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Borel Summability of Divergent Solutions for
Singular 1st Order Linear PDEs of Nilpotent Type
LA ZE T MR

(Department of Mathematics, Meijo University)
B Lb#F [ER (Masaki HIBINO)

1 Introduction and Main Result.
In this paper we are concerned with the following first order linear partial differential equation:
(L1) A(z,y)Dzu(z,y) + B(z,y) Dyu(=, y) + Clz,y)ulz,y) = F(z,y),

where z, y € C, D, = 8/8z, D, = 0/3y. A, B, C and F are holomorphic at (z,y) = (0,0) € c2.
First of all we give the following four fundamental assumptions:

(1.2) A(z,0) =0,
0A
(1.3) a—y(ﬂ, 0) #0,
(1.4) B(m,O) = B—@T(E,O) = 0,
(1.5) C{0,0) #0.

In the following we always assume (1.2) ~ (1.5). In §1.2 we will give one more important
assumption (cf. (1.11)).

Remark 1.1 The assumptions (1.2) and (1.4) imply 4(0,0) = B(0,0) = 0, which means that
the equation (1.1) is singular at the origin. Moreover it follows from (1.2), (1.3) and (1.4) that
the Jacobi matrix {4, B)/8(,y}|(zy)=(0,0) 18 & nilpotent matrix

(16) ( 0 04/, ) |

In this sence our equation is called of nilpotent type.

By assumptions we see that the equation (1.1) has a unique formal power series solution
u(z,y) = Y00 s un(z)y™ (un{z) are holomorphic in a common neighborhood of z = 0), but it
diverges in general and the rate of divergence is characterized in terms of the Gevrey index
(cf. Definidion 1.1, (3) and Theorem 1.1). So we are concerned with the existence of Gevrey
asymptotic solutions, and especially we are interested in the Borel summability of such divergent
solutions (cf. Definition 1.1, (5)). Our main purpose is to obtain the conditions under which
such divergent solutions are Borel summable. The main result in this paper will be given in
Theorem 1.2.
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1.1 Definition and Fundamental Result.

Firstly, in order to state our problem precisely, let us introduce the notation.

Definition 1.1 (1) O[R] denotes the ring of holomorphic functions on the closed ball B(R) =
{z € C; |z| < R}, where R is a positive number.
(2) The ring of formal power series in y (€ C) over the ring O[R] is denoted as O[R][[y}]:

(1.7) O[R][lyl] = {U(w,y) = un(@)y"; ua(z) € O[R]} -
=0

(3) We say that u(z,y) = Yoo jun(z)y™ (€ O[R][[y]]) belongs to O[R][[y]]2 if there exist
some positive constants C and K such that

1. < "pl
(1.8) ﬁgﬁlun(@l <CK"n
foralln=0,1, 2, .... Therefore elements of O[R][[y]]z diverge in general.

(4) For § € R and T > 0, we define the region O(6,T) by
(1.9) 0(6,T) = {y; ly— Te’| < T}.

(5) Let u(z,y) = 220 sun(z)y™ € O[R)|[y]la. We say that u(z,y) is Borel summable
in a direction @ if there exists a holomorphic function U{z,y) on B(r) x O{6,T) for some
0 < r < Rand T > 0 which satisfies the following asymptotic estimates: There exist some
positive constants C' and K such that

(1.10)
N-1
Imlix Ulz,y) — z un(z)y*| < CKNNIy|N, ye 0@, T); N=12,....
Zlsr n—0

In general a given divergent power series u(z,y) € O[R]{[y]l2 is not necessarily Borel summable.
However, if u{x,y) is Borel summable in a direction 6, we see that the above holomorphic
function U(z,y) is unique (cf. Balser[1][2], Lutz-Miyake-Schéfke[5] and Malgrange[6]). So we
call this U(z,y) the Borel sum of u(z,y) in a direction 0.

The following theorem is fundamental in the argument below.

Theorem 1.1 (cf. Hibino[4]) Let us assume (1.2) ~ (1.5). Then the equation (1.1) has a
unique formal power series solution u(z,y) = Y ewqun(x)y™ € O[R|[[y]]2 for some R > 0.

On the basis of Theorem 1.1, let us study the Borel summability of the formal solution.

1.2 Main Result.
In the following we study the Borel summability of the formal solution under the following
condition:

8’B
5 (z,0) =0.

