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Abstract

We show that (1) & plus cof(M) = R; implies the existence of a destructible gap and
(2} Coll(w,w;) adds a destructible gap.

1 Introduction

In this paper, we deal with a pregap in the Boolean algebra P(w)/fin. A pregap in P(w)/fin is
a pair (A, B) of subsets of P(w) such that for all a € A and b € B, the set a N b is finite. For
subsets @ and b of w, we say that a is almost contained in & (and denote a C* b) if the set a \.{
is a subset of b for some [ € w. For a pregap (A, B), both ordered sets (A, C*) and (B,C*)
are well ordered and these order types are x and X respectively, then we say that a pregap
(A, B) has the type (k,A) or is a (k, A)-pregap. Moreover if k = A, we say that the pregap is
symmetric. For a pregap (A, B), we say that (A, B) is separated if for some ¢ € P(w), a C* ¢
and the set ¢ b is finite for every a € A and b € B. If a pregap is not separated, we say that
it is a gap. Moreover if a gap has the type (x, A}, it is called a (k, A)-gap.

We note that being a pregap is absolute in any model having the pregap, but being a gap
is not. In [13], Kunen has investigated an (w;,w;)-gap and has given a characterization of
being a gap in the forcing extension and in [23, Chapter 9], Todoréevié has introduced a notion
of an open coloring and has given Ramsey theoretic characterization of being a gap in the
forcing extension (Theorem 1.1). From their characterizations, we note that an (wy,w;)-gap
constructed by Hausdorff is still a gap in any extension preserving cardinals. We say that such
a gap is indestructible. If an {wy,w;)-gap is not indestructible, that is, it is not a gap in some
forcing extension not collapsing cardinals, it is called destructible. (We note that every gap not
having the type (w1, wi), it can be separated by a cce-forcing extension.) Kunen has proved
that under Martin’s Axiom for N; many dense sets of cce-forcing notions, all (wr,w;)-gap are
indestructible. In [14], Laver has implied that a destructible gap consistently exists. Therefore
it is not decided from ZFC that there exists a destructible gap.

A notion of a destructible gap can be an analogy of one of a Suslin tree ({1]). A Suslin tree
is an ws-tree having no uncountable chains and antichains. A destructible gap is considered as
a similar notion. For an (wy,w;)-pregap (A, B) = (ay,by; & € wy) with the set a, N b, empty
for every « € wy, we say here that o and 8 in wy are compatible if

(aa N bﬁ) U (ag n ba) = @
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Then by the characterization due to Kunen and Todorcevi¢, we notice that an (w;,w; )-pregap
is a destructible gap iff it has no uncountable pairwise compatible and incompatible subsets of
Wi,

Jensen has proved that if V = L, then there exists a Suslin tree. After that, he has
introduced a combinatorial principle > and has constructed a Suslin tree from . In [19], Shelah
has proved that adding a Cohen real adds a Suslin tree. The same results for a destructible gap
are also true and proved by Todorgevié ([5, Proposition 2.5] and [23, Theorem 9.3]). (Random
reals effect the existence of a Suslin tree and a destructible gap quite different. [15, 9], 8, 10, 11])
(We must notice that from results of Farah and Hirschorn [6, 8], the existence of a destructible
gap is independent with the existence of a Suslin tree.)

In [24], Velleman has modified a construction of a Suslin tree due to Shelah using a morass,
and after that Miyamoto has modified a Velleman’s construction using a connections of two
models. The first version of Miyamoto’s theorem also have a morass as a condition to build
a Suslin tree, but in [3, §7], Brendle has modified again that situation and consequently, he
constructed a Suslin tree from ¥ plus the covering number cov(M) of the meager ideal is larger
than ®;. ¢ is a combinatorial principle on wy, introduced in the paper [2], as follow: there is
a sequence (Ag; o € wy) of countable subsets of wi such that for any uncountable subset B of
w, there is & € wy so that Ay C B. A destructible gap can be constructed under the same
situation, that is, ¥ plus cov(M) > Xy implies the existence of a destructible gap.

& is a combinatorial principle on w; introduced by Ostaszewski ([17]. See also [20, 1.§7}):
There exists a sequence {A,; o € wi) of subsets of wy such that for all @ € wy, A, € « and
for every uncountable subset A of w;, the set {a € wi; Ay C A} is stationary. We note that
¢ implies & and & plus the Continuum Hypothesis implies & ([20]). From the result of
Baumgartner [12, Theorem IV. 4] (or the result [16, Corollary 6.14]), it is consistent with
ZFC that &, the cofinality cof(M) of the meager ideal on the real line is equal to ¥y and the
continuum is larger than Xy, hence in this model, & does not hold. Brendle has proved that
that a Suslin tree exists in the model satisfying & plus cof (M) = Ry ([3, Theorem 6]). As same
as a Suslin tree, we can show that & plus cof(M) = X, implies the existence of a destructible
gap (Theorem 1).

