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Abstract

This paper is based on part of the lecture notes of a minicourse on
iteration techniques presented at the Luminy workshop on set theory
in 2002.}

The technique of iterations along templates has been developed by Sa-
haron Shelah in 1999 to solve one of the classical problems on cardinal in-
variants of the continuum, namely to prove the consistency of < a [Sh]
where D is the dominating number and a is the almost disjointness number.
An alternative, axiomatic, treatment of such iterations has been developed
by the present author in the survey [Brl] and used in [Br2] to show that a
consistently may have countable cofinality.
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Society for the Promotion of Science

IWe apologize for not presenting the paper we talked about at the Kydto RIMS con-
ference. The reason is (1) the latter has not been written yet and (2) it has already
“been promised to another conference proceedings volume the deadline for which has past
already.



We present yet another approach to iterations along templates which,
unlike previous work ([Sh], [Br1], [Br2]), is based on correctness of complete
embeddings. The advantage is two-fold:

(1) We obtain a concrete description of the initial steps of the iteration:
they must be either standard two-step iterations or direct limits.

(2) The present framework is fairly general; in particular, the proof of com-
plete embeddability between the initial steps of the iteration (which is
often the hardest argument for nonlinear iterations) works for a large
class of forcing notions, namely Suslin cce forcing notions which pre-
serve correctness. In [Brl], this proof had been done only for, and used
the combinatorics of, Hechler forcing though it was clear that it could
be done for a number of other forcing notions as well. '

Correct embeddings first arose in the author’s work [Br4] on shattered itera-
tions (see also [Br3]) where they where crucial for proving complete embed-
dability into the amalgamated limit. The latter work shows the consistency
of cov(N) > cov(M) > Ry.

In Section 1, we give a brief outline of correctness. For a more com-
prehensive treatment see Section 1 of [Br3]. Section 2 presents our template
framework. In the third part of the Luminy minicourse, we discussed isomor-
phisms of names and, putting the templates to good use, sketched Shelah’s
proof of the consistency of 0 < a. We omit this third part here since it does
not involve any new ideas and essentially follows the exposition in [Brl].

1 Complete embeddings

Let I = {0A1,0,1,0V 1} be the four-element lattice with top element 0V 1,
bottom element 0 A 1, and 0 and 1 in between. Assume we are given cBa’s
A, for i € I and complete embeddings e;; : A; — A; for ¢ < j from I. The
latter give rise to projection mappings hj; : A; — A; naturally defined by

hyilas) = [ [{a € Ay; eij(a) 2 aj}

Assume without loss that A; C A, for i < j and that e;; is the identity. Write
A; <o A; to denote A; is completely embedded in A;.

Definition 1.1 The projection hoyi o is correct (at 1) if hovio{ar) = Rigai(a1)
holds for all a1 € A;.



Notice that hoyio is correct at 1 iff for all ap € Ao and a; € Ay, if
hoont(ao) - hioni{ar) # 0, then ag - a1 # 0 in Agyi. '

This shows that correctness is in fact a symmetric property, that is, cor-
rectness of hoyio at 1 is equivalent to correctness of hoy1,1 at 0, and we shall
often simply say the diagram

Aoy

(Az’> = AO/ \Al
N
onl

is correct. Correctness implies that Agny = Ag N Ay, but not vice-versa
(see [Br3]).

Example 1. (amalgamation) Let Agy1 = amals,,, (Ao, A1) be the amal-
gamation of Ag and A, over Aga;. Conditions are pairs (ag,a1) € (Ag\
{0}) x (A, \ {0}) such that hogni(ao) - Rioni(a1) # O, equipped with the
coordinatewise order, (ah,a}) < (ao,e1) if af < @ and a; < a1, Agv1 is the
completion of this set of conditions. Identify Ao with {(ag,1); ap € Ag};
similarly for Ay; thus Ag, A; € Agyvi, and it is well-known the embeddings
are complete. The diagram is correct by definition of the amalgamation: if
hooni(ao) - hioni(a1) # O, then (ag,a1) # 0 is & common extension.