(1.11) 5
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Now, before stating the main theorem, let us rewrite the equation (1.1).

By the condition (1.5), we see that C(z,y) # 0 in the neighborhood of (z,y) = (0,0).
Therefore by dividing the both sides of (1.1) by C(z,y), we may assume that C(z,y) = 1. Then
it follows from (1.2), (1.3), (1.4) and (1.11) that the equation (1.1) is rewritten in the following
form:

(1.12) {a(®) + B(z, y)}yDru(z, y) + (2, y)y* Dyu(z, y) + ulz,y) = f(=,),
where o, 8, v and f are holomorphic at the origin. Moreover they satisfy

(1.13) a{0) # 0,

(1.14) B(z,0) = v(z,0) = 0.

Furthermore in this paper we assume for simplicity that a(z) is the constant. Precisely, we
consider the Borel summability of the formal solution for the following equation:

(1.15) {a+ B(z,y)}yDeulz,y) + v(z,)y* Dyu(z,y) + u(z,y) = f(z,v),

where « is the constant satisfying @ # 0. Our purpose in this paper is to give the conditions
under which the formal solution u(z,y) = D 57 s un(z)y™ € O[R][[y]]2 of the equation (1.15) is
Borel summable in a given direction 4.

Now let us give the conditions which the coefficients should satisfy.

Assumptions.
First we define the region E,(6,x) (x > 0) by
(1.16) E4(6,k) = (& dis(§, Ry€”) = inf{[¢ - (|; ( € Ry} < &},

where R, = [0, +00) and R e = {re¥; » € R, }. We assume the following (A1) and (A2).

(A1) B(z,y), v(z,y) and f(z,y) are continued analytically to E4 (6 + 7+ arg(a), &) x {y €
C; ly| < ¢} for some k> 0 and ¢ > 0.

(A2) B(z,y), ¥(z,y) and f{z,y) have the following estimates on E(6-+m+arg(a), &) x{y €
C; |yl <cf:

(1.17) sup 16z, y)] < o0;
: o€ E4 (§+m+arg(a) k), lyl<e

K
1.18 max |y(z,Y)| L —————, =z € E, (0 + 7+ arg(a),s
for some positive constants K > 0 and ¢ > 1;
(1.19) lmli,x 1f(z,9)| < C®, ze B (6+ 7+ arg(a), k)
Y|

for some positive constants C > 0 and ¢ > Q.
Then we obtain the following main result in this paper.

Theorem 1.2  Under the assumptions (A1) and (A2) the formal solution u{z,y) of the equa-
tion (1.15) is Borel summable in the direction 0.

Remark 1.2 When the formal solution u(z,y) of (1.15) is Borel summable, we see that
its Borel sum is a holomorphic solution of (1.15). This is an immediate consequence of the
uniqueness of the Borel sum.
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2 Formal Borel Transform of Equations.

Before proving Theorem 1.2, we give some preliminaries.

Definition 2.1 For u(z,y) = 3 rogun(z)y™ € O[R][[y]]2, we define a convergent power series
B(u)(z,n) in a neighborhood of (z,7) = (0,0) by

(2.1) Blu)a,m) = Y un(e)
n=0

We call B(u)(z,n) the formal Borel transform of u(z,y).

When we want to check the Borel summability of a given formal power series u(z,y) =
2% L un(z)y™ € O[R]{[yl]z, the following theorem plays a fundamental role in general.

Theorem 2.1 ([5] and [6])  For u(z,y) = S oo qun(z)y™ € O[R][[ylls, let us put v(z,n) =
B(u)(z,n). Then the following two conditions (i) and (ii) are equivalent:

(i) w(z,y) is Borel summable in a direction 6.

(if) w(z,n) can be continued analytically to B(ro) x E4 (8, ko) for some ro > 0 and ko > 0,
and has the following exponential growth estimate for some positive constants C' and 9
(2.2) max lv(z,m)| < CMl ne EL(, ko).

