha^{-1}+\beta^{-1})^{2}}{2(1-\gamma^{2})}3\zeta(2)$ , (3)

$Z_{n}’(2)$ $=$ $(-1)^{n} \frac{(\alpha^{-1}-\beta^{-1})^{2}}{(1-\gamma^{2})}(2n -1n)( \frac{a}{2})^{2n}J_{n}$. (4)

The values $\{J_{n}\}_{n=1,2},\cdots$ are specified by the generating function

$w(z):= \sum_{n=0}^{\infty}J_{n}z^{n}$ .

The function $w(z)$ is a solution of the ordinary ifferential equation

$z(1-z)^{2} \frac{d^{2}w}{dz^{2}}+(1-3z)(1-z)\frac{dw}{dz}+(z-\frac{3}{4})w=0$ (5)

which is given in [2, Theorem 4.13] and called a singly confluent Heun’s differential
equation. The constant term is given by $w(0)=J_{0}=3\zeta(2)=\pi^{2}/2$ . It is easy to
see that there exists a unique power-series solution of this homogeneous differential
equation (5) with the initial condition $w(0)=\pi^{2}/2$ . The final target $\zeta Q(2)$ involving
these $J_{n}$ ’s with an infinite sum seem ed to have no closed expression.

In this section, we give a simple expression of the generating function $w(z)$ . We
denote by $\partial_{z}=\partial/\partial z$ .

Lemma 1 The differential equation (5) is equivalent to

$4(1-z)\partial_{z}z\partial_{z}(1-z)w+w=0$ . (6)

Proof: This directly follows from Leibniz rule. QED

Lemma 2 Let $t=z/(z-1)$ be a new independent variable, and $\eta(t)=(1-z)w(z)$
a new unknown function. Then the differential equation (6) is equivalent to

$t(1-t) \partial_{t}^{2}\eta+(1-2t)\partial_{t}\eta-\frac{1}{4}\eta=0$ . (7)

Proof: The differential equation (6) is equivalent to

$4(z-1)^{2}\partial_{z}z\partial_{z}(z-1)w+(z-1)w=0$.
Note that $(z-1)(t-1)=1$ and $\partial_{t}:=\partial/\partial t=-(z-1)^{2}\partial_{z}$ . Then

$4\partial_{t}t(t-1)\partial_{t}\eta+\eta=0$ .

By Leibniz rule, this is equivalent to (7). QED
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Proposition 3
$w(z)= \frac{J_{0}}{1-z}2F_{1}(\frac{1}{2},$ $\frac{1}{2};1;\frac{z}{z-1})$ .

Proof: Since any power-series solution of (7) in $t$ is a constant multiple of $2F_{1}( \frac{1}{2}, \frac{1}{2};1;t)$ ,
we have the conclusion. QED

3 The special value
We introduce the auxiliary series

$g(a):= \frac{2}{J_{0}}\sum_{n=0}^{\infty}(-1)^{n}(2n -1n)( \frac{a}{2})^{2n}J_{n}$

so that

$\zeta_{Q}(2)$ $=$ $\frac{(\alpha^{-1}+\beta^{-1})^{2}}{2(1-\gamma^{2})}3\zeta(2)+\frac{(\alpha^{-1}-\beta^{-1})^{2}}{2(1-\gamma^{2})}3\zeta(2)g(a)$ (8)

$=$ $\frac{\pi^{2}}{4}\frac{(\alpha^{-1}+\beta^{-1})^{2}}{(1-\alpha^{-1}\beta^{-1})}(1+(\frac{\alpha^{-1}-\beta^{-1}}{\alpha^{-1}+\beta^{-1}})^{2}g(a))$ (9)

Theorem 4
$g(a)=2F_{1}( \frac{1}{4},$ $\frac{3}{4};1;-a^{2})^{2}$

Proof: We note that

$(2n -1n)(\frac{1}{2})^{2n}=\frac{1}{2}\mathrm{x}\frac{(2n-1)!!}{(2n)!!}=\frac{1}{2\pi}l_{0}^{1}\frac{u^{n}du}{\sqrt{u(1-u)}}$ .

Then, the integration by parts implies that

$g(a)$ $=$ $\frac{2}{2\pi J_{0}}\sum_{n=0}^{\infty}(-1)^{n}\oint_{0}^{1}\frac{u^{n}du}{\sqrt{u(1-u)}}a^{2n}J_{n}=\frac{1}{\pi J_{0}}I_{0}^{1}\frac{w(-a^{2}u)du}{\sqrt{u(1-u)}}$ . (10)

By Proposition 3, the function $w$ is written in terms of hypergeometric series $2F1$ .
We substitute such an expression into the equation (10), then we obtain

$g(a)= \frac{1}{\pi}\int_{0}^{1}\frac{1}{1+a^{2}u}2F_{1}(\frac{1}{2},$ $\frac{1}{2};1;\frac{a^{2}u}{a^{2}u+1})\frac{du}{\sqrt{u(1-u)}}$ .