The product is a special case of the amalgamation with Agr = {0, 1}
In fact, there is another way of looking at the amalgamation: forcing with
amaly,,, (A, A;) is equivalent to first forcing with Aga; and then with the
product of the factors Ag/Gonr and A1/Gonr-

Example 2. (two-step iteration) Recall Hechler forcing D consists of pairs
(s, f) € w< x w* such that s C f. The ordering is given by (t,g) < (s, f)if
t O s and g{n) > f(n) for all n € w. Hechler forcing generically adds a real
d € w” which eventually dominates all ground model reals. Let Ag = A; =
r.0.(DD), the cBa generated by D, put Agy1 = Ag * Ay, the two-step iteration
(where A, is an Ag-name for r.0.(D)), and let Agns = {0,1} be trivial. As
before identify Ag with {{ao, 1); ao € Ao}; similarly for A,

Then all embeddings are complete — the only nontrivial case is A <
o Agyi: we need to argue that every maximal antichain A C A; is still
maximal in Agx A;. By the above identification, this is clearly equivalent to
saying that every maximal antichain A €D in the ground model V is still a
maximal antichain of D in the sense of V[Gp] where Go C Ag is an arbitrary



generic. (Note here that DV is a proper subset of DVIGol)) However, since D
is Borel ccc (D, the ordering and incompatibility are Borel), being a maximal
antichain in D is a IT}-statement and therefore absolute. Correctness, then,
is straightforward.

Lemma 1.2 (embeddability of direct limits [Br3]) Let K be a directed index
set. Assume (Ay; k € K) and (Ex; k € K) are systems of cBa’s such that
Ay <o Ay, Ep <o Ey and A, <o Ep for any k < ¢. Assume further all

E
N

diagrams Ag are correct for k < £. Then the direct limit A of the
Ay’s completely embeds into the direct limit E of the Ey’s.

Proof. Let A C |J,Ax be a maximal antichain in A. Choose b € E,
ie. b € Eg for some k. By maximality of A there is a € A such that
g, 4,(b) - has,(a) # 0. Find £ > k such that a € A, By correctness, .
b-a # 0in K, as required. O

Lemma 1.3 (preservation of correctness in two-step iterations with D [Br3])

Assume (A;) is correct. Then so is (E;) where E; = A; xr.0.(D).

Proof. We may assume without loss Aga; = {0,1}. Let e; = (a1, (s1, fi) €
E; and fix (s, f) < hioni(er). Without loss of generality |s| > [s1]. Thus
81 C s. Then given any ¢ 2 s with ¢ > f on the domain of ¢, there is af < a4
forcing t > fi on the domain of ¢. (x)

Now assume eg = (ao, (So, fo)) € Eq is below (s, f). Thus so D s and sy >
f. By (#) find @} < a; forcing 59 > f1. By correctness, ag-a} # 0 and clearly
ag - oy 1Fay,. “(s0, fo) and (s1, f1) are compatible.” Thus (s, f) < hoyioler)
as required. O

Lemma 1.4 [Br4] Assume (A;) is correct. Then so is (E;) where E; = AxB
or E; = A; xB,. Here B is random forcing, and B, is the algebra for adding
% random reals.

We actually believe this is true for a large class of forcing notions. Recall
that a forcing notion (P, <) is said to be Suslin ccc if P is ccc and P, < as well
as L (incompatibility) are X} sets. This implies that “A = {z,; n €w} is a
maximal antichain” is a T1}-statement as in Example 2 above. (Indeed, being



a maximal antichain means that (1) Vn # m (z, L z,) and (2) Vy (y € P
implies there is n such that z, and y are compatible}. (1) is IT} because both .
y € Pand y < z are X1; and (2) is IT{ because compatibility is )

Conjecture 1.5 Let PP be a Suslin ccc forcmg and assume (A;) is correct.
Then so is (E;) where E; = A; xr.0.(P).

Clall a Suslin cec forcing notion correctness-preserving if the conclusion of
the conjecture holds.

While it is obviously irrelevant for linear iterations, correctness seems to
be a crucial notion when it comes to building nonlinear iterations.