The consistency of & plus = CH was an well known open problem. The first discovery of
this consistency was due to Shelah. After that, this problem has been investigated by several
set theorists. As far as I know, we have the following five types of models satisfying & and
—~CH. (Here, & is an uncountable regular cardinal.)

1. Shelah [20]. (&, +2% = Rg) ) e 9% = Ry7,

2. Fuchino-Shelah-Soukup [7]. (peendoproduct(Cn) Lo« gy 4+ 9% = cov(M) = &".
3. Brendle [3]. (pseudoproductBr) o« gy 4 ™M = cov(N) =K.

4. Baumgartner [12]. OEPEH) L« &y 1+ cof (M) =Ry + R0 = k7,

5. Moore-Hrugdk-Dzamonja [16]. VE42) ¢ & + cof (M) = R + 270 = Ry”.

From above results, we have known that the models 2, 4 and 5 have both a Suslin tree and
a destructible gap. I will prove that Coll(w,w;) adds a destructible gap (Theorem 3.1), hence
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it follows that the model 1 has a destructible gap. (I conjecture that Coll{w,w;) adds a Suslin
tree, so the model 1 also has a Suslin tree.) Well, it is not still known wethere the model 3 has

a Suslin tree, or destructible gap.

Throughout this paper, we always deal with a symmetric pregap. For an ordinal o, if we
say that {(ag, be; € € @) is a pregap, we always assume that

o if{ <7nin o, a¢ C* a, and b C* by, and
e for every & € @, the set ag N b is empty.
We have the following characterizations of being a gap and indestructibility.
Theorem 1.1 (E.g. [4, 13, 18, 22]). Let (A, B) = (ta,ba; @ € wi) be an (w1, w1 )-pregap.
1. The following statements are equivalent:
(i) (A,B) forms a gap.
(i) VX € [wi]*r Fa # B € X ((aeNbg) U {agNby) # 9).
2. The following statements are equivalent:

(i) (A, B) is destructible (may not be a gap).
(ii) VX € [wl]“’l dJa#£pBeX ((aa N bﬁ) U (ag N ba) = @)

2 & plus cof (M) = X, implies the existence of a destruc-
tible gap

In [5, Proposition 2.5], a destructible gap is constructed from <. This proof uses the CH to
show the pregap constructed by recursion is really a gap. The following proof (and the proof
in (25]) says that we do not need the CH to construct a destructible gap from ¢ also.

The following condition is a useful notion to construct a destructible gap. This is used in
the proof of [5, Proposition 2.5]. (But we slightly modify the original one.)

Definition 2.1 ([25]). We say that a pregap (A, B) = (@a,bs; & € wi) admits finite changes
if for all o < wy, the set a, N b, s empty and the set w N (a, U by) is infinite, and for any
G < a with B =n+k for somen € LimNa and k € w, H,J € W< with HNJ = { and
i > max(H U J) there exists n € w so that

Upin N =H, pin Ni=ag N1, bynNi=J, and by N1 =Dbg N 1.
Theorem 1. & and cof (M) = N, implies the existence of a destructible gap.

Proof. At first, we give some notation in the proof to avoid using many symbols in formulae.
For each o € wy and a pregap {ag,bg; £ < @), let g € 2°%“*2 be a function such that for all

E<a, 0 ={n€wg(én,0) =1} and b = {n € w; g(§,n,1) = 1}, that is, g is a code of this

pregap. Assume that a is a countable ordinal and g is a code of an (o, &)-pregap (ag, be; € € @)
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which admits finite changes, and ag Nbe = @ and w ~ (a¢ Ube) is infinite for all § € a. Then we
define a subset X(g) of o which is a collection of members z in o such that

U Qg N U bg = @
£€ran(z) ¢cran(z)

We can identify X (g) as the Baire space w”. (By the admission of finite changes of g, any node
in X(g) has infinitely many successors.) For each s € o=, we let [s] :={z € X(g);s € z} and
denote X<“(g) as the set of s € < such that [s] is a basic open set in X (g), Le.

U O¢ N U bg - @
¢cran(s) geran(s)

Let O be a dense open subset of w®. O is & union of countably many basic open sets, that is,
O has a code as a countable sequence of members of w<*. In this proof, we can consider O as
a dense open subset of X(g) using its code. Moreover we define a space Y(g) such that

V(g) == {y € (a x w)*; the sequence of the first coordinats of y is in X(g)
and the second coordinats are strictly increasing }.