We introduce a new variable $v=(1+a^{2})u/(1+a^{2}u).$ Then

$g(a)= \frac{1}{\pi}\int_{0}^{1}2F_{1}(\frac{1}{2},$ $\frac{1}{2};1;\frac{a^{2}v}{1+a^{2}})\frac{dv}{\sqrt{v(1-v)(1+a^{2})}}$ .
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Now we use the formula (2.2.2) of [1]

$3F_{2}(a_{1}, a2, a_{3}; b_{1}, b_{2};x)= \frac{\Gamma^{p}(b_{2})}{\Gamma(a_{3})\Gamma(b_{2}-a_{3})}\int_{0}^{1}t^{a;\mathrm{z}-1}(1-t)^{b_{2}-a_{3}-1}2F_{1}$( $a_{1}$ , a2; $b_{1}$ ; $xt$ ) $dt$ .

This shows
$g(a)= \frac{1}{\sqrt{1+a^{2}}}3F2(\frac{1}{2},$ $\frac{1}{2},$ $\frac{1}{2};1,1;\frac{a^{2}}{1+a^{2}})$ .

By Clausen’s identity (in e.g., Exercise 13 of Chapter 2 in [1])

$2F1(a,$ $b;a+b+ \frac{1}{2};x)^{2}=3F2(2a,$ $2b$ , a $+b;2a+2b$, a $+b+ \frac{1}{2};x)$ ,

we obtain
$g(a)= \frac{1}{\sqrt{1+a^{2}}}2F_{1}(\frac{1}{4},\frac{1}{4};1;\frac{a^{2}}{1+a^{2}})^{2}$

Moreover by Pfaff formula, Theorem 2.2.5 of [1]

$2F_{1}(a, b;c;x)=(1-x)$ $-a2F_{1}(a, c-b;c;x/(x-1))$ ,

we obtain

$2F_{1}( \frac{1}{4},$ $\frac{3}{4};1;-a^{2})=(1+a^{2})_{2}^{-1/4}F_{1}(\frac{1}{4},$ $\frac{1}{4};1;\frac{a^{2}}{a^{2}+1})$ .

This shows

$g(a)=2F_{1}( \frac{1}{4},$ $\frac{3}{4};1;-a^{2})^{2}$

QED

Remark 5 In the earlier version of the poper, it was suggested to make use of
the hypergeometric series $3F_{2}$ ?vith this special parameter (1/2, 1/2, 1/2; 1, 1) by the
multi-variable hypergeometric function of type $(3, 6)$ , especially by its restriction
on the stratum called$X_{1b}$ in [4]. However, we can avoid to use a multi-variable
hypergeometric function in the present version as is seen above.

Theorem 4 with the help of the equation (9) shows the equation (1). The equa-
tion (2) is shown as follows. By Theorem 3.13 of [1]

2 $F_{1}(a, b;2a;x)=(1- \frac{x}{2})^{-b}2F_{1}(\frac{b}{2},$ $\frac{b+1}{2}$ ; a $+ \frac{1}{2};(\frac{x}{2-x})^{2})$ ,

we have
$2F_{1}( \frac{1}{2},$ $\frac{1}{2};1;\frac{2\mathrm{i}a}{\mathrm{i}a+1})=(1+ia)_{2}^{1/2}F_{1}(\frac{1}{4},$ $\frac{3}{4};1;-a^{2})$ .
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Let us recall the definition of the elIiptic integral of the first kind;

$K(k)= \int_{0}^{\pi/2}\frac{d\theta}{\sqrt{1-k^{2}\sin^{2}\theta}}=\frac{\pi}{2}2F1(\frac{1}{2},$ $\frac{1}{2};1;k^{2})$ .

Then we have

$2F_{1}( \frac{1}{4},$
$\frac{3}{4};1;-a^{2})=\frac{2}{\pi}(1+\mathrm{i}a)^{-1/2}K(\frac{2ia}{\mathrm{i}a+1})=\frac{2}{\pi}f_{0}^{\pi/2}\frac{d\theta}{\sqrt{1+ia\cos 2\theta}}=\frac{1}{2\pi}\int_{0}^{2\pi}\frac{d\theta}{\sqrt{1+ia\cos\theta}}$ ,

and the equation (2).
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