A and destructible gaps

依岡 輝幸*† (Teruyuki Yorioka) 神戸大学大学院自然科学研究科 (Graduate School of Science and Technology, Kobe University)

Abstract

We show that (1) \clubsuit plus $cof(\mathcal{M}) = \aleph_1$ implies the existence of a destructible gap and (2) $Coll(\omega, \omega_1)$ adds a destructible gap.

1 Introduction

In this paper, we deal with a pregap in the Boolean algebra $\mathcal{P}(\omega)$ /fin. A pregap in $\mathcal{P}(\omega)$ /fin is a pair $(\mathcal{A}, \mathcal{B})$ of subsets of $\mathcal{P}(\omega)$ such that for all $a \in \mathcal{A}$ and $b \in \mathcal{B}$, the set $a \cap b$ is finite. For subsets a and b of ω , we say that a is almost contained in b (and denote $a \subseteq^* b$) if the set $a \setminus l$ is a subset of b for some $l \in \omega$. For a pregap $(\mathcal{A}, \mathcal{B})$, both ordered sets $\langle \mathcal{A}, \subseteq^* \rangle$ and $\langle \mathcal{B}, \subseteq^* \rangle$ are well ordered and these order types are κ and λ respectively, then we say that a pregap $(\mathcal{A}, \mathcal{B})$ has the type (κ, λ) or is a (κ, λ) -pregap. Moreover if $\kappa = \lambda$, we say that the pregap is symmetric. For a pregap $(\mathcal{A}, \mathcal{B})$, we say that $(\mathcal{A}, \mathcal{B})$ is separated if for some $c \in \mathcal{P}(\omega)$, $a \subseteq^* c$ and the set $c \cap b$ is finite for every $a \in \mathcal{A}$ and $b \in \mathcal{B}$. If a pregap is not separated, we say that it is a gap. Moreover if a gap has the type (κ, λ) , it is called a (κ, λ) -gap.

We note that being a pregap is absolute in any model having the pregap, but being a gap is not. In [13], Kunen has investigated an (ω_1, ω_1) -gap and has given a characterization of being a gap in the forcing extension and in [23, Chapter 9], Todorčević has introduced a notion of an open coloring and has given Ramsey theoretic characterization of being a gap in the forcing extension (Theorem 1.1). From their characterizations, we note that an (ω_1, ω_1) -gap constructed by Hausdorff is still a gap in any extension preserving cardinals. We say that such a gap is indestructible. If an (ω_1, ω_1) -gap is not indestructible, that is, it is not a gap in some forcing extension not collapsing cardinals, it is called destructible. (We note that every gap not having the type (ω_1, ω_1) , it can be separated by a ccc-forcing extension.) Kunen has proved that under Martin's Axiom for \aleph_1 many dense sets of ccc-forcing notions, all (ω_1, ω_1) -gap are indestructible. In [14], Laver has implied that a destructible gap consistently exists. Therefore it is not decided from ZFC that there exists a destructible gap.

A notion of a destructible gap can be an analogy of one of a Suslin tree ([1]). A Suslin tree is an ω_1 -tree having no uncountable chains and antichains. A destructible gap is considered as a similar notion. For an (ω_1, ω_1) -pregap $(\mathcal{A}, \mathcal{B}) = \langle a_{\alpha}, b_{\alpha}; \alpha \in \omega_1 \rangle$ with the set $a_{\alpha} \cap b_{\alpha}$ empty for every $\alpha \in \omega_1$, we say here that α and β in ω_1 are compatible if

$$(a_{\alpha} \cap b_{\beta}) \cup (a_{\beta} \cap b_{\alpha}) = \emptyset.$$

^{*}Supported by JSPS Research Fellowships for Young Scientists.

[†]Supported by Grants-in-Aid for JSPS Fellow, No. 16-3977, Ministry of Education, Culture, Sports, Science and Technology.

Then by the characterization due to Kunen and Todorčević, we notice that an (ω_1, ω_1) -pregap is a destructible gap iff it has no uncountable pairwise compatible and incompatible subsets of ω_1 .

Jensen has proved that if V = L, then there exists a Suslin tree. After that, he has introduced a combinatorial principle \diamondsuit and has constructed a Suslin tree from \diamondsuit . In [19], Shelah has proved that adding a Cohen real adds a Suslin tree. The same results for a destructible gap are also true and proved by Todorčević ([5, Proposition 2.5] and [23, Theorem 9.3]). (Random reals effect the existence of a Suslin tree and a destructible gap quite different. [15, 9], [8, 10, 11]) (We must notice that from results of Farah and Hirschorn [6, 8], the existence of a destructible gap is independent with the existence of a Suslin tree.)

In [24], Velleman has modified a construction of a Suslin tree due to Shelah using a morass, and after that Miyamoto has modified a Velleman's construction using a connections of two models. The first version of Miyamoto's theorem also have a morass as a condition to build a Suslin tree, but in [3, §7], Brendle has modified again that situation and consequently, he constructed a Suslin tree from \P plus the covering number $\operatorname{cov}(\mathcal{M})$ of the meager ideal is larger than \aleph_1 . \P is a combinatorial principle on ω_1 , introduced in the paper [2], as follow: there is a sequence $\langle A_{\alpha}; \alpha \in \omega_1 \rangle$ of countable subsets of ω_1 such that for any uncountable subset B of ω_1 there is $\alpha \in \omega_1$ so that $A_{\alpha} \subseteq B$. A destructible gap can be constructed under the same situation, that is, \P plus $\operatorname{cov}(\mathcal{M}) > \aleph_1$ implies the existence of a destructible gap.