T

When the condition (i) or (ii) (therefore both) is satisfied, the Borel sum U(z,y) of u(z, )

in the direction 6 is given by

(2.3) Ula,y) = - / e~/ (z, m)dn
Y IR et

Therefore in order to prove Theorem 1.2, it is sufficient to prove that the formal Borel
transform v(z,n) = B(u)(z,n) of the formal solution u(x,y) satisfies the above condition (if)
under the assumptions (A1) and (A2). In order to do that, firstly let us write down the equation
which B(u)(z,7) should satisfy. By operating the formal Borel transform to (1.15), we see that
B(u)(z,n) is a solution of the following equation:

(2.4) o /O " Dyv(z, )t + /O " B(8)(@,n — ) Dav(z, t)dt

7 7
+ / B(y)y (21 — 1) - to(z, £)dt — / B)(a,n — t)o(z, O)dt +v(@,7)
= B()(zm),

where B(G)(z ,77), B(v)(z,n) and B(f)(z,n) are the formal Borel transforms of B(z,y) =
% Bal@)y™, Ve, y) = S @)y and f(z,y) = Ynlo fa(2)y", respectively, that is,

B Zﬂn )T, Bl = z% @)L end B(f)wm) = 3 fule)

n=0
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Furthermore by operating Dy, to the equation (2.4) from the left, we see that B(u)(z,n) is a
solution of the following initial value problem:

(2.5)
( {Dr, + OJD:E}’U(J;, 7]) - - /OﬁB(ﬁ)n(:E,n - t)Da:U(ma t)dt - B(’Y)n(x) D) . mf(fﬂﬂ})

_ /0 " B(y)m (@ — 1) - to(a, £)dt

+ /72 B(v)p{z,n — thv(z, t)dt + g(z, ),
4}

( v(z,0) = f(z,0),
where g(z,n) = B(F)q (o, 7).

It is easy to prove that B{u)(z,7) is the unique locally holomorphic solution of (2.5). Hence
Theorem 1.2 will be proved by showing that under the assumptions (A1) and (A2) the solution
v(z,7n) of the equation (2.5) satisfies the condition (ii) in Theorem 2.1.

3 Proof of Theorem 1.2.

Let us prove that the solution v(z, 77) of the equation (2.5) satisfies the condition (ii) in Theorem
2.1. Firstly we remark that in general the solution V(z,n) of the initial value problem of the
following first order linear partial differential equation

{Dn + aD;}V(z,n) = k(z, ),
(3.1) { V(::, 0) = l(z)
is given by
]
(3.2) Viz,n) = /O k(2 — afn — 1), £)dt + Uz — an).

Proof of Theorem 1.2. First, let us transform the equation (2.5) into the integral equation.
It follows from (3.2) that the equation (2.5) is equivalent to the following equation:

7
v(z,n) = flz - om,0) + fon gz — a(n —t),t)dt + Iv(z,m) + Y _ Lv(z,n),
=5

where each operator I and I; (i =5, 6, 7) is given by

¢
Iv(z,n) = — /:/0 B(B)n(z — a(n — t),t — s)vz(z — a(n — t), s)dsdt,

and
(3.3)

Iven) = - [ " Byl ~ aln — 1,0 - to(z — ol — &), )t
t
(e = = [ [ Bm(a—aly—1)6~5)- so(a~ aln ~ 0, s)dsc,

i) = [ [ Bt —aln-0,t - s)ute~ aln~ ) st
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7 rt
Moreover, let us transform Iv(z,n). By using Fubini’s theorem, we write / / <oodsdt =
0 J0

n
/ / .« dtdt. Here we remark that
4} K]

[ Bhte - ot =8)t - unla — atn - 0, )
N é fsnﬁw)”(m —aln—t)t- S)gz”(w — aln ~ t), s)dt.

Therefore by an integration by parts and Fubini’s theorem again we see that (2.5) is equivalent
to the following equation:

7
(3.4) v(z,n) = flz —an,0) + /:g(m —a(n—t),t)dt + Z Lv(z,n),
i=1

where each operator I; (1 =1, 2, 3, 4) is given by

il

Intm) = =5 [ B@(@n— otz i

1 7
Iotsn) = 2 [ B@(e— oln = 1,00l ~ aln 0, 0d
i
e = = [ [ BBmte—atn 1)t = e —aly 1) s)dsdt,

A
L) = + f;’ /0 B(B)an(@ — o — ), £ — s)olz — aln — £), s)dsd,

and I5, Ig and I are same as (3.3).
In order to prove that the solution v(z,7) of (3.4) satisfies the condition (ii) in Theorem 2.1
we employ the iteration method. Let us define {v,{z,7)}52q inductively as follows:

Ui
w(@,7) = f(z - an,0) + /O g(a — afn — 1), 1)dt.

