Some characterizations of strongly σ -short Boolean Algebras

髙橋真1)

Makoto Takahashi

神戸大学発達科学部

Faculty of Human Development, Kobe University

Abstract. We give some characterizations of strongly σ -short Boolean algebras.

In this report, we give some characterizations of strongly σ -short Boolean algebras. In [2], we introduced σ -short Boolean algebras and strongly σ -short Boolean algebras. We say that a subset D of a Boolean algebra \mathbf{B} is dense, in symbol $D \subset_d \mathbf{B}$, if for every positive element $b \in \mathbf{B}$ there exists $d \in D$ such that $0 < d \le b$, σ -short if every strictly descending sequence of length ω in D does not have a nonzero lower bound in \mathbf{B} , \wedge -closed if for every $d_1, d_2 \in D$ with $d_1 \wedge d_2 > \mathbf{0}$, $d_1 \wedge d_2 \in D$. \mathbf{B} is said to be σ -short if it has a σ -short dense subset and strongly σ -short if it has a σ -short \wedge -closed dense subset. We denote by $d(\mathbf{B})$ the density of \mathbf{B} . We assume that Boolean algebras are infinite and atomless in this report.

In [2], it was open whether measure algebras are strongly σ -short. Jörg Brendle showed the following theorem(see [1]).

Theorem A (Brendle). Let B_{κ} be the algebra for adding κ many random reals.

- 1. \mathbf{B}_{ω} is not strongly σ -short.
- 2. Suppose that $d(\mathbf{B}_{\kappa}) = \kappa$. Then \mathbf{B}_{κ} is strongly σ -short.

We say that a Boolean algebra **B** has (κ, ω) -caliber if for any uncountable subset $T \subseteq \mathbf{B}$ of size κ , there is countable $F \subseteq T$ such that F has a non-zero lower bound in **B**. It is well-known that the random algebra has (ω_1, ω) -caliber.

Y. Yoshinobu and I extended the first result above more general as follows(see [1]).

Theorem B (Takahashi-Yoshinobu). Suppose that B satisfies (κ, ω) -caliber and $d(\mathbf{B}) \geq \kappa$. Then B is not strongly σ -short.

In this report, we extend these theorems and give some characterizations of strongly σ -short Boolean algebras.

For $X \subset \mathbf{B}$, let $\bigwedge X = \{x_1 \wedge \cdots \wedge x_n > \mathbf{0} \mid x_1, \cdots, x_n \in X, n \in \omega\}$ and $[X]^{\omega} = \{Y \subseteq X \mid |Y| = \omega\}$, where |Y| is the cardinality of Y.

¹⁾email: makoto@kobe-u.ac.jp

Theorem. The following are equivalent.

- (1) **B** is strongly σ -short.
- (2) There exists $X \subset \mathbf{B}$ such that $\bigwedge X \subset_d B$ and $\bigwedge Y = \mathbf{0}$ for every $Y \in [X]^{\omega}$.
- (3) There exists $X \subset_d \mathbf{B}$ such that $\bigwedge Y = \mathbf{0}$ for every $Y \in [X]^{\omega}$.
- (4) There exist $X \subset \mathbf{B}, D \subset_d \mathbf{B}$ and $f : D \xrightarrow{1-1} X$ such that $\bigwedge Y = \mathbf{0}$ for every $Y \in [X]^{\omega}$ and $d \wedge f(d) > \mathbf{0}$ for every $d \in D$.
- (5) There exists $X \subset_d \mathbf{B}$ such that $\{y \in X | y \geq x\}$ is finite for every $x \in X$.
- (6) There exists a sequence $\{X_n\}_{n\in\omega}$ of subsets of **B** which satisfies the following conditions:
 - (a) X_n is a pairwise incomparable subset of **B**.
 - (b) If $x \in X_n, y \in X_m$ and n < m, then $y \ngeq x$.
 - (c) $\{y \in X_m | y \ge x\}$ is finite for every m < n and $x \in X_n$.
 - (d) $X := \bigcup_{n \in \omega} X_n \subset_d \mathbf{B}$

Proof of theorem. (1) \Rightarrow (2): Suppose that **B** is strongly σ -short. Let D be a σ -short, \wedge -closed and dense subset of **B**. Without loss of generality, we assume that $|D| = d(\mathbf{B})$. Put $\kappa = d(\mathbf{B})$. Let $\{d_{\alpha} | \alpha < \kappa\}$ be an enumeration of elements of D. We shall find $D^{\alpha} \subset \mathbf{B}$ and $\Lambda^{\alpha} \subset \alpha$ for $\alpha < \kappa$ such that