 \clubsuit is a combinatorial principle on ω_1 introduced by Ostaszewski ([17]. See also [20, I.§7]): There exists a sequence $\langle A_{\alpha}; \alpha \in \omega_1 \rangle$ of subsets of ω_1 such that for all $\alpha \in \omega_1$, $A_{\alpha} \subseteq \alpha$ and for every uncountable subset A of ω_1 , the set $\{\alpha \in \omega_1; A_{\alpha} \subseteq A\}$ is stationary. We note that \diamondsuit implies \clubsuit and \clubsuit plus the Continuum Hypothesis implies \diamondsuit ([20]). From the result of Baumgartner [12, Theorem IV. 4] (or the result [16, Corollary 6.14]), it is consistent with ZFC that \clubsuit , the cofinality $cof(\mathcal{M})$ of the meager ideal on the real line is equal to \aleph_1 and the continuum is larger than \aleph_1 , hence in this model, \diamondsuit does not hold. Brendle has proved that that a Suslin tree exists in the model satisfying \clubsuit plus $cof(\mathcal{M}) = \aleph_1$ ([3, Theorem 6]). As same as a Suslin tree, we can show that \clubsuit plus $cof(\mathcal{M}) = \aleph_1$ implies the existence of a destructible gap (Theorem 1).

The consistency of \clubsuit plus \neg CH was an well known open problem. The first discovery of this consistency was due to Shelah. After that, this problem has been investigated by several set theorists. As far as I know, we have the following five types of models satisfying \clubsuit and \neg CH. (Here, κ is an uncountable regular cardinal.)

- 1. Shelah [20]. $(\clubsuit_{\omega_2} + 2^{\aleph_1} = \aleph_3)^{\mathbf{Coll}(\omega,\omega_1)} \models^{\alpha} \clubsuit + 2^{\aleph_0} = \aleph_2$ ".
- 2. Fuchino-Shelah-Soukup [7]. $\Diamond^{\text{pseudo-product}(\mathbb{C},\kappa)} \models \text{``} + 2^{\aleph_0} = \text{cov}(\mathcal{M}) = \kappa$ ".
- 3. Brendle [3]. $\lozenge^{pseudo-product(\mathbb{B},\kappa)} \models \text{``} + 2^{\aleph_0} = cov(\mathcal{N}) = \kappa$ ".
- 4. Baumgartner [12]. $\lozenge^{\operatorname{csp}(\mathbb{S},\kappa)} \models \text{``} + \operatorname{cof}(\mathcal{M}) = \aleph_1 + 2^{\aleph_0} = \kappa$ ".
- 5. Moore-Hrušák-Džamonja [16]. $\mathbf{V}^{\mathrm{csi}(\mathbb{S},\omega_2)}\models$ " $\clubsuit+\mathrm{cof}(\mathcal{M})=\aleph_1+2^{\aleph_0}=\aleph_2$ ".

From above results, we have known that the models 2, 4 and 5 have both a Suslin tree and a destructible gap. I will prove that $Coll(\omega, \omega_1)$ adds a destructible gap (Theorem 3.1), hence

it follows that the model 1 has a destructible gap. (I conjecture that $Coll(\omega, \omega_1)$ adds a Suslin tree, so the model 1 also has a Suslin tree.) Well, it is not still known wethere the model 3 has a Suslin tree, or destructible gap.

Throughout this paper, we always deal with a symmetric pregap. For an ordinal α , if we say that $\langle a_{\xi}, b_{\xi}; \xi \in \alpha \rangle$ is a pregap, we always assume that

- if $\xi < \eta$ in α , $a_{\xi} \subseteq^* a_{\eta}$ and $b_{\xi} \subseteq^* b_{\eta}$, and
- for every $\xi \in \alpha$, the set $a_{\xi} \cap b_{\xi}$ is empty.

We have the following characterizations of being a gap and indestructibility.

Theorem 1.1 (E.g. [4, 13, 18, 22]). Let $(\mathcal{A}, \mathcal{B}) = \langle a_{\alpha}, b_{\alpha}; \alpha \in \omega_1 \rangle$ be an (ω_1, ω_1) -pregap.

- 1. The following statements are equivalent:
 - (i) $(\mathcal{A}, \mathcal{B})$ forms a gap.
 - (ii) $\forall X \in [\omega_1]^{\omega_1} \exists \alpha \neq \beta \in X ((a_{\alpha} \cap b_{\beta}) \cup (a_{\beta} \cap b_{\alpha}) \neq \emptyset).$
- 2. The following statements are equivalent:
 - (i) (A, B) is destructible (may not be a gap).
 - (ii) $\forall X \in [\omega_1]^{\omega_1} \exists \alpha \neq \beta \in X ((a_\alpha \cap b_\beta) \cup (a_\beta \cap b_\alpha) = \emptyset).$

2 \clubsuit plus $cof(\mathcal{M}) = \aleph_1$ implies the existence of a destructible gap

In [5, Proposition 2.5], a destructible gap is constructed from \diamondsuit . This proof uses the CH to show the pregap constructed by recursion is really a gap. The following proof (and the proof in [25]) says that we do not need the CH to construct a destructible gap from \diamondsuit also.

The following condition is a useful notion to construct a destructible gap. This is used in the proof of [5, Proposition 2.5]. (But we slightly modify the original one.)

Definition 2.1 ([25]). We say that a pregap $(A, \mathcal{B}) = \langle a_{\alpha}, b_{\alpha}; \alpha \in \omega_1 \rangle$ admits finite changes if for all $\alpha < \omega_1$, the set $a_{\alpha} \cap b_{\alpha}$ is empty and the set $\omega \setminus (a_{\alpha} \cup b_{\alpha})$ is infinite, and for any $\beta < \alpha$ with $\beta = \eta + k$ for some $\eta \in \text{Lim} \cap \alpha$ and $k \in \omega$, $H, J \in [\omega]^{<\omega}$ with $H \cap J = \emptyset$ and $i > \max(H \cup J)$ there exists $n \in \omega$ so that

$$a_{\eta+n}\cap i=H,\ a_{\eta+n}\smallsetminus i=a_{\beta}\smallsetminus i,\ b_{\eta+n}\cap i=J,\ and\ b_{\eta+n}\smallsetminus i=b_{\beta}\smallsetminus i.$$

Theorem 1. \clubsuit and $cof(\mathcal{M}) = \aleph_1$ implies the existence of a destructible gap.

