Some characterizations of strongly σ-short Boolean Algebras (Forcing Method and Large Cardinal Axioms)

Author(s)
Takahashi, Makoto

Citation
数理解析研究所講究録 (2005), 1423: 124-127

Issue Date
2005-04

URL
http://hdl.handle.net/2433/47218

Type
Departmental Bulletin Paper

Textversion
publisher
Some characterizations of strongly σ-short Boolean Algebras

Makoto Takahashi

Faculty of Human Development, Kobe University

Abstract. We give some characterizations of strongly σ-short Boolean algebras.

In this report, we give some characterizations of strongly σ-short Boolean algebras. In [2], we introduced σ-short Boolean algebras and strongly σ-short Boolean algebras. We say that a subset D of a Boolean algebra B is dense, in symbol $D \subset B$, if for every positive element $b \in B$ there exists $d \in D$ such that $0 < d \leq b$, σ-short if every strictly descending sequence of length ω in D does not have a nonzero lower bound in B, \wedge-closed if for every $d_1, d_2 \in D$ with $d_1 \wedge d_2 > 0$, $d_1 \wedge d_2 \in D$. B is said to be σ-short if it has a σ-short dense subset and strongly σ-short if it has a σ-short \wedge-closed dense subset. We denote by $d(B)$ the density of B. We assume that Boolean algebras are infinite and atomless in this report.

In [2], it was open whether measure algebras are strongly σ-short. Jörg Brendle showed the following theorem (see [1]).

Theorem A (Brendle). Let B_κ be the algebra for adding κ many random reals.

1. B_ω is not strongly σ-short.

2. Suppose that $d(B_\kappa) = \kappa$. Then B_κ is strongly σ-short.

We say that a Boolean algebra B has (κ, ω)-caliber if for any uncountable subset $T \subseteq B$ of size κ, there is countable $F \subseteq T$ such that F has a non-zero lower bound in B. It is well-known that the random algebra has (ω_1, ω)-caliber.

Y. Yoshinobu and I extended the first result above more general as follows (see [1]).

Theorem B (Takahashi-Yoshinobu). Suppose that B satisfies (κ, ω)-caliber and $d(B) \geq \kappa$. Then B is not strongly σ-short.

In this report, we extend these theorems and give some characterizations of strongly σ-short Boolean algebras.

For $X \subseteq B$, let $\bigwedge X = \{x_1 \wedge \cdots \wedge x_n > 0 \mid x_1, \cdots, x_n \in X, n \in \omega\}$ and $[X]^{\omega} = \{Y \subseteq X \mid |Y| = \omega\}$, where $|Y|$ is the cardinality of Y.

1) email: makoto@kobe-u.ac.jp
Theorem. The following are equivalent.

(1) \(\mathcal{B} \) is strongly \(\sigma \)-short.

(2) There exists \(X \subset \mathcal{B} \) such that \(\bigwedge X \subset_d \mathcal{B} \) and \(\bigwedge Y = 0 \) for every \(Y \in [X]^\omega \).

(3) There exists \(X \subset_d \mathcal{B} \) such that \(\bigwedge Y = 0 \) for every \(Y \in [X]^\omega \).

(4) There exist \(X \subset \mathcal{B}, D \subset_d \mathcal{B} \) and \(f : D \xrightarrow{1-1} X \) such that \(\bigwedge Y = 0 \) for every \(Y \in [X]^\omega \) and \(d \wedge f(d) > 0 \) for every \(d \in D \).

(5) There exists \(X \subset_d \mathcal{B} \) such that \(\{y \in X | y \geq x\} \) is finite for every \(x \in X \).

(6) There exists a sequence \(\{X_n\}_{n \in \omega} \) of subsets of \(\mathcal{B} \) which satisfies the following conditions:

- \(a \). \(X_n \) is a pairwise incomparable subset of \(\mathcal{B} \).
- \(b \). If \(x \in X_n, y \in X_m \) and \(n < m \), then \(y \nsubseteq x \).
- \(c \). \(\{y \in X_m | y \geq x\} \) is finite for every \(m < n \) and \(x \in X_n \).
- \(d \). \(X := \bigcup_{n \in \omega} X_n \subset_d \mathcal{B} \)

Proof of theorem. (1)\(\Rightarrow \) (2): Suppose that \(\mathcal{B} \) is strongly \(\sigma \)-short. Let \(D \) be a \(\sigma \)-short, \(\wedge \)-closed and dense subset of \(\mathcal{B} \). Without loss of generality, we assume that \(|D| = d(\mathcal{B}) \).

Put \(\kappa = d(\mathcal{B}) \). Let \(\{d_\alpha | \alpha < \kappa\} \) be an enumeration of elements of \(D \). We shall find \(D^\alpha \subset \mathcal{B} \) and \(\Lambda^\alpha \subset \mathcal{B} \) for \(\alpha < \kappa \) such that

- \(i \). \(\forall \alpha < \kappa \Lambda^\alpha \neq \Lambda^{\alpha+1} \Rightarrow \Lambda^{\alpha+1} = \Lambda^\alpha \cup \{\alpha\} \),
- \(ii \). \(\forall \alpha < \kappa \exists x \in D^{\alpha+1}[x \leq d_\alpha] \),
- \(iii \). \(D^\alpha = \bigwedge \{d_\beta | \beta \in \Lambda^\alpha \} \), and
- \(iv \). \(\forall \alpha < \kappa \alpha \in \Lambda^{\alpha+1} \Leftrightarrow \forall d \in D^\alpha[d \nsubseteq d_\alpha] \).