- (i) $\forall \alpha < \kappa [\Lambda^{\alpha} \neq \Lambda^{\alpha+1} \Longrightarrow \Lambda^{\alpha+1} = \Lambda^{\alpha} \cup \{\alpha\}],$
- (ii) $\forall \alpha < \kappa \exists x \in D^{\alpha+1}[x \le d_{\alpha}],$
- (iii) $D^{\alpha} = \bigwedge \{d_{\beta} | \beta \in \Lambda^{\alpha}\}$, and
- (iv) $\forall \alpha < \kappa [\alpha \in \Lambda^{\alpha+1} \Leftrightarrow \forall d \in D^{\alpha}[d \nleq d_{\alpha}]].$

Assuming such D^{α} and Λ^{α} may be found, let

$$\Lambda := \bigcup_{\alpha < \kappa} \Lambda^{\alpha} \quad \text{and} \quad D' := \bigcup_{\alpha < \kappa} D^{\alpha}.$$

By (ii), D' is a dense subset of **B**. Put $X = \{d_{\alpha} | \alpha \in \Lambda\}$. By (iii), $D' = \bigwedge X$, so $\bigwedge X$ is a dense subset of **B**. Let Y be a countable subset of X and $\{d_{\alpha_n}\}_{n \in \omega}$ be its enumeration such that $\alpha_0 < \alpha_1 < \alpha_2 < \cdots$. We show that $\bigwedge Y = \mathbf{0}$. Without loss of generality, we may assume that for any finite subset Y_0 of Y, $\bigwedge Y_0 > \mathbf{0}$. Put $e_n := d_{\alpha_0} \wedge \cdots \wedge d_{\alpha_n}$ for every $n \in \omega$. Since $\alpha_n \in \Lambda$, by (i), (iii) and (iv), we have $\alpha_n \in \Lambda^{\alpha_n+1}$, so that $d_{\alpha_n} \in D^{\alpha_n+1}$ and for every $d \in D^{\alpha_n}$, $d \nleq d_{\alpha_n}$. Since

 $e_{n-1} \in D^{\alpha_{n-1}+1} \subset D^{\alpha_n}, \ e_{n-1} \nleq d_{\alpha_n}$. So we have $e_0 > e_1 > e_2 > \cdots$. Hence $\{e_n\}_{n \in \omega}$ is a strict decreasing sequence in D. Therefore $\bigwedge Y = \bigwedge_n e_n = 0$.

We define D^{α} and Λ^{α} by induction. Suppose that D^{β} , Λ^{β} $(\beta < \alpha)$ are defined. If α is limit, then

$$D^{\alpha} := \bigcup_{\beta < \alpha} D^{\beta}$$
 and $\Lambda^{\alpha} := \bigcup_{\beta < \alpha} \Lambda^{\beta}$.

If α is successor (say $\alpha_0 + 1$), then we define D^{α} , Λ^{α} as follows. If $\exists d \in D^{\alpha_0} [d \leq d_{\alpha_0}]$, then put

$$D^{\alpha} := D^{\alpha_0}$$
 and $\Lambda^{\alpha} := \Lambda^{\alpha_0}$

If $\forall d \in D^{\alpha_0}[d \nleq d_{\alpha_0}]$, then put

$$D^{\alpha} := \bigwedge (D^{\alpha_0} \cup \{d_{\alpha_0}\})$$
 and $\Lambda^{\alpha} := \Lambda^{\alpha_0} \cup \{\alpha_0\}.$

It is easy to show that (i), (ii) and (iv) hold. We show (iii) by induction. Suppose that (iii) holds for every $\beta < \alpha$. If α is limit, then

$$D^{\alpha} = \bigcup_{\beta < \alpha} D^{\beta} = \bigcup_{\beta < \alpha} \bigwedge \{ d_{\gamma} | \gamma \in \Lambda^{\beta} \} = \bigwedge \{ d_{\beta} | \beta \in \Lambda^{\alpha} \}.$$

Suppose that $\alpha = \alpha_0 + 1$. If $\exists d \in D^{\alpha_0}[d \leq d_{\alpha_0}]$, then it is clear that (iii) holds for α . If $\forall d \in D^{\alpha_0}[d \nleq d_{\alpha_0}]$, then

$$D^{\alpha} = \bigwedge (D^{\alpha_0} \cup \{d_{\alpha_0}\}) = \bigwedge (\bigwedge \{d_{\beta} | \beta \in \Lambda^{\alpha_0}\} \cup \{d_{\alpha_0}\}) = \bigwedge \{d_{\beta} | \beta \in \Lambda^{\alpha}\}.$$

 $(2) \Rightarrow (3)$: Easy.

 $(3)\Rightarrow (4)$: Put D:=X and $f:=Id_D$.