Proof. At first, we give some notation in the proof to avoid using many symbols in formulae. For each $\alpha \in \omega_1$ and a pregap $\langle a_{\xi}, b_{\xi}; \xi < \alpha \rangle$, let $g \in 2^{\alpha \times \omega \times 2}$ be a function such that for all $\xi < \alpha$, $a_{\xi} = \{n \in \omega; g(\xi, n, 0) = 1\}$ and $b_{\xi} = \{n \in \omega; g(\xi, n, 1) = 1\}$, that is, g is a code of this pregap. Assume that α is a countable ordinal and g is a code of an (α, α) -pregap $\langle a_{\xi}, b_{\xi}; \xi \in \alpha \rangle$

which admits finite changes, and $a_{\xi} \cap b_{\xi} = \emptyset$ and $\omega \setminus (a_{\xi} \cup b_{\xi})$ is infinite for all $\xi \in \alpha$. Then we define a subset $\mathcal{X}(g)$ of α^{ω} which is a collection of members x in α^{ω} such that

$$\bigcup_{\xi\in \mathrm{ran}(x)}a_\xi\cap \bigcup_{\xi\in \mathrm{ran}(x)}b_\xi=\emptyset.$$

We can identify $\mathcal{X}(g)$ as the Baire space ω^{ω} . (By the admission of finite changes of g, any node in $\mathcal{X}(g)$ has infinitely many successors.) For each $s \in \alpha^{<\omega}$, we let $[s] := \{x \in \mathcal{X}(g); s \subseteq x\}$ and denote $\mathcal{X}^{<\omega}(g)$ as the set of $s \in \alpha^{<\omega}$ such that [s] is a basic open set in $\mathcal{X}(g)$, i.e.

$$\bigcup_{\xi \in \operatorname{ran}(s)} a_\xi \cap \bigcup_{\xi \in \operatorname{ran}(s)} b_\xi = \emptyset.$$

Let O be a dense open subset of ω^{ω} . O is a union of countably many basic open sets, that is, O has a code as a countable sequence of members of $\omega^{<\omega}$. In this proof, we can consider O as a dense open subset of $\mathcal{X}(g)$ using its code. Moreover we define a space $\mathcal{Y}(g)$ such that

 $\mathcal{Y}(g) := \{ y \in (\alpha \times \omega)^{\omega}; \text{the sequence of the first coordinats of } y \text{ is in } \mathcal{X}(g)$ and the second coordinats are strictly increasing $\}.$

 $\mathcal{Y}(g)$ is also considered as the Baire space. For $y \in (\alpha \times \omega)^{\leq \omega}$ and l < |y|, we denote $y(l) = \langle y(l)(0), y(l)(1) \rangle$ and $\operatorname{ran}_0(y) := \{y(l)(0); l < |y|\}$. As in the definition of $\mathcal{X}^{<\omega}(g)$, we denote $\mathcal{Y}^{<\omega}(g)$ as the set of $t \in (\alpha \times \omega)^{<\omega}$ such that [t] is a basic open set in $\mathcal{Y}(g)$.

Let $\langle A_{\alpha}; \alpha \in \omega_1 \rangle$ be a \clubsuit -sequence. Since $cof(\mathcal{M})$ is equal to the cofinality of the collection of closed nowhere dense sets (e.g. [21, Lemma 3.7]) and now $cof(\mathcal{M}) = \aleph_1$, there exists a family \mathcal{O} of open dense subsets of ω^{ω} of size \aleph_1 such that for any dense open subset O of ω^{ω} , there exists a member of \mathcal{O} which is a subset of O. We write Lim as a class of limit ordinals. Let $\langle P_{\beta}; \beta \in \omega_1 \cap \mathsf{Lim} \rangle$ be a partition and f a function from ω_1 onto \mathcal{O} such that for all $\beta \in \omega_1 \cap \mathsf{Lim}$,

- P_{β} is uncountable,
- the set $P_{\beta} \cap \beta$ is empty, and
- $f \upharpoonright P_{\beta}$ is surjective.

We construct a pregap $\langle a_{\alpha}, b_{\alpha}; \alpha \in \omega_1 \rangle$ with the following properties:

- 1. $a_0 = b_0 = \emptyset$, $a_{\alpha} \cap b_{\alpha} = \emptyset$ and the set $\omega \setminus (a_{\alpha} \cup b_{\alpha})$ is infinite for all $\alpha < \omega_1$.
- 2. If $\beta \leq \alpha < \omega_1$, then both $a_{\beta} \subseteq^* a_{\alpha}$ and $b_{\beta} \subseteq^* b_{\alpha}$.
- 3. $\langle a_{\alpha}, b_{\alpha}; \alpha \in \omega_1 \rangle$ admits finite changes.
- 4. For each $\alpha \in \omega_1 \cap \text{Lim}$, if for any $\gamma, \delta \in A_\alpha$ with $\gamma < \delta$, there is $\beta > \gamma$ such that $\delta \in P_\beta$, then there exists a strictly increasing sequence $\langle j_k^\alpha; k \in \omega \rangle$ of natural numbers such that for each $\beta \in \alpha \cap \text{Lim}$ and $\gamma \in P_\beta \cap A_\alpha$, there is an infinite subset S of ω so that for any $j \in \{j_k^\alpha; k \in S\}$ and $K \subseteq j$, there exists $s \in \mathcal{X}^{<\omega}(g_\beta)$ such that [s] is a subset of the dense open subset $f(\gamma)$ in $\mathcal{X}(g_\beta)$, and

$$\bigcup_{\xi \in \operatorname{ran}(s)} a_\xi \cap K = \emptyset, \quad \bigcup_{\xi \in \operatorname{ran}(s)} a_\xi \smallsetminus j \subseteq a_\alpha,$$

$$\bigcup_{\xi \in \operatorname{ran}(s)} b_{\xi} \cap j \subseteq K \text{ and } \bigcup_{\xi \in \operatorname{ran}(s)} b_{\xi} \setminus j \subseteq b_{\alpha}.$$