V(g) is also considered as the Baire space. For y € (o x w)=¥ and | < |y, we denote y(I) =
(y(1)(0),5()(1)) and rang(y) = {y(1)(0);! < lyl}. As in the definition of X<¥(g), we denote
V<¥(g) as the set of t € (@ x w)<¥ such that [t] is a basic open set in Y(g).

Let (Aq; o € wi) be a d-sequence. Since cof(M) is equal to the cofinality of the collection
of closed nowhere dense sets (e.g. [21, Lemma 3.7]) and now cof (M) = Ry, there exists a family
© of open dense subsets of w* of size ¥; such that for any dense open subset O of w*, there
exists a member of O which is a subset of O. We write Lim as a class of limit ordinals. Let
(Pg; B € wy N Lim) be a partition and f a function from w; onto O such that for all B € wyNLim,

e P is uncountable,

e the set Pg N J is empty, and

o f[Pp is surjective.

We construct a pregap {aq,bs; @ € wi) with the following properties:

1. ag =bg = 0, ag N by = 0 and the set w (aq U by) is infinite for all o < w;.
2. If # < & < wy, then both ag ¥ aa and bg € ba-

3. (Gq,bo; @ € wr) admits finite changes.

A. For each & € wy N Lim, if for any v,8 € A, with v < 4, there is B3 > r such that § € Fp,
then there exists a strictly increasing sequence (7¢; k € w) of natural numbers such that
for each B € aNlimand vy € PgN A,, there is an infinite subset S of w so that for any
j € {jt;k € S} and K C j, there exists s € X< (gg) such that [s] is a subset of the
dense open subset f(v) in X(gp), and '

U aNK =0, U ag ~j € g,

g€ran(s) £€ran(s)
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U bnjCK and  |J b~ ba

£€ran{s) ¢eran(s)

5. For each o € wy N Lim, if for any 7,5 € A, with v < 6, there is § > +y such that § € Fp,
then there exists a strictly increasing sequence (i : k € w) of natural numbers such that
for each 3 € a N Lim and v € P N A,, there is an infinite subset T of w so that for any
i€ {i% k € T}, there exists t € V< (gg) such that t(0)(1) > 1, [¢t] is a subset of the dense
open subset f(v) in Y(gg), and

U anli 4t - D) € a

£erang(t)

and
U &n ['é, 41t — 1)(1)) C b,

é€rang(t)

The construction at successor stages are trivial by the property 3.

Assume that « is a limit ordinal. We enumerate the set {(3,7);8 € anlimand v € PsNA,}
by {{Bk, W) ; k € w} such that each pair (8,~) appears infinitely many often. (These sets may
be empty. If so, we let all {85,vs) not be defined.) In order to construct a, and b,, we
construct an increasing cofinal sequence {(x; k € w) of o and natural numbers i = i, J§ = Jk,
with properties that

o (Giik € w) € X(ga),
o [ < ey and g < Jg < igsq for every k € w, and
o ag , Njk-1 = ag NJr-1 and be, , M Jr—1 = be, N Jk—1 for every k € w

as follows; then we define a, = e, a¢, and by := {Upe,, bee:

Assume that we have already constructed (i, i, and jn, b < k, for some k € w. (We put
i_y = j_1 = 0. If (B, v)’s are not defined, then we ignore the following construction and define
aq and b, satisfying the properties 1 and 2 and for all 4 € «, both sets a, \ a, and b, \ b, are
infinite.) Let {K,;m < 2751} enumerate P (jx—1). By the inductive hypothesis of the property
3, we pick 7 € By for each m < 21 and s, € X<¥(gg,) for each m < 271 such that

* ap. N Jrw1 = Jo—1 N K, and b’ﬂm Nfe-1 = K,

<77m> C S (i-e- Sm(o) = nm)’

'Sm) is a subset of the dense open subset f{7x) in X(gg,),

® max (Nm41 NLim) = max {max(£ N Lim); £ € ran(s,,)}, and

U g\ Jk-1 = Gy N Jr—1 and U be N Jk—1 = bypyy N Jk

Ecran(sm) g¢eran{sm )