2 Iterations along templates

Let (L, <) be a linear order. For z € L, let L, = {y € L; y <g =}, the
initial segment determined by z.

Definition 2.1 (Template) A template is a pair (L,Z = {Z,; z € L}) such
that (L, <pr) is a linear order, I, C P(Ly) for allz € L, and

(1) [Lo]™ C I,

(2) I, is closed under unions and intersections,
(3) I, € Iy for x <1 ¥,
(

4) T = U, Lo U{L} is wellfounded, as witnessed by Dp = Dp;:Z —
On.

IfFACL andx € A, we define T,]A={BNA; Be 7.}, the trace of I, on
A. Then (A, I1A = {I.|4; z € A}) is a template as well.

L is meant to be the index set of the iteration while Z describes in some
sense the support. (1) says that for z < y, the real f, added at stage y will
be generic over the real f, added at stage x. (3) is a transitivity condition
which can be construed as meaning that for z <y, if f; is generic over some
initial stage of the iteration, then so is f,. Wellfoundedness (4) allows for a
recursive definition of the iteration.

(2) and (3) imply that Z is also closed under unions and intersections.



Definition and Theorem 2.2 (Iteration of correctness-preserving Suslin
cce forcing along a template) Assume (L,Z) is a template. Also assume
{Q.; = € L} are correctness-preserving Suslin ccc forcing notions (whose
definition lies in the ground model). By recursion on Dp(A), A€ I,

(a) we define the partial order PIA,

(b) we prove that PID C PIA for D C A (D is not necessarily in T),
(c) we prove that P[A is transitive,
)

(d) we describe how PJA is obtained from P]B where B ¢ A, B € T (so
Dp(B) < Dp(4)),

(e) we prove that PID <o Pl A for D C A (D is not necessarily in T ),

(f) we prove that for D C L with Dpgyp(D) < Dp(A), we have PI(AND) =
PIANPID

(g) we prove correctness in the sense that if A, D C A, A €T and D' =
A’'N D, then the projection maps are correct both at A’ and at D (note
that D and D' do not necessarily belong to T ).

This is, in fact, a simultaneous recursion-induction for all templates. Note
that for D C A, we have Dpyyp(D) < Dpzy4(A4) = Dpz(A).

Definition and Proof. (a) First consider the case Dp(4) = 0. This is
equivalent to A = §. Let P10 = {{}.

Now assume Dp(A) > 0. P[A consists of all finite partial functions p
with domain contained in A and such that, letting z = max(dom(p)), there
is B € I,[A (so B € T and Dp(B) < Dp(A4); in fact, B = C N A for some
C € I,) such that p[(AN L;) € P]B and p(r) is a P| B-name for a condition
in Q, (where Q, is a P|B-name as well).

The ordering on PJA is given by: ¢ <pra p if dom(g)
letting 2 = max(dom(q)), there is B € Z, [ A such that g[(AN

} and,

2 dom(p
NL,) € PIBand

do
z) €
e either z ¢ dom(p), p € PIB, and ¢](AN L;) <pi5 p,

e orz € dom(p), p[(ANL,) € BB, q[(ANLy) <pip p/(ANL,), and p(z)
and ¢(z) are P| B-names for conditions in Q,, such that ¢[(ANL,) itp5

q(z) <g, p(z).



Concerning the first alternative in the definition of the ordering note that
it is straightforward that given p € PlA and & >, max(dom(p)), there is
B € T, } A such that p € P[B.

(b) Let D C A and p € P[D. Also let # = max(dom(p)). There is
E € I,|D such that pl(D N L .) € PIE and p(z) is a P[E-name for a
condition in Q,. Let C' € Z, such that £ = C N D. Put B=CNA. Then
E C B and, by induction hypothesis (b), p/(D N Ly} = pl(AN L,) € PIB.
By induction hypothesis (¢), p(z) is a P[B-name. Thus p € PlA.

(c) We use completeness (the induction hypothesis for (e)) and closure
under unions.