 $(4)\Rightarrow(1)$: Put $D_0:=\{d\wedge f(d)|d\in D\}$ and $D_1:=\bigwedge D_0$. Since D_0 is dense in \mathbf{B} , D_1 is also dense in \mathbf{B} and \wedge -close. To see that D_1 is σ -short, it is enough to show that $\bigwedge Y=\mathbf{0}$ for every $Y\in [D_1]^\omega$. Let $Y:=\{d_n\wedge f(d_n)|n\in\omega\}$. Then we have $\bigwedge Y=\bigwedge_{n\in\omega}d_n\wedge\bigwedge_{n\in\omega}f(d_n)$. Since f is one-to-one, $f(d_n)\neq f(d_m)$ for $n\neq m$. Hence

$$\{f(d_n) \mid n \in \omega\} \in [X]^{\omega}$$
. Therefore $\bigwedge Y \leq \bigwedge_{n \in \mathbb{N}} f(d_n) = \mathbf{0}$.

 $(5) \Leftrightarrow (3)$: Easy.

(5) \Rightarrow (6): Let X be a dense subset of \mathbf{B} such that $\{y \in X | y \geq x\}$ is finite for every $x \in X$. Put $X_n := \{d \in X | |\{x \in X | x \geq d\}| = n\}$ for every $n \in \omega$. Then it is easy to show that $\{X_n\}_{n \in \omega}$ satisfies conditions (a)–(d).

(6) \Rightarrow (5): Put $X := \bigcup_{n \in \omega} X_n$. Then X is dense in B by (d). For every $x \in X$, there

exists $n \in \omega$ such that $x \in X_n$. Then $\{y \in X | y \ge x\} = \bigcup_{m \le n} \{y \in X_m | y \ge x\}$ by (a),(b)

and (c). Hence
$$\{y \in X | y \ge x\}$$
 is finite.

Theorem B (Takahashi-Yoshinobu). Suppose that B satisfies (κ, ω) -caliber and $d(B) \geq \kappa$. Then B is not strongly σ -short.

Proof of Theorem B: Suppose that **B** is strongly σ -short. Then by virtue of main theorem, there exists $X \subset_d B$ such that $\bigwedge Y = \mathbf{0}$ for every $Y \in [X]^\omega$. Since $|T| \geq d(\mathbf{B}) \geq \kappa$, there is countable $F \subseteq T$ such that F has a non-zero lower bound in **B**. This contradicts that **B** satisfies (κ, ω) -caliber.

Theorem A (Brendle). Let B_{κ} be the algebra for adding κ many random reals.

- 1. \mathbf{B}_{ω} is not strongly σ -short.
- 2. Suppose that $d(\mathbf{B}_{\kappa}) = \kappa$. Then \mathbf{B}_{κ} is strongly σ -short.

Proof: (1): Since \mathbf{B}_{ω} satisfies (ω_1, ω) -caliber, \mathbf{B}_{ω} is not strongly σ -short by virtue of Theorem B.

(2): Let $D \subseteq B_{\kappa}$ be dense, $|D| = \kappa$. Say $D = \{b_{\alpha}; \ \alpha < \kappa\}$. For each α choose $\gamma_{\alpha} \notin \text{supp}(b_{\alpha})$ in such a way that the γ_{α} are distinct for distinct α . Let $f(b_{\alpha}) := [\{\langle\langle\gamma_{\alpha},0\rangle,0\rangle\}]$. Here $\{\langle\langle\gamma_{\alpha},0\rangle,0\rangle\}$ denotes the partial function $p:\kappa\times\omega\to 2$ with domain the singleton $\{\langle\gamma_{\alpha},0\rangle\}$ and $p(\langle\gamma_{\alpha},0\rangle)=0$. [p] is the open set defined by p. Then f satisfies the assumption of (4) of the main theorem. Hence \mathbf{B}_{κ} is strongly σ -short.

Open Problems

- 1. Are perfect tree forcings, Hechler forcing σ -short?
- 2. For every σ -short **B**, does there exist a sequence $\{X_n\}_{n\in\omega}$ of subsets of **B** which satisfies the following conditions:
 - (a) X_n is a pairwise incomparable subset of **B**.
 - (b) If $x \in X_n, y \in X_m$ and n < m, then $y \ngeq x$.
 - (c) $\bigcup_{n \in \omega} X_n \subset_d B$

References

- [1] M. Takahashi, On Strongly σ -Short Boolean Algebras, Proceedings of General Topology Symposium held in Kobe, 2002, 74–79
- [2] M. Takahashi and Y. Yoshinobu, σ -short Boolean algebras, Mathematical Logic Quarterly, Vol. 49 No. 6 (2003), 543–549