(This can be done by the property 3.) Let iz > jr—1 be such that

gy Nk Cag , and bnz]k_1 Nig C b s
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and then we take {{ ; € a (by the inductive hypothesis of the property 3) so that
ag._, Nje-1= ag , NJe-1, G¢_, N {jk—ls ik—) =0y, 0 [jmu ik)
ag .~ i = g, i, bCi'c—z N jg-q = b(k_l M Je—1,

bc;cvl N {jk—la ’ik) = b"fgs"k—x N [jk—l, ik> and ch_l Nt = be, Ntk

The construction up to here is for the property 4. For the property 5, we pick t € Y<“{ga)
such that ¢(0)(1) > i, [f] is & subset of the dense open subset f(7) in Y(gg,). (This can be
done by the density of f(vx). For the sequence {(0,7)) € V(gp,)<, there is t € YV (gg,)™ s0
that ((0,4)) C ¢ and [t] is a subset of f(yx).) We let

oy > max (rano(t) U {C{c_l})

be a large enough ordinal less than o and ji > #(Jt] — 1)(1)(= i) be such that for all { €
rano(t) U {C;c—l}a

ag N 3,0 - acg_l, b£ ~ jk C b%’q. and I]k AN (acgnl U bclrir_l) > k
and find ¢, < a (by the inductive hypothesis of the property 3) so that
ag, N =ag | Nik,  ag N [ik, Jk) = U agUag | N [ik, jk),
gcrang(t)
ac, N Jk = agy N Ik bCk Nig = bg;cvl Mg,
bCk N {ik, jk) = U b{ U ch_l N [ik, Jk) and bgk ~ jk = bC}’c’—l \jk,

¢erang(t)

which completes the construction.

We check that (aq,bs; 0 € wp) is a destructible gap, i.e. we will prove the following two
statements.

(a) VX € [wr] Ja # B € X ((aa Nbp) U (a5 Nba) = 0).
(b) VX € i} Fo £ B € X ((aq Nbg) U (ap ko) #0).

(We recall that (a) means that the pregap is destructible, and (b) means that the pregap is a
gap-.)
For a proof of (a), assume that there exists an uncountable subset X of w; such that for all
v#6e X,
{ay N 55) Ulas N b’)’) # 0.

Without loss of generality, we may moreover assume that for all v € wy, there exists § € X

such that
(a, N bs) U (as Nby) = 0.
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We note that the set
C:={aelimnNu;Yy€adb e Xna ((aNbs)U(asNb,) =0)}

is club on w;. We construct an uncountable subset A of w; as follows. Assume that we have
already constructed A up to & for some countable ordinal 6. Then there is 3 € O\ (6+1). We
notice that the set
' Dy := {z € X(gg);ran(z) N X # 0}
is dense open in X(gg). So there exists v € Py such that f(7) is contained in Dy and let
AN(y+1):=(ANé&) U {y} which completes the construction of A.

By the &-sequence, we can find o € C such that A, € A. By the construction of A, A,
satisfies the first assumption of the property 4. We take any n € X ~ «. Then there is a natural

number m such that
o ~m C a, and by ~m C by.

We fix any v € A,. Then by the construction of A, for some § € &, v € Pz and f{7) is a subset
of Dg. Applying the property 4 for (e, 8, 7), we can find j > m which satisfies the conclusion
of the property 4. Then we can find s € X<¥ (gg) such that [s] is a subset of f(7) and

J acnbni=0, |J a~iCaa

geran(s) éeran(s)
| bniCt,ng and | beNjCba
£eran(s) geran(s)

By the definition of Dg, there exists £ € ran(s) N X. (Because if ran(s) N X = 0, then let { €
ran(s) and z € 3¢ such that s C z and z(i) = { for all ¢ > |s|, and then z € ([s] N X(gg)) ~ Dg,
which contradicts an assumption of s. The point is that for any so, s1 € @<¥, the intersection
[s0) N [s1] is empty if ¢ and s; are incomparable, otherwise [so] N [s1] is either [so] or [s].) But
then
(ag Nby) U (an Nbe) =0

which is a contradiction and completes the proof of (a).

A proof of (b) is similar to one of (a), but we will use the property 5 instead of 4. We
assume that there exists an uncountable subset Y of wy such that for ally #£§ € Y,

{ay Nbs) U (asNby) = 0.

Without loss of generality, we may moreover assume that for all v € w;, there exists § € ¥
such that
(ay N bs) U (as Nby) # 0.

We note again that the set
C':={aclimnu;VyeaIbe Y Na ((a,Nbs)U(asNby) # )}

is club on wy;. We construct an uncountable subset B of w; as follows. Assume that we have
already constructed B up to § for some countable ordinal §. Then there is 8 € C' ~\ (6§ + 1).
We define the subset Eg of Y(gg) such that y € Ejg if there exists £ € ¥ so that for some ! € w,
either

awn| U & ﬂ[y(l),y(l+l))=;é®

¢erang(y)
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or

U a ] nbenv®ui+1) 0.