5. For each $\alpha \in \omega_1 \cap \text{Lim}$, if for any $\gamma, \delta \in A_\alpha$ with $\gamma < \delta$, there is $\beta > \gamma$ such that $\delta \in P_\beta$, then there exists a strictly increasing sequence $\langle i_k^\alpha : k \in \omega \rangle$ of natural numbers such that for each $\beta \in \alpha \cap \text{Lim}$ and $\gamma \in P_\beta \cap A_\alpha$, there is an infinite subset T of ω so that for any $i \in \{i_k^\alpha; k \in T\}$, there exists $t \in \mathcal{Y}^{<\omega}(g_\beta)$ such that $t(0)(1) \geq i$, [t] is a subset of the dense open subset $f(\gamma)$ in $\mathcal{Y}(g_\beta)$, and

$$\bigcup_{\xi \in \mathrm{ran}_0(t)} a_\xi \cap \Big[i, \ t(|t|-1)(1)\Big) \subseteq a_\alpha$$

and

$$\bigcup_{\xi \in \text{ran}_0(t)} b_{\xi} \cap \left[i, \ t(|t|-1)(1)\right] \subseteq b_{\alpha}.$$

The construction at successor stages are trivial by the property 3.

Assume that α is a limit ordinal. We enumerate the set $\{\langle \beta, \gamma \rangle; \beta \in \alpha \cap \text{Lim} \text{ and } \gamma \in P_{\beta} \cap A_{\alpha} \}$ by $\{\langle \beta_k, \gamma_k \rangle; k \in \omega \}$ such that each pair $\langle \beta, \gamma \rangle$ appears infinitely many often. (These sets may be empty. If so, we let all $\langle \beta_k, \gamma_k \rangle$ not be defined.) In order to construct a_{α} and b_{α} , we construct an increasing cofinal sequence $\langle \zeta_k; k \in \omega \rangle$ of α and natural numbers $i_k^{\alpha} = i_k$, $j_k^{\alpha} = j_k$, with properties that

- $\langle \zeta_k; k \in \omega \rangle \in \mathcal{X}(g_\alpha)$,
- $\beta_k < \zeta_{k-1}$ and $i_k < j_k < i_{k+1}$ for every $k \in \omega$, and
- $a_{\zeta_{k-1}} \cap j_{k-1} = a_{\zeta_k} \cap j_{k-1}$ and $b_{\zeta_{k-1}} \cap j_{k-1} = b_{\zeta_k} \cap j_{k-1}$ for every $k \in \omega$

as follows; then we define $a_{\alpha} := \bigcup_{k \in \omega} a_{\zeta_k}$ and $b_{\alpha} := \bigcup_{k \in \omega} b_{\zeta_k}$:

Assume that we have already constructed ζ_h , i_h and j_h , h < k, for some $k \in \omega$. (We put $i_{-1} = j_{-1} = 0$. If $\langle \beta_k, \gamma_k \rangle$'s are not defined, then we ignore the following construction and define a_{α} and b_{α} satisfying the properties 1 and 2 and for all $\mu \in \alpha$, both sets $a_{\alpha} \setminus a_{\mu}$ and $b_{\alpha} \setminus b_{\mu}$ are infinite.) Let $\{K_m; m < 2^{j_{k-1}}\}$ enumerate $\mathcal{P}(j_{k-1})$. By the inductive hypothesis of the property 3, we pick $\eta_m \in \beta_k$ for each $m \leq 2^{j_{k-1}}$ and $s_m \in \mathcal{X}^{<\omega}(g_{\beta_k})$ for each $m < 2^{j_{k-1}}$ such that

- $a_{n_m} \cap j_{k-1} = j_{k-1} \setminus K_m$ and $b_{n_m} \cap j_{k-1} = K_m$,
- $\langle \eta_m \rangle \subseteq s_m$ (i.e. $s_m(0) = \eta_m$),
- $[s_m]$ is a subset of the dense open subset $f(\gamma_k)$ in $\mathcal{X}(g_{\beta_k})$,
- $\max (\eta_{m+1} \cap \mathsf{Lim}) = \max \{\max(\xi \cap \mathsf{Lim}); \xi \in \mathsf{ran}(s_m)\}, \text{ and }$
- $\bullet \bigcup_{\xi \in \operatorname{ran}(s_m)} a_{\xi} \setminus j_{k-1} = a_{\eta_{m+1}} \setminus j_{k-1} \text{ and } \bigcup_{\xi \in \operatorname{ran}(s_m)} b_{\xi} \setminus j_{k-1} = b_{\eta_{m+1}} \setminus j_{k-1}$

(This can be done by the property 3.) Let $i_k > j_{k-1}$ be such that

$$a_{\eta_{2^{j_{k-1}}}} \smallsetminus i_{k} \subseteq a_{\zeta_{k-1}} \ \text{ and } \ b_{\eta_{2^{j_{k-1}}}} \smallsetminus i_{k} \subseteq b_{\zeta_{k-1}},$$

and then we take $\zeta'_{k-1} \in \alpha$ (by the inductive hypothesis of the property 3) so that

$$\begin{split} a_{\zeta_{k-1}'} \cap j_{k-1} &= a_{\zeta_{k-1}} \cap j_{k-1}, \quad a_{\zeta_{k-1}'} \cap \left[j_{k-1}, \ i_k\right) = a_{\eta_{2}j_{k-1}} \cap \left[j_{k-1}, \ i_k\right) \\ a_{\zeta_{k-1}'} &\smallsetminus i_k = a_{\zeta_{k-1}} \smallsetminus i_k, \quad b_{\zeta_{k-1}'} \cap j_{k-1} = b_{\zeta_{k-1}} \cap j_{k-1}, \\ b_{\zeta_{k-1}'} \cap \left[j_{k-1}, \ i_k\right) &= b_{\eta_{2}j_{k-1}} \cap \left[j_{k-1}, \ i_k\right) \quad \text{and} \quad b_{\zeta_{k-1}'} \smallsetminus i_k = b_{\zeta_{k-1}} \smallsetminus i_k. \end{split}$$

