<table>
<thead>
<tr>
<th>Title</th>
<th>Some characterizations of strongly σ-short Boolean Algebras (Forcing Method and Large Cardinal Axioms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Takahashi, Makoto</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (2005), 1423: 124-127</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2005-04</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/47218</td>
</tr>
<tr>
<td>Right</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
Some characterizations of strongly σ-short Boolean Algebras

Makoto Takahashi
Faculty of Human Development, Kobe University

Abstract. We give some characterizations of strongly σ-short Boolean algebras.

In this report, we give some characterizations of strongly σ-short Boolean algebras. In [2], we introduced σ-short Boolean algebras and strongly σ-short Boolean algebras. We say that a subset D of a Boolean algebra \mathcal{B} is dense, in symbol $D \subset_d \mathcal{B}$, if for every positive element $b \in \mathcal{B}$ there exists $d \in D$ such that $0 < d \leq b$, σ-short if every strictly descending sequence of length ω in D does not have a nonzero lower bound in \mathcal{B}, \land-closed if for every $d_1, d_2 \in D$ with $d_1 \land d_2 > 0$, $d_1 \land d_2 \in D$. \mathcal{B} is said to be σ-short if it has a σ-short dense subset and strongly σ-short if it has a σ-short \land-closed dense subset. We denote by $d(\mathcal{B})$ the density of \mathcal{B}. We assume that Boolean algebras are infinite and atomless in this report.

In [2], it was open whether measure algebras are strongly σ-short. Jörg Brendle showed the following theorem (see [1]).

Theorem A (Brendle). Let \mathcal{B}_κ be the algebra for adding κ many random reals.

1. \mathcal{B}_ω is not strongly σ-short.
2. Suppose that $d(\mathcal{B}_\kappa) = \kappa$. Then \mathcal{B}_κ is strongly σ-short.

We say that a Boolean algebra \mathcal{B} has (κ, ω)-caliber if for any uncountable subset $T \subseteq \mathcal{B}$ of size κ, there is countable $F \subseteq T$ such that F has a non-zero lower bound in \mathcal{B}. It is well-known that the random algebra has (ω_1, ω)-caliber.

Y. Yoshinobu and I extended the first result above more general as follows (see [1]).

Theorem B (Takahashi-Yoshinobu). Suppose that \mathcal{B} satisfies (κ, ω)-caliber and $d(\mathcal{B}) \geq \kappa$. Then \mathcal{B} is not strongly σ-short.

In this report, we extend these theorems and give some characterizations of strongly σ-short Boolean algebras.

For $X \subseteq \mathcal{B}$, let $\bigwedge X = \{x_1 \land \cdots \land x_n > 0 \mid x_1, \cdots, x_n \in X, n \in \omega\}$ and $[X]^{\omega} = \{Y \subseteq X \mid |Y| = \omega\}$, where $|Y|$ is the cardinality of Y.

1email: makoto@kobe-u.ac.jp
Theorem. The following are equivalent.

(1) B is strongly σ-short.

(2) There exists $X \subset B$ such that $\bigwedge X \subset_d B$ and $\bigwedge Y = 0$ for every $Y \in [X]^{\omega}$.

(3) There exists $X \subset_d B$ such that $\bigwedge Y = 0$ for every $Y \in [X]^{\omega}$.

(4) There exist $X \subset B, D \subset_d B$ and $f : D \rightarrow X$ such that $\bigwedge Y = 0$ for every $Y \in [X]^{\omega}$ and $d \wedge f(d) > 0$ for every $d \in D$.

(5) There exists $X \subset_d B$ such that $\{y \in X | y \geq x\}$ is finite for every $x \in X$.

(6) There exists a sequence $\{X_n\}_{n \in \omega}$ of subsets of B which satisfies the following conditions:

(a) X_n is a pairwise incomparable subset of B.
(b) If $x \in X_n, y \in X_m$ and $n < m$, then $y \not\leq x$.
(c) $\{y \in X_m | y \geq x\}$ is finite for every $m < n$ and $x \in X_n$.
(d) $X := \bigcup_{n \in \omega} X_n \subset_d B$

Proof of theorem. (1)\Rightarrow(2): Suppose that B is strongly σ-short. Let D be a σ-short, \wedge-closed and dense subset of B. Without loss of generality, we assume that $|D| = d(B)$.