Assume r <pj4 q <pta p- Let y and z be the maximal elements of dom(r)
and dom(q), respectively. There are B, € Z,[A and B, € Z,[ A witnessing the
order relationship, i.e. r[(ANLy),q (AﬂL ) € P|B,, q[{ANL,),p[(ANL,) €
P|B,, and r[(A N L) <pz, q[(Aﬂ Ly), [(Aﬂ L ) <[p 8, PI(ANLg). Let
B = B, U B,. We check B witnesses 7 <pj4 P

Ifz <y, (b) gives us ¢ € P|B and p[(AN L) € P[B. Thusp € PiB,
and 7[(ANLy,) <pip ¢ <pip p- SO T <pra p.

fz=uy, ri{(AN L) <ps ¢/(A N Ly) <ptz p[(AN Ly), so we are done
if z ¢ dom(p). So assume z € dom{p). Then r(y) and q(y) are P[By-
names and ¢(z) and p(z) are P|B;-names. So they are all P[B-names, and
rI(ANLy,) IFers 7(y) < qly) < p(y), asrequired. (Note this uses the inductive
hypothesis for complete embeddability (e).)

(d) We consider several cases.

Case 1. There is 7 = max(A) such that Ao = AN L, = A\ {z} € Z,[A
Then IP’{A is easily seen to be the standard two-step iteration PlAg x Q,
where Q, is a P[ Ag-name (indeed, if p € P A, then p[Ag € Pl Ag and p(z) is
a Pl Ag-name for a condition in Q,). A fortiori, Pl 4y <o PTA.

Case 2. There are two subcases.

Subcase 2.(a) There is z = max(A), but 4g = AN L, ¢ I,7A. Let
p € PlA. So plAq € PlAg. There is By € Z,1A (so By C Ag) such that

plAg € PB, and p(z) is a Pl By-name. Let B = By U {z} C A. Then
By = BN L, € I,] A and thus p € P|B. Since Z;[A is closed under unions,
the collection of B € Z with BN L, € T, A is directed. Therefore P{A is
the direct limit of the P|B where B € A, BN L, € I [A. (This uses the
induction hypothesis for (e).)



Subcase 2.(b) A has no maximum. Let p € P[A be a condition. Let
y = max(dom(p)). Then there is By € Z,[ A such that p[(AN L) € P[By
and p(y) is a P]By-name for a condition in Q, (where Q, is a P]By-name
as well). Now B = By U {y} € Z,[A for some z > y from A. In particular
Dp(B) < Dp(A) and p € P{B. This shows that P[A is the direct limit of
the P[B where B C A, B € I, ] A for some z € A. (By closure under unions
and because A has no maximum, the collection of such B’s is directed, and
we can apply again the induction hypothesis for (e).)

(e) Let D C A. We need to prove P[D <o PlA. We split into cases
according to (d).

Case 1. Let Dy = DN Ay € Z,|D. By induction hypothesis (e), P[Dy <
o Pl Ay. Also PIA X PlAg#+Q,. Ifz ¢ D, then D = Dy, and PID <o P[4y <
o P A follows. If z € D, then P} D & P Dy Q, (where Q, is a P] Dg-name).
Since @, is Suslin cce, P{D <o PJA is immediate (compare Example 2 in
Section 1).

Subcase 2.(a) Assume first Dy = DN L, € Z,[D. So there is By € 7,[A
such that Dy = DN Byg. Put B = ByU{z} € A Then D C B and
P]D <o P[B <o P A by induction hypothesis (e) and subcase 2.(a) of part
(d) above.

So assume Dy ¢ Z,!D. Suppose first that x € D. Then (by subcase
2.(a) of part (d) applied to D instead of A) P{D is the direct limit of the
PIE where E C D, EN L, € Z,]D. Each such E is of the form DN B
where BN L, € Z,]A. Conversely, any D N B is such an E. Using the
inductive hypothesis for correctness (g), we see that all projections of such
P B to P[(DN B) are correct. By Lemma 1.2, this means, however, that the
direct limit of the P[E completely embeds into the direct limit of the P B,
as required.