The construction up to here is for the property 4. For the property 5, we pick $t \in \mathcal{Y}^{<\omega}(g_{\beta_k})$ such that $t(0)(1) \geq i_k$, [t] is a subset of the dense open subset $f(\gamma_k)$ in $\mathcal{Y}(g_{\beta_k})$. (This can be done by the density of $f(\gamma_k)$. For the sequence $\langle \langle 0, i \rangle \rangle \in \mathcal{Y}(g_{\beta_k})^{<\omega}$, there is $t \in \mathcal{Y}(g_{\beta_k})^{<\omega}$ so that $\langle \langle 0, i \rangle \rangle \subseteq t$ and [t] is a subset of $f(\gamma_k)$.) We let

$$\zeta_{k-1}'' > \max\left(\operatorname{ran}_0(t) \cup \left\{\zeta_{k-1}'\right\}\right)$$

be a large enough ordinal less than α and $j_k > t(|t|-1)(1)(\geq i_k)$ be such that for all $\xi \in \operatorname{ran}_0(t) \cup \{\zeta'_{k-1}\}$,

$$a_{\xi} \setminus j_k \subseteq a_{\zeta_{k-1}''}, \quad b_{\xi} \setminus j_k \subseteq b_{\zeta_{k-1}''} \text{ and } \left| j_k \setminus \left(a_{\zeta_{k-1}''} \cup b_{\zeta_{k-1}''} \right) \right| \ge k$$

and find $\zeta_k < \alpha$ (by the inductive hypothesis of the property 3) so that

$$\begin{aligned} a_{\zeta_k} \cap i_k &= a_{\zeta'_{k-1}} \cap i_k, \quad a_{\zeta_k} \cap \left[i_k, \ j_k\right) = \left(\bigcup_{\xi \in \operatorname{ran}_0(t)} a_\xi \cup a_{\zeta'_{k-1}}\right) \cap \left[i_k, \ j_k\right), \\ a_{\zeta_k} &\smallsetminus j_k = a_{\zeta''_{k-1}} \smallsetminus j_k, \quad b_{\zeta_k} \cap i_k = b_{\zeta'_{k-1}} \cap i_k, \\ b_{\zeta_k} \cap \left[i_k, \ j_k\right) &= \left(\bigcup_{\xi \in \operatorname{ran}_0(t)} b_\xi \cup b_{\zeta'_{k-1}}\right) \cap \left[i_k, \ j_k\right) \ \text{and} \ b_{\zeta_k} \smallsetminus j_k = b_{\zeta''_{k-1}} \smallsetminus j_k, \end{aligned}$$

which completes the construction.

We check that $\langle a_{\alpha}, b_{\alpha}; \alpha \in \omega_1 \rangle$ is a destructible gap, i.e. we will prove the following two statements.

(a)
$$\forall X \in [\omega_1]^{\omega_1} \exists \alpha \neq \beta \in X \ ((a_{\alpha} \cap b_{\beta}) \cup (a_{\beta} \cap b_{\alpha}) = \emptyset).$$

(b)
$$\forall X \in [\omega_1]^{\omega_1} \exists \alpha \neq \beta \in X ((a_{\alpha} \cap b_{\beta}) \cup (a_{\beta} \cap b_{\alpha}) \neq \emptyset).$$

(We recall that (a) means that the pregap is destructible, and (b) means that the pregap is a gap.)

For a proof of (a), assume that there exists an uncountable subset X of ω_1 such that for all $\gamma \neq \delta \in X$,

$$(a_{\gamma} \cap b_{\delta}) \cup (a_{\delta} \cap b_{\gamma}) \neq \emptyset.$$

Without loss of generality, we may moreover assume that for all $\gamma \in \omega_1$, there exists $\delta \in X$ such that

$$(a_{\gamma} \cap b_{\delta}) \cup (a_{\delta} \cap b_{\gamma}) = \emptyset.$$

We note that the set

$$C := \{ \alpha \in \operatorname{Lim} \cap \omega_1; \forall \gamma \in \alpha \ \exists \delta \in X \cap \alpha \ ((a_{\gamma} \cap b_{\delta}) \cup (a_{\delta} \cap b_{\gamma}) = \emptyset) \}$$

is club on ω_1 . We construct an uncountable subset A of ω_1 as follows. Assume that we have already constructed A up to δ for some countable ordinal δ . Then there is $\beta \in C \setminus (\delta + 1)$. We notice that the set

$$D_{\beta} := \{x \in \mathcal{X}(g_{\beta}); \operatorname{ran}(x) \cap X \neq \emptyset\}$$

is dense open in $\mathcal{X}(g_{\beta})$. So there exists $\gamma \in P_{\beta}$ such that $f(\gamma)$ is contained in D_{β} and let $A \cap (\gamma + 1) := (A \cap \delta) \cup \{\gamma\}$ which completes the construction of A.

By the \clubsuit -sequence, we can find $\alpha \in C$ such that $A_{\alpha} \subseteq A$. By the construction of A, A_{α} satisfies the first assumption of the property 4. We take any $\eta \in X \setminus \alpha$. Then there is a natural number m such that

$$a_{\alpha} \setminus m \subseteq a_{\eta}$$
 and $b_{\alpha} \setminus m \subseteq b_{\eta}$.