Put $\kappa = d(B)$. Let $\{d_\alpha | \alpha < \kappa\}$ be an enumeration of elements of D. We shall find $D^\alpha \subset B$ and $\Lambda^\alpha \subset \Lambda$ for $\alpha < \kappa$ such that

(i) $\forall \alpha < \kappa [\Lambda^\alpha \neq \Lambda^{\alpha+1} \Rightarrow \Lambda^{\alpha+1} = \Lambda^\alpha \cup \{\alpha\}]$,
(ii) $\forall \alpha < \kappa \exists x \in D^{\alpha+1}[x \leq d_\alpha]$,
(iii) $D^\alpha = \bigwedge \{d_\beta | \beta \in \Lambda^\alpha\}$, and
(iv) $\forall \alpha < \kappa [\alpha \in \Lambda^{\alpha+1} \iff \forall d \in D^\alpha[d \not\leq d_\alpha]]$.

Assuming such D^α and Λ^α may be found, let

$\Lambda := \bigcup_{\alpha < \kappa} \Lambda^\alpha$ and $D' := \bigcup_{\alpha < \kappa} D^\alpha$.

By (ii), D' is a dense subset of B. Put $X = \{d_\alpha | \alpha \in \Lambda\}$. By (iii), $D' = \bigwedge X$, so $\bigwedge X$ is a dense subset of B. Let Y be a countable subset of X and $\{d_{\alpha_n}\}_{n \in \omega}$ be its enumeration such that $\alpha_0 < \alpha_1 < \alpha_2 < \ldots$. We show that $\bigwedge Y = 0$. Without loss of generality, we may assume that for any finite subset Y_0 of Y, $\bigwedge Y_0 > 0$. Put $e_n := d_{\alpha_n} \wedge \ldots \wedge d_{\alpha_n}$ for every $n \in \omega$. Since $\alpha_n \in \Lambda$, by (i), (iii) and (iv), we have $\alpha_n \in \Lambda^{\alpha_n+1}$, so that $d_{\alpha_n} \in D^{\alpha_n+1}$ and for every $d \in D^{\alpha_n}, d \not\leq d_{\alpha_n}$. Since
$e_{n-1} \in D_{n} \subset D_{n+1}$, $e_{n-1} \not\in d_{n}$. So we have $e_{0} > e_{1} > e_{2} > \cdots$. Hence \{e_{n}\}_{n\in\omega}$ is a strict decreasing sequence in D. Therefore $\bigwedge_{n\in\omega} Y = \bigwedge_{n\in\omega} e_{n} = 0$.

We define D^{α} and Λ^{α} by induction. Suppose that $D^{\beta}, \Lambda^{\beta} \ (\beta < \alpha)$ are defined. If α is limit, then

$$D^{\alpha} := \bigcup_{\beta < \alpha} D^{\beta} \quad \text{and} \quad \Lambda^{\alpha} := \bigcup_{\beta < \alpha} \Lambda^{\beta}.$$

If α is successor (say $\alpha = \alpha_{0} + 1$), then we define $D^{\alpha}, \Lambda^{\alpha}$ as follows.

If $\exists d \in D^{\alpha_{0}}[d \leq d_{\alpha_{0}}]$, then put

$$D^{\alpha} := D^{\alpha_{0}} \quad \text{and} \quad \Lambda^{\alpha} := \Lambda^{\alpha_{0}}.$$

If $\forall d \in D^{\alpha_{0}}[d \not\leq d_{\alpha_{0}}]$, then put

$$D^{\alpha} := \bigwedge(D^{\alpha_{0}} \cup \{d_{\alpha_{0}}\}) \quad \text{and} \quad \Lambda^{\alpha} := \Lambda^{\alpha_{0}} \cup \{\alpha_{0}\}.$$

It is easy to show that (i), (ii) and (iv) hold. We show (iii) by induction. Suppose that (iii) holds for every $\beta < \alpha$. If α is limit, then

$$D^{\alpha} = \bigcup_{\beta < \alpha} D^{\beta} = \bigcup_{\beta < \alpha} \bigwedge\{d_{\gamma} \mid \gamma \in \Lambda^{\beta}\} = \bigwedge\{d_{\beta} \mid \beta \in \Lambda^{\alpha}\}.$$

Suppose that $\alpha = \alpha_{0} + 1$. If $\exists d \in D^{\alpha_{0}}[d \leq d_{\alpha_{0}}]$, then it is clear that (iii) holds for α. If $\forall d \in D^{\alpha_{0}}[d \not\leq d_{\alpha_{0}}]$, then

$$D^{\alpha} = \bigwedge(D^{\alpha_{0}} \cup \{d_{\alpha_{0}}\}) = \bigwedge(\bigwedge\{d_{\beta} \mid \beta \in \Lambda^{\alpha_{0}}\} \cup \{d_{\alpha_{0}}\}) = \bigwedge\{d_{\beta} \mid \beta \in \Lambda^{\alpha}\}.$$

(2)\Rightarrow(3): Easy.