¢erano(y)

We note that Ej is dense open in Y(gg), hence there exists y € Py such that f(7y) is contained
in Eg and let
Bn(y+1)=(Bnd§u{y}

which completes the construction of B.

By the d-sequence, we can find o € C’ such that A, © B. By the construction of B, A,
satisfies the first assumption of the property 4. We take any 7 € Y\ a. Then there is a natural
number m such that

aa~mCa, and by~ m C by

We take any v € A,, then by the construction of B, for some B € a,v € Pgand f(v) is a subset
of Ez. Applying the property 5 for (a, B,7), we can find ¢ > m which satisfies the conclusion
of the property 5. Then we can find ¢t € Y<* (gs) such that ¢(0)(1) = 7, [t] is a subset of f(v)

and
( U a)nfe did-nm)

¢erang(t)

and

( U Q/m@ﬂm—nm)g%

¢€rang(t)

By the definition of Ep, there exists £ € Y such that for some | < |t] — 1, either

an| | bc) a [t(l)(l), t(l+ 1)(1)) #0

{€ranp(t)
U %)QOhmmJ0+nm)¢@
¢erano(t)

But then, since ¢({)(1) > 1,
(G,g ﬂbn) U (CL,T N b{) * )

which is a contradiction and completes the proof of (b). O

3 Coll{w,w;) adds a destructible gap

Coll(w,w;) is a forcing notion collapsing ¥y to Ry by finite approximations.

Adding a Cohen real always adds a destructible gap. Exactly, if (aq,ba;0 € w) is an
(w1, wr)-gap and ¢ is Cohen (over the ground model), then (a, Nc,baNe;a € wi) is a destruc-
tible gap (in the Cohen extension). The following proof is essentially the same proof of the case
of Coben forcing.

Theorem 3.1. Coll{w,w:) adds o destructible gap.
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Proof. We write P := Coll{w,w;). We note that in the extension with Coll(w,w),

RoV = [RyY| =R and RV =Ry
Hausdorff has proved that there exists an (wy,w;)-gap under ZFC. (Of course {7}, we now
assume the axiom of choice.) So we have a Coll(w,w;)-name <(za, by o € woy ¥ such that

”_Coll(w,ul}“ <da, Z‘)a; @ € u52> is an (wl,w'l)-gap, (note that Wy = u.'q)

and Yo € W ((za N by = @) ",

We note that P is forcing-equivalent to the product Coll{w,w;) x C, where C is a partial order
(2<%, 2). In this proof, we identify a condition p in C with a finite subset {i € |p|;p(i) = 1} of
Ip|. Letting ¢ be a C-name for a generic real, we now show that

bp <aa NébaNéae ¢J2> is a destructible gap 7,
and this finishes the proof.

Assume that {dg; € € wy) is P-names for countable ordinals (i.e. less than wy ordinals) such
that
FpS b < o < "

if £ <71 < wey. For each £ € wy, we take a condition (o, s¢) € P and f; € w; such that
<O’£,S§> ”"]p“ dg = 65 ”.

Check being a gap. Since |P| = X, without loss of generality, we may assume that all (o, s¢)
are the same condition (o, s). We note that

o kot <c’zﬁ~€ NIE] ,bﬁ’é N8l a e 0.72> is a gap,

(note that { Be; € € W2} is an uncountable set )",

thus by the chracterization of being a gap, we can find ¢’ <colwu) 0, E #FN€wp and k Ew
so that

o’ ”‘Coll(w,wl)“ (((dﬂ*{ N bﬁn) U <é'5n N bﬁg)) ~ I§i) Nk # g
Let ' :== s71[[|s], k), then
(o,8) ke (ag, Nbg NE)U (G, Nbg, NE) # 07
Therefore we have shown that

e VX € []¥ Ja £ B e X ((daNbyNE)U (a5 Nba ) # cz))
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Check a destructibility. For each £ € ws, without loss, there may exist ¢, ug € 9lsel 5o that
C¢ ”_Coll(w,wl)“ dﬂ{ r Iég! = fg and bﬁ& I |§€] = U 7.

Without loss of generality, we may assume that all o, s¢, and u¢ are some o, 8, t and u
respectively. We must notice that, by our assumption, tNu = 0. We fix any £ # n € wy with
¢ < 7. Then we can find ¢’ and k € w so that

o ”_Cﬂll(w,ul)“ aﬁg ~k C dﬁj” and bg{ <k - 65,7 ”
Let s' == 57Ol , k), then

(o,8) IFe* (ag, Nbg NE)U (a5 Nbs NE) =07

Acknowledgement. I would like to thank Jérg Brendle for letting me show his unpublished
paper [3].
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