We fix any $\gamma \in A_{\alpha}$. Then by the construction of A, for some $\beta \in \alpha$, $\gamma \in P_{\beta}$ and $f(\gamma)$ is a subset of D_{β} . Applying the property 4 for $\langle \alpha, \beta, \gamma \rangle$, we can find $j \geq m$ which satisfies the conclusion of the property 4. Then we can find $s \in \mathcal{X}^{<\omega}(g_{\beta})$ such that [s] is a subset of $f(\gamma)$ and

$$\bigcup_{\xi \in \operatorname{ran}(s)} a_{\xi} \cap b_{\eta} \cap j = \emptyset, \quad \bigcup_{\xi \in \operatorname{ran}(s)} a_{\xi} \setminus j \subseteq a_{\alpha},$$

$$\bigcup_{\xi \in \operatorname{ran}(s)} b_{\xi} \cap j \subseteq b_{\eta} \cap j \text{ and } \bigcup_{\xi \in \operatorname{ran}(s)} b_{\xi} \setminus j \subseteq b_{\alpha}.$$

By the definition of D_{β} , there exists $\xi \in \operatorname{ran}(s) \cap X$. (Because if $\operatorname{ran}(s) \cap X = \emptyset$, then let $\zeta \in \operatorname{ran}(s)$ and $x \in \beta^{\omega}$ such that $s \subseteq x$ and $x(i) = \zeta$ for all $i \ge |s|$, and then $x \in ([s] \cap \mathcal{X}(g_{\beta})) \setminus D_{\beta}$, which contradicts an assumption of s. The point is that for any $s_0, s_1 \in \alpha^{<\omega}$, the intersection $[s_0] \cap [s_1]$ is empty if s_0 and s_1 are incomparable, otherwise $[s_0] \cap [s_1]$ is either $[s_0]$ or $[s_1]$.) But then

$$(a_{\varepsilon} \cap b_n) \cup (a_n \cap b_{\varepsilon}) = \emptyset$$

which is a contradiction and completes the proof of (a).

A proof of (b) is similar to one of (a), but we will use the property 5 instead of 4. We assume that there exists an uncountable subset Y of ω_1 such that for all $\gamma \neq \delta \in Y$,

$$(a_{\gamma} \cap b_{\delta}) \cup (a_{\delta} \cap b_{\gamma}) = \emptyset.$$

Without loss of generality, we may moreover assume that for all $\gamma \in \omega_1$, there exists $\delta \in Y$ such that

$$(a_{\gamma} \cap b_{\delta}) \cup (a_{\delta} \cap b_{\gamma}) \neq \emptyset.$$

We note again that the set

$$C' := \{ \alpha \in \mathsf{Lim} \cap \omega_1 : \forall \gamma \in \alpha \ \exists \delta \in Y \cap \alpha \ ((a_{\gamma} \cap b_{\delta}) \cup (a_{\delta} \cap b_{\gamma}) \neq \emptyset) \}$$

is club on ω_1 . We construct an uncountable subset B of ω_1 as follows. Assume that we have already constructed B up to δ for some countable ordinal δ . Then there is $\beta \in C' \setminus (\delta + 1)$. We define the subset E_{β} of $\mathcal{Y}(g_{\beta})$ such that $y \in E_{\beta}$ if there exists $\xi \in Y$ so that for some $l \in \omega$, either

$$a_{\xi} \cap \left(\bigcup_{\zeta \in \operatorname{ran}_0(y)} b_{\zeta}\right) \cap \left[y(l), y(l+1)\right) \neq \emptyset$$

or

$$\left(\bigcup_{\zeta\in \mathrm{ran}_0(y)} a_\zeta\right)\cap b_\xi\cap \left[y(l),y(l+1)\right)\neq\emptyset.$$

We note that E_{β} is dense open in $\mathcal{Y}(g_{\beta})$, hence there exists $\gamma \in P_{\beta}$ such that $f(\gamma)$ is contained in E_{β} and let

$$B \cap (\gamma + 1) := (B \cap \delta) \cup \{\gamma\}$$

which completes the construction of B.

By the \clubsuit -sequence, we can find $\alpha \in C'$ such that $A_{\alpha} \subseteq B$. By the construction of B, A_{α} satisfies the first assumption of the property 4. We take any $\eta \in Y \setminus \alpha$. Then there is a natural number m such that

$$a_{\alpha} \setminus m \subseteq a_{\eta}$$
 and $b_{\alpha} \setminus m \subseteq b_{\eta}$.

We take any $\gamma \in A_{\alpha}$, then by the construction of B, for some $\beta \in \alpha$, $\gamma \in P_{\beta}$ and $f(\gamma)$ is a subset of E_{β} . Applying the property 5 for $\langle \alpha, \beta, \gamma \rangle$, we can find $i \geq m$ which satisfies the conclusion of the property 5. Then we can find $t \in \mathcal{Y}^{<\omega}(g_{\beta})$ such that $t(0)(1) \geq i$, [t] is a subset of $f(\gamma)$ and

$$\left(\bigcup_{\zeta \in \text{ran}_0(t)} a_{\zeta}\right) \cap \left[i, \ t(|t|-1)(1)\right) \subseteq a_{\alpha}$$

and

$$\left(\bigcup_{\zeta\in\operatorname{ran}_0(t)}b_\zeta\right)\cap\left[i,\ t(|t|-1)(1)\right)\subseteq b_\alpha.$$

By the definition of E_{β} , there exists $\xi \in Y$ such that for some l < |t| - 1, either

$$a_{\xi} \cap \left(\bigcup_{\zeta \in \operatorname{ran}_0(t)} b_{\zeta}\right) \cap \left[t(l)(1), \ t(l+1)(1)\right) \neq \emptyset$$

or

$$\left(\bigcup_{\zeta\in \mathrm{ran}_0(t)} a_\zeta\right) \cap b_\xi \cap \left[t(l)(1), \ t(l+1)(1)\right) \neq \emptyset.$$

But then, since $t(l)(1) \ge i$,

$$(a_{\xi} \cap b_{\eta}) \cup (a_{\eta} \cap b_{\xi}) \neq \emptyset$$

which is a contradiction and completes the proof of (b).