(3)\Rightarrow(4): Put $D := X$ and $f := I|D$.

(4)\Rightarrow(1): Put $D_{0} := \{d \wedge f(d) \mid d \in D\}$ and $D_{1} := \bigwedge D_{0}$. Since D_{0} is dense in B, D_{1} is also dense in B and \wedge-close. To see that D_{1} is σ-short, it is enough to show that $\bigwedge_{n\in\omega} Y = 0$ for every $Y \in [D_{1}]^{\omega}$. Let $Y := \{d_{n} \wedge f(d_{n}) \mid n \in \omega\}$. Then we have $\bigwedge_{n\in\omega} Y = \bigwedge_{n\in\omega} d_{n} \wedge \bigwedge_{n\in\omega} f(d_{n})$. Since f is one-to-one, $f(d_{n}) \neq f(d_{m})$ for $n \neq m$. Hence $\{f(d_{n}) \mid n \in \omega\} \subseteq [X]^{\omega}$. Therefore $\bigwedge_{n\in\omega} Y \leq \bigwedge_{n\in\omega} f(d_{n}) = 0$.

(5)\Leftrightarrow(3): Easy.

(5)\Rightarrow(6): Let X be a dense subset of B such that $\{y \in X \mid y \geq x\}$ is finite for every $x \in X$. Put $X_{n} := \{d \in X \mid \{x \in X \mid x \geq d\} = n\}$ for every $n \in \omega$. Then it is easy to show that X_{n} satisfies conditions (a)–(d).

(6)\Rightarrow(5): Put $X := \bigcup_{n\in\omega} X_{n}$. Then X is dense in B by (d). For every $x \in X$, there exists $n \in \omega$ such that $x \in X_{n}$ and $\{y \in X \mid y \geq x\} = \bigcup_{m<n} \{y \in X_{m} \mid y \geq x\}$ by (a), (b) and (c). Hence $\{y \in X \mid y \geq x\}$ is finite. \qed
Theorem B (Takahashi-Yoshinobu). Suppose that B satisfies (κ, ω)-caliber and $d(B) \geq \kappa$. Then B is not strongly σ-short.

Proof of Theorem B: Suppose that B is strongly σ-short. Then by virtue of main theorem, there exists $X \subset_d B$ such that $\bigwedge Y = 0$ for every $Y \in [X]^{\omega}$. Since $|T| \geq d(B) \geq \kappa$, there is countable $F \subseteq T$ such that F has a non-zero lower bound in B. This contradicts that B satisfies (κ, ω)-caliber. \Box

Theorem A (Brendle). Let B_{κ} be the algebra for adding κ many random reals.

1. B_{ω} is not strongly σ-short.

2. Suppose that $d(B_{\kappa}) = \kappa$. Then B_{κ} is strongly σ-short.

Proof: (1): Since B_{ω} satisfies (ω_1, ω)-caliber, B_{ω} is not strongly σ-short by virtue of Theorem B.

(2): Let $D \subseteq B_{\kappa}$ be dense, $|D| = \kappa$. Say $D = \{b_{\alpha}; \alpha < \kappa\}$. For each α choose $\gamma_{\alpha} \notin \text{supp}(b_{\alpha})$ in such a way that the γ_{α} are distinct for distinct α. Let $f(b_{\alpha}) := [\{(\gamma_{\alpha}, 0), 0\}]$. Here $\{\{(\gamma_{\alpha}, 0), 0\}\}$ denotes the partial function $p : \kappa \times \omega \rightarrow 2$ with domain the singleton $\{\gamma_{\alpha}, 0\}$ and $p(\gamma_{\alpha}, 0) = 0$. $[p]$ is the open set defined by p. Then f satisfies the assumption of (4) of the main theorem. Hence B_{κ} is strongly σ-short. \Box

Open Problems

1. Are perfect tree forcings, Hechler forcing σ-short?

2. For every σ-short B, does there exist a sequence $\{X_n\}_{n\in\omega}$ of subsets of B which satisfies the following conditions:

 (a) X_n is a pairwise incomparable subset of B.

 (b) If $x \in X_m, y \in X_m$ and $n < m$, then $y \not\geq x$.

 (c) $\bigcup_{n\in\omega} X_n \subset_d B$

References