Suppose finally that z ¢ D. Then D = Dy and, since Dy ¢ Z,,[ D, we must
be in case 2 for D and, depending on whether D has a maximum or not, we
are either in subcase 2.(a) or subcase 2.(b). In the first case, if y = max(D),
then P[D is the direct limit of PIE where £ C D,EN L, € Z,[D. In the
second case, P D is the direct limit of P[£ where £ C D, E € Z,]D for some
y € D. In either case, such E belongs to Z,[D (though not all £ € I,[D
are necessarily of this form). Since PE C P[D by (b) and the collection of
E € 1,ID is directed, P| D must in fact be the direct limit of the P]E where
E €1,D. By Lemma 1.2, we see that P[D <o PJA.



Subcase 2.(b) If D € T,1D for some z € A, we are done because then
D C B for some B € I,]A, and P|D <o P|B <o P[A by induction
hypothesis (e) and subcase 2.(b) of part (d) above.

So assume D ¢ T,[D for any z € A. Again, we must be in case 2 for
D and, as in the last paragraph of subcase 2.(a) above, we see that P[D is
the direct limit of the PIE where E € Z,[D for some z € A. Using again
Lemma 1.2, we conclude that P[D <o P[A.

(f) P{(AN D) € PJANPID is immediate from part (b). So assume
pePlANPID. Let = = max(dom(p)). There are B € Z,[A and E € T,[D
such that p[(AN L) = p[(D N L) = p|L, € P[BNPIE and p(z) is both
a P! B-name and a P|E-name and thus a P[B N P|E-name. Since Dp(B) <
Dp(A) and Dpz,(E) = Dpgyp(E) < Dprip(D) < Dp(A), we may apply the
induction hypothesis (f) and get that P[{(B N E) = PIBNP[E. Note that
BNE € Z,[(AN D). Therefore p € P[(AN D), as required.

(g) Again split into cases according to (d).

Case 1. z = max(A), Ay = AN L, € I,JA, and P[A = Pl Ay x Q.
If z ¢ A, we get PIA’ <o P[A,, and correctness follows from induction
hypothesis (g). Similarly if z ¢ D. So we may assume z € A'ND = D'. Then
use induction hypothesis (g) and the assumption that the Q, are correctness-
preserving. (This is the only place where this assumption is needed.)

Subcase 2.(a) = max(A), Ag = AN L, ¢ I,[A, and P[A is the direct
limit of P|B where B C A and BN L, € Z,[A. Let p € PIA' C P[A. We
need to show that the projections agree: harp(p) = hap(p).

First assume Dy = D (1 L, € I,[D. Then, by the discussion in (e)
(subcase 2.(2)), D C B for a B as above and, enlarging B if necessary, we
may assume p € P|B. Let B’ = A'N B. By (f), we know that p € PIB.
By Dp(B) < Dp(A) and induction hypothesis (g), hap(p) = hpp(p) =
hap(p) = hap(p), as required.

So assume Dy ¢ Z,|D. By the discussion in (e) (subcase 2.(a}), we
know P|D is the direct limit of P{(D N B) where B is as above. Again fix
such B such that p € P|B, and let B = A'NB. So p € P{B". Using
Dp(A"),Dp(B) < Dp(4), the induction hypothesis (g) yields hap(p) =
he pre(p) = hepns(p). Again by induction hypothesis (g), we have that
hBo.0nBo(P) = hp,pna(p) for any B € Bo & A with ByN L, € Z,]A. Since

P{A and P} D are the direct limits of such ZP’[BO and P[(D N By), respectively,
hap(p) = hg,pne(p) follows, and we’re done.
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Subcase 2.(b) Depending on whether D € Z,[A for some z € A, we repeat
the previous argument, referring to subcase 2.(b) of (e). O

Say a forcing notion (P, <) is Suslin o-linked if it is Suslin ccc and P =
U, Pn, all P, are linked (any two elements of P, have a common extension),
and “z € P,” is a Xl-statement. (Note that this implies “Py, is linked”
is a TI!-statement and thus absolute. Indeed, linkedness is equivalent to
Vz,y (z,y € P, implies z and y are compatible) and compatibility is It
because incompatibility is X1.)