3 $Coll(\omega, \omega_1)$ adds a destructible gap

 $Coll(\omega, \omega_1)$ is a forcing notion collapsing \aleph_1 to \aleph_0 by finite approximations.

Adding a Cohen real always adds a destructible gap. Exactly, if $\langle a_{\alpha}, b_{\alpha}; \alpha \in \omega_1 \rangle$ is an (ω_1, ω_1) -gap and c is Cohen (over the ground model), then $\langle a_{\alpha} \cap c, b_{\alpha} \cap c; \alpha \in \omega_1 \rangle$ is a destructible gap (in the Cohen extension). The following proof is essentially the same proof of the case of Cohen forcing.

Theorem 3.1. $Coll(\omega, \omega_1)$ adds a destructible gap.

Proof. We write $\mathbb{P} := \mathbf{Coll}(\omega, \omega_1)$. We note that in the extension with $\mathbf{Coll}(\omega, \omega_1)$,

$$\aleph_0^{\mathbf{V}} = \left|\aleph_1^{\mathbf{V}}\right| = \aleph_1 \text{ and } \aleph_2^{\mathbf{V}} = \aleph_1.$$

Hausdorff has proved that there exists an (ω_1, ω_1) -gap under ZFC. (Of course (?), we now assume the axiom of choice.) So we have a $\mathbf{Coll}(\omega, \omega_1)$ -name $\langle \dot{a}_{\alpha}, \dot{b}_{\alpha}; \alpha \in \omega_2 \rangle$ such that

$$\Vdash_{\mathbf{Coll}(\omega,\omega_1)}$$
" $\langle \dot{a}_{\alpha},\dot{b}_{\alpha};\alpha\in\check{\omega_2}\rangle$ is an $(\dot{\omega_1},\dot{\omega_1})$ -gap, (note that $\check{\omega_2}=\dot{\omega_1}$)

and
$$\forall \alpha \in \check{\omega_2} \left(\dot{a}_{\alpha} \cap \dot{b}_{\alpha} = \emptyset \right)$$
 ".

We note that \mathbb{P} is forcing-equivalent to the product $\operatorname{Coll}(\omega, \omega_1) \times \mathbb{C}$, where \mathbb{C} is a partial order $\langle 2^{<\omega}, \supseteq \rangle$. In this proof, we identify a condition p in \mathbb{C} with a finite subset $\{i \in |p|; p(i) = 1\}$ of |p|. Letting \dot{c} be a \mathbb{C} -name for a generic real, we now show that

$$\Vdash_{\mathbb{P}}`` \left\langle \dot{a}_{\alpha} \cap \dot{c}, \dot{b}_{\alpha} \cap \dot{c}; \alpha \in \check{\omega_{2}} \right\rangle \text{ is a destructible gap "},$$

and this finishes the proof.

Assume that $\langle \dot{\alpha}_{\xi}; \xi \in \omega_2 \rangle$ is \mathbb{P} -names for countable ordinals (i.e. less than ω_2 ordinals) such that

$$\Vdash_{\mathbb{P}}$$
 " $\dot{\alpha}_{\xi} < \dot{\alpha}_{\eta} < \check{\omega}_{2}$ "

if $\xi < \eta < \omega_2$. For each $\xi \in \omega_2$, we take a condition $\langle \sigma_{\xi}, s_{\xi} \rangle \in \mathbb{P}$ and $\beta_{\xi} \in \omega_2$ such that

$$\langle \sigma_{\mathcal{E}}, s_{\mathcal{E}} \rangle \Vdash_{\mathbb{P}}$$
 " $\dot{\alpha}_{\mathcal{E}} = \check{\beta}_{\mathcal{E}}$ ".

Check being a gap. Since $|\mathbb{P}| = \aleph_1$, without loss of generality, we may assume that all $\langle \sigma_{\xi}, s_{\xi} \rangle$ are the same condition $\langle \sigma, s \rangle$. We note that

$$\sigma \Vdash_{\mathbf{Coll}(\omega,\omega_1)} " \left\langle \dot{a}_{\tilde{\beta_{\xi}}} \smallsetminus \left| \check{s} \right|, \dot{b}_{\tilde{\beta_{\xi}}} \smallsetminus \left| \check{s} \right|; \alpha \in \check{\omega_2} \right\rangle \text{ is a gap,}$$

(note that $\{\check{\beta}_\xi; \xi \in \check{\omega_2}\}$ is an uncountable set)",

thus by the chracterization of being a gap, we can find $\sigma' \leq_{\mathbf{Coll}(\omega,\omega_1)} \sigma$, $\xi \neq \eta \in \omega_2$ and $k \in \omega$ so that

$$\sigma' \Vdash_{\mathbf{Coll}(\omega,\omega_1)} \text{``} \left(\left((\dot{a}_{\check{\beta_{\xi}}} \cap \dot{b}_{\check{\beta_{\eta}}}) \cup (\dot{a}_{\check{\beta_{\eta}}} \cap \dot{b}_{\check{\beta_{\xi}}}) \right) \smallsetminus |\check{s}| \right) \cap \check{k} \neq \emptyset \text{''}.$$

Let $s' := s^1[|s|, k)$, then

$$\langle \sigma', s' \rangle \Vdash_{\mathbb{P}} `` (\dot{a}_{\check{\beta}_{\xi}} \cap \dot{b}_{\check{\beta}_{\eta}} \cap \dot{c}) \cup (\dot{a}_{\check{\beta}_{\eta}} \cap \dot{b}_{\check{\beta}_{\xi}} \cap \dot{c}) \neq \emptyset ".$$