Forn >0,

7

(3.6) Un41 (37: 77) = UQ(SL‘, 77) + Z Iivn(my 7])‘
§=1

Next, we define {wn(z,7) 24 by wo(z,n) = volz,n) and wn(z,n) = va(z, 1) —vn-1(2, n) (n 2 1),
and define {W,(z,1n,t)}o%q by

(3.7) Wi(z,m,1) = wal@ — aln — ), 1).

Definition 3.1 (1) For A > 0 and p > 0, U,[0, A] denotes the p-neighborhood of [0, A] in C.

Precisely,
U,10, A = {r € C; dis(r, [0, A]) < p}-

(2) For n € C we define the function G"(r) by

G(r) = rt¥EM, e,
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and define G7 and G}, as follows:
G" = {G"(R)eC; 0<R<nl},
Gy = {G"(r) €C; 7 € Uy, |nl]}-
We remark that G” is the segment from 0 to 7 and that'GZ is the p-neighborhood of G".

Now we can take 75 > 0 and xp > 0 such that
(3.8) {o—ag; || < 1o, € € By(8,k0)} C B (8 +7 + arg(a), v),

where & > 0 is the constant given in the assumption (Al). So let us define E(m,g, ¥), ¥(z, ¢, y)
as follows:

~

(39) /6(377 gﬁy) = /6("17 - OJC, y)y
(310) 5(1"{).@/) = 7(‘27 - aCay)'

Then it follows from the assumptions and (3.8) that E(w, ¢,y) and ¥(z, (,y) are holomorphic on
{z € C; |z| < ro} x EL(f, ko) X {y € C; |y| < c}. Moreover it holds that

(3.11) sup B(z, ¢ y)| < o0
|£ﬂ|§7‘0, C€E+(9>HO)7 I?ASC

and

. K
(3.12) Igclggm&i"/(w,c,y)i < A ¢ € Ex(0, ko),

for some positive constant K.
Next let us define B(8)(z,¢,n) and B(7)(z,{,n) by

n=1

and

(3.14) B(A)(z,¢,m) = B(1)(z — af,m) (= PILCE C“O%j!) -
n=1

o~

Then we see from (3.11), (3.12) and Cauchy’s integral formula that B{8)(z, {,n) and B¥)(z,{,n)
are holomorphicon {z € C; |z| < rg}x E,(6, ko) x C and that there exist some positive constants
M and 4y such that

‘ (3.15)
{ 1 _
sup | “‘B(ﬁ)ﬂ("%gn) SM@JOITJI’ ne C,
[o|<ro, (B (0,x0) | &
1.~
sup . —*B(ﬁ)m;(x,g, 77)‘ < M35°|'7i, neC,
{2|<ro,CEEL(8,k0) | ¥
10 .~
< sup ——=B(B)p(z, ¢, ’ < Meoll, cC
{z|<rg, (EBL(8,k0") QaC ( )ﬂ( Cﬂ) n ,

lgilfa}xﬂi {BW)W(CC:C:TJN < (l + [Ci)qefsoh'll (S Mﬁdo,m)7 C S E-I-(e; ﬂO): ne C,

~ M
1max ]B(V)ﬂn(a;an 77); S m}'&'e%mx: C € E+(9, K'G), n € Ca

\ [z{<ro
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where %o’ = ko/2. Under these preparations let us take a monotonically decreasing positive
sequence {pn }22 , satisfying

o0
(3.16) E=k'— Y pn>0.
n=0

Then we obtain the following lemma:

Lemma 3.1  Why(z,m,t) is continued analytically to {{z,m,t); |z| < ro, n € Ep(B,80 —
" 00i) t € G} Moreover on {(z,n,8); |z| < o, n € B+ (8,60 = Xjops), t € G} we
have the following estimate: For some positive constant Cf,

(3.17)  [Wa(w,n, G"(R))]

n

n
E, = n 1 n \ R
< Ce5l|7l|(9M)n () ( >_, 0<R< |,

1 o la-1F\k (1+|77|~R)k‘q'”§ l=mn/l SE<nl

where & = max{8,0y} (8 is the constant given in (1.19)).