Assuming such \(D^\alpha \) and \(\Lambda^\alpha \) may be found, let

\[
\Lambda := \bigcup_{\alpha < \kappa} \Lambda^\alpha \quad \text{and} \quad D' := \bigcup_{\alpha < \kappa} D^\alpha.
\]

By (ii), \(D' \) is a dense subset of \(\mathcal{B} \). Put \(X = \{d_\alpha | \alpha \in \Lambda\} \). By (iii), \(D' = \bigwedge X \), so \(\bigwedge X \) is a dense subset of \(\mathcal{B} \). Let \(Y \) be a countable subset of \(X \) and \(\{d_{\alpha_n}\}_{n \in \omega} \) be its enumeration such that \(\alpha_0 < \alpha_1 < \alpha_2 < \cdots \). We show that \(\bigwedge Y = 0 \). Without loss of generality, we may assume that for any finite subset \(Y_0 \) of \(Y \), \(\bigwedge Y_0 > 0 \). Put \(e_n := d_{\alpha_0} \wedge \cdots \wedge d_{\alpha_n} \) for every \(n \in \omega \). Since \(\alpha_n \in \Lambda \), by (i), (iii) and (iv), we have \(\alpha_n \in \Lambda^{\alpha_n+1} \), so that \(d_{\alpha_n} \in D^{\alpha_n+1} \) and for every \(d \in D^{\alpha_n}, d \nsubseteq d_{\alpha_n} \). Since
If \(n \leq d \) then we define \(D_n := D_{n+1} \) and \(A_n := A_{n+1} \).

(2) \(\Rightarrow \) (3): Easy.

(3) \(\Rightarrow \) (4): Put \(D := X \) and \(f := Id_D \).

(4) \(\Rightarrow \) (1): Put \(D_0 := \{ d \in D \mid d \leq d_{\alpha_0} \} \) and \(D_1 := \bigsqcup_{n \in \omega} D_n \). Since \(D_0 \) is dense in \(B \), \(D_1 \) is also dense in \(B \) and \(\wedge \)-close. To see that \(D_1 \) is \(\sigma \)-short, it is enough to show that \(\bigwedge_{n \in \omega} Y = 0 \) for every \(Y \in [D_1]^{\omega} \). Let \(Y := \{ d_n \wedge f(d_n) \mid n \in \omega \} \). Then we have \(\bigwedge_{n \in \omega} Y = \bigwedge_{n \in \omega} d_n \wedge \bigwedge_{n \in \omega} f(d_n) \). Since \(f \) is one-to-one, \(f(d_n) \neq f(d_m) \) for \(n \neq m \). Hence \(\{ f(d_n) \mid n \in \omega \} \in [X]^{\omega} \). Therefore \(\bigwedge_{n \in \omega} Y \leq \bigwedge_{n \in \omega} f(d_n) = 0 \).

(5) \(\Leftrightarrow \) (3): Easy.

(6) \(\Rightarrow \) (5): Put \(X := \bigcup_{n \in \omega} X_n \). Then \(X \) is dense in \(B \) by (d). For every \(x \in X \), there exists \(n \in \omega \) such that \(x \in X_n \). Then \(\{ y \in X \mid y \geq x \} = \bigcup_{m<n} \{ y \in X_m \mid y \geq x \} \) by (a), (b) and (c). Hence \(\{ y \in X \mid y \geq x \} \) is finite.

\(\square \)
Theorem B (Takahashi-Yoshinobu). Suppose that B satisfies (κ, ω)-caliber and $d(B) \geq \kappa$. Then B is not strongly σ-short.

Proof of Theorem B: Suppose that B is strongly σ-short. Then by virtue of main theorem, there exists $X \subset_d B$ such that $\bigwedge Y = 0$ for every $Y \in [X]^\omega$. Since $|T| \geq d(B) \geq \kappa$, there is countable $F \subseteq T$ such that F has a non-zero lower bound in B. This contradicts that B satisfies (κ, ω)-caliber. \hfill \square

Theorem A (Brendle). Let B_κ be the algebra for adding κ many random reals.

1. B_ω is not strongly σ-short.

2. Suppose that $d(B_\kappa) = \kappa$. Then B_κ is strongly σ-short.

Proof: (1): Since B_ω satisfies (ω_1, ω)-caliber, B_ω is not strongly σ-short by virtue of Theorem B.

(2): Let $D \subseteq B_\kappa$ be dense, $|D| = \kappa$. Say $D = \{b_\alpha; \alpha < \kappa\}$. For each α choose $\gamma_\alpha \notin \text{supp}(b_\alpha)$ in such a way that the γ_α are distinct for distinct α. Let $f(b_\alpha) := \{(\langle \gamma_\alpha, 0 \rangle, 0)\}$. Here $\{(\langle \gamma_\alpha, 0 \rangle, 0)\}$ denotes the partial function $p : \kappa \times \omega \to 2$ with domain the singleton $\{\langle \gamma_\alpha, 0 \rangle\}$ and $p(\langle \gamma_\alpha, 0 \rangle) = 0$. $[p]$ is the open set defined by p. Then f satisfies the assumption of (4) of the main theorem. Hence B_κ is strongly σ-short. \hfill \square

Open Problems

1. Are perfect tree forcings, Hechler forcing σ-short?

2. For every σ-short B, does there exist a sequence $\{X_n\}_{n \in \omega}$ of subsets of B which satisfies the following conditions:

 (a) X_n is a pairwise incomparable subset of B.

 (b) If $x \in X_n, y \in X_m$ and $n < m$, then $y \nleq x$.

 (c) $\bigcup_{n \in \omega} X_n \subset_d B$

References