Therefore we have shown that

$$\Vdash_{\mathbb{P}} " \forall X \in [\dot{\omega}_1]^{\dot{\omega}_1} \; \exists \alpha \neq \beta \in X \; \left((\dot{a}_{\alpha} \cap \dot{b}_{\beta} \cap \dot{c}) \cup (\dot{a}_{\beta} \cap \dot{b}_{\alpha} \cap \dot{c}) \neq \emptyset \right) ".$$

Check a destructibility. For each $\xi \in \omega_2$, without loss, there may exist $t_{\xi}, u_{\xi} \in 2^{|s_{\xi}|}$ so that

$$\sigma_{\xi} \Vdash_{\mathbf{Coll}(\omega,\omega_1)} \text{``} \dot{a}_{\beta_{\xi}} \upharpoonright |\check{s}_{\xi}| = \check{t}_{\xi} \text{ and } \dot{b}_{\beta_{\xi}} \upharpoonright |\check{s}_{\xi}| = \check{u}_{\xi} \text{ ''}.$$

Without loss of generality, we may assume that all σ_{ξ} , s_{ξ} , t_{ξ} and u_{ξ} are some σ , s, t and u respectively. We must notice that, by our assumption, $t \cap u = \emptyset$. We fix any $\xi \neq \eta \in \omega_2$ with $\xi < \eta$. Then we can find σ' and $k \in \omega$ so that

$$\sigma' \Vdash_{\mathbf{Coll}(\omega,\omega_1)} ``\dot{a}_{\check{\beta}_{\xi}} \smallsetminus \check{k} \subseteq \dot{a}_{\check{\beta}_{\eta}} \text{ and } \dot{b}_{\check{\beta}_{\xi}} \smallsetminus \check{k} \subseteq \dot{b}_{\check{\beta}_{\eta}} ".$$

Let $s' := s \cap 0 \upharpoonright [|s|, k)$, then

$$\langle \sigma', s' \rangle \Vdash_{\mathbb{P}} `` (\dot{a}_{\check{\beta}_{\xi}} \cap \dot{b}_{\check{\beta}_{\eta}} \cap \dot{c}) \cup (\dot{a}_{\check{\beta}_{\eta}} \cap \dot{b}_{\check{\beta}_{\xi}} \cap \dot{c}) = \emptyset ".$$

Acknowledgement. I would like to thank Jörg Brendle for letting me show his unpublished paper [3].

References

- [1] U. Abraham and S. Todorčević. Partition properties of ω_1 compatible with CH, Fundamenta Mathematicae, 152 (1997), 165–180.
- [2] S.Broverman, J. Ginsburg, K. Kunen and F. Tall. Topologies determined by σ -ideals on ω_1 , Canadian Journal of Mathematics, 30 (1978), no.6, 1360–1312.
- [3] J. Brendle. Cardinal invariants of the continuum and combinatorics on uncountable cardinals, preprint.
- [4] H. Dales and H. Woodin. An introduction to independence for analysts, London Mathematical Society Lecture Note Series, 115.
- [5] A. Dow. More set-theory for topologists, Topology and its Applications, 64 (1995), no. 3, 243–300.
- [6] I. Farah. OCA and towers in $\mathcal{P}(\mathbb{N})/fin$, Commentationes Mathematicae Universitatis Carolinae, 37, (1996), 861-866.
- [7] S. Fuchino, S. Shelah and L. Soukup. Sticks and clubs, Annals of Pure and Applied Logic, 90 (1997), no. 1-3, 57–77.
- [8] J. Hirschorn. Summable gaps, Annals of Pure and Applied Logic, 120 (2003), 1-63.
- [9] J. Hirschorn. Random trees under CH, Israel Journal of Mathematics, to appear.
- [10] J. Hirschorn. Random gaps under CH, Transactions of the American Mathematical Society, 356 (2004), no. 4, 1281–1290.
- [11] J. Hirschorn. Random gaps, preprint.

- [12] M. Hrušák. Life in Sacks model, Acta Universitatis Carolinae. Mathematica et Physica, 42 (2001), no. 2, 43–58.
- [13] K. Kunen. (κ, λ^*) -gaps under MA, handwritten note, 1976.
- [14] R. Laver. Linear orders in $(\omega)^{\omega}$ under eventual dominance, Logic Colloquium '78, North-Holland, 299-302, 1979.
- [15] R. Laver. Random reals and Souslin trees, Proceedings of the American Mathematical Society, 100 (1987), no. 3, 531-534.
- [16] J. Moore, M. Hrušák and M. Džamonja. Parametrized \Diamond principles, Transactions of American Mathematical Society, 356 (2004), 2281-2306.
- [17] A. Ostaszewski. On countably compact, perfectly normal spaces, Journal of the London Mathematical Society, 14 (1976), no. 3, 505–516.
- [18] M. Scheepers. Gaps in ω^{ω} , In Set Theory of the Reals, volume 6 of Israel Mathematical Conference Proceedings, 439-561, 1993.
- [19] S. Shelah. Can you take Solovay's inaccessible away?, Israel Journal of Mathematics, 48 (1984) 1-47.
- [20] S. Shelah. Proper and improper forcing, 2nd edition, Springer, 1998.
- [21] S. Shelah and J. Zapletal. Canonical models for ℵ₁-combinatorics, Annals of Pure and Applied Logic, 98 (1999), 217–259.
- [22] S. Todorčević. Partition Problems in Topology, volume 84 of Contemporary mathematics, American Mathematical Society, Providence, Rhode Island, 1989.
- [23] S. Todorčević and I. Farah. Some Applications of the Method of Forcing, Mathematical Institute, Belgrade and Yenisei, Moscow, 1995.
- [24] D. Velleman. Souslin trees constructed from morasses, Axiomatic set theory (Boulder, Colo., 1983), 219–241, Contemporary Mathematics, 31, American Mathematical Society, Providence, RI, 1984.
- [25] T. Yorioka. The diamond principle for the uniformity of the meager ideal implies the existence of a destructible gap, to appear.