Lemma 2.3 Assume (L, ) is a template, and the Q,, ¢ € L, are correctness-
preserving Suslin o-linked partial orders, Q, =, @z Then forany A€ Z,
PTA is a ccc p.o.

Proof. We argue in three steps.

Step 1. By induction on Dp(A4), we show that given p € PA, there is
q <pta p such that for all z € dom(g) there are B € Z,1A and n = g, such
that ¢}{(A N L,) € P]B and q[(AN Ly) lFpis ¢(2) € Qup-

Indeed, let p € PJA. Also let z = max(dom(p)). There is B € Z,[A
such that p{(A N L;) € PIB and p(z) is a P[B-name for a condition in
Q.. Thus we may find r € P|B, r <pg p[(4 N L), and n such that
r lkpg plz) € an There is g € P[B, qo <p;g r which satisfies the
induction hypothesis. Let ¢ € P[A be such that dom(g) = dom(qo) U {z},
q[(AN Ly) = qo and g(z) = p(z). Then ¢ is as required.

Step 2. Assume p,q € P[A are as above; L.e. ny, (ng., respectively)
exists for all z € dom(p) (z € dom(q), resp.). Also suppose that n,; = ng,
for all z € dom(p) N dom(g). We claim that p and ¢ are compatible.

This is proved by building & common extension r by recursion on dom(p)U
dom(q). For z = min(dom(p) U dom(g)), r» € P[(A N L;) is the trivial
condition. Assume 7, € P[(A N L,) has been produced for z € dom(p) U
dom(q). Let ¥ be the successor of z in dom(p) Udom(q), or let y = oo if z is
the maximum of dom(p)Udom(q). If z € dom(p)\dom(g), let r, € P[(ANLy)
such that dom(r,) = dom(r,) U {z}, r,[(AN L,) = r; and r,(x) = p(x). If
z € dom(q) \ dom(p) define r, analogously. If z € dom(p) N dom(g), find
Ty (AN L,) < r, and ry{z) such that ry[(AN Ly) IF ry(z) < p(x),q(z). This
is possible because ny; = Ngz. Set 7= Too-

It is immediate from the construction that r < p,q.

Step 3. Cec-ness now follows by a straightforward delta system argument.
il



Lemma 2.4 Let (L,T) be a template. Also assume the Q, are as in the
previous lemma.

(i) Ifp € PIL, then there is C'g L countable such that p € P[C;

(i) If f is a P]L-name for a real, then there is C C L countable such that
f is a PIC-name.

Note that C' does not necessarily belong to Z.

Proof. We make a simultaneous induction on Dp(A), A € 7.

(i) Assume p € PIA. Let z = max(dom(p)). Thereis B € I, A such
that p[(A N L;) € P|B and p(z) is a P{B-name. By induction hypothesis
(i), there is Cy C B countable such that p[(A N L;) € P|Cy. By induction
hypothesis (ii), since p(z) is a name for a real, there is C; C B such that p(z)
is & P]Cy-name. Let C' = CoUCy U {z}. Then C is countable and p € P[C.

(i) Assume f is a P]A-name. For n € w, let {ps; i € w} be maximal
antichains of conditions deciding f(n). By part (i), there are countable Cp; C
A such that p,; € P[Ch;. Let C = Um Cy ;. Then f is a P[C-name. O

This immediately entails that the whole iteration is the direct limit of its
countable fragments.

Corollary 2.5 Let (L, 1) be a template. Also assume the Q. are as in the
previous lemma. Then PIL is the direct limit of the P{A where A C L is
countable.

Classical Example. Let L = u. Also let T = {Lo; @ < pt = p+1, the
collection of initial segments. Put Z, = ZNP(Ls) = {Lg; B < o} Let
Q,, = € L, be Hechler forcing D. This is a Suslin o-linked (even o-centered)
forcing notion. P[L is easily seen to be nothing else than the usual finite
support iteration of D of length y, Dy So we also see that I, is the direct
limit of the D[ A where A C p is countable, a fact which, of course, has been
known before.

Main Example. The (much more complicated) template used for the con-
sistency proof of d < a. See [Brl] for details.

"
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