We shall prove Lemma 3.1 in §4. Here let us admit it. Then Theorem 1.2 is proved as
follows: It follows from Lemma 3.1 that wy(z,n) (= Wn(z,n,7)) is continued analytically to
B(rg) X Ey (6, k0’ — 3 j—gpj) with the estimate

wazm)| = [Walz,n, G (D)
1 . n 1 n 2n n ‘ml
€ GO T (k)g(z_n)“u‘

Hence on B(rg) x E4(8,%) we obtain

S el < G 3@ (”)Yz::( g )iﬂ
n=0 i B 0(‘1_1)k k l—nj) I

n=0 I=n

[y

x
i

< Cel,

for some positive constants C and 3.

This shows that vn(z,n) (= Y. r_owk(z,n)) converges to the solution V(z,n) of (3.4) uni-
formly on B(rg) x E1(8,%). Therefore V(z,7) is the analytic continuation of v(z,n) and it holds
that B

max |V (z,n)| < cell, ne EL(8,R).

|z|<ro
Tt follows from the above argument that v(z,n) satisfies the condition (ii) in Theorem 2.1. This
completes the proof of Theorem 1.2. |

4 Proof of Lemma 3.1.

Let us prove Lemma 3.1. It is proved by the induction with respect to n.

Proof of Lemma 3.1. The case n = 0 have been already proved in [3]. We assume that the
claim of the lemma is proved up to n and prove it for n + 1.
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By (3.6) and (3.7) we have the following relation between W, and Wy 1:

7
(4.1) Wai(z,0,8) = > LiWa(z, 7, 1),

where

TiWa(z,mt) = Nwa(z—aln—1t),1)

= L [ Bt = Waloin =+ 5,5)ds,
IoWa(z,m,t) = I2wn(0$ —a(n—1t),1)

= é /;B(B)n(w,n - 5,00Wp (2,7, s)ds,
IsWalz,m,t) = Dwp(z —aln —1),¢)

- l/t/s B(ﬁ)m(m,n—s,s—z)Wn(:n,n—s—f—z,z)dzds,
IiWh(z,m,t) = ILywn(z - t) t)

= _../ / 8( (:c ¢,8—2) —s < Whiz,n — s+ 2, 2)dzds,
IsWi(z,m,t) = DIwn(z—an—1),1)

_ / B&)o(@, 0 — 5,0) - sWa(z, 7, 5)ds,
TWa(e, 1) = Tswa(z — oy~ t),t)

= - /t /SB(f?)m(az,n — 8,8 —2) eWn(z,n — s+ z,2)dzds,
IiWn(m,m,t) = Iwi(wo— a(n —1),t)

= /; /;Bﬁ)n(w,'q—s,s—z)Wn(m,n—s+z,z)dzds.

Let us prove that each Z;W,(z,n,t) (1 = 1 ~ 7) is well-defined on {(z,n,%); |z| < ry, n €
E (8, ke — ;H"é p;i)y t € G, } by taking suitable paths of integrations. Let |z| < 1o, 7 €
E (8, ko — E;“Lé pi) t€ G, and let us write t € G}, as t = G"(7) (7 € U, [0, In]])-

On Z;W,(z,7,G"(7)): Let us take a path of integration as
(4.2) s(o) = o™= (5 € 0,1)),

where [0, 7] is a segment from 0 to 7. Then we have n — G(7) + s(0) € E+(0, ko’ — Z?:O pi)
and s(o) € G ") Hence Wy (2,1 — G (1) + s(o),s(c)) is well-defined. It is clear that
B(E)n(:e:, n~G7),G"(1) — 8(0)) is well-defined. Therefore Z; Wy, (z,n, G7(r)) is well-defined.

On IyWy(z,n,G?(7)) and IsWy(z,n,G7(r)): Let us take a path of integration as (4.2).
Then we obtain n € E+(9 ko' — 3 i-op;) and s(o) € GJ,. Hence Wy(z,n,s(0)) is well-
defined. It is clear that B(f),(z,n — s(o),0) and B()n(z,n— s{0),0) is well-defined. Therefore
LoWp(z,n,G"(7)) and ZsW,(z,n, G7(1)) are well-defined.

On Z;Wn(z,n,G"(7)) (i = 3, 4, 6 and 7): We only state paths of integrations. The suitable
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paths of integrations are

s(o) = oet®8M (o € [0,7]),
(4.3) { Z(A) = Aetars(n (A = [0,0]).

By taking the above paths of integrations, we see that each Z;Wyn{z,7,t) (i =1 ~ T) is

well-defined (therefore Wy11(z,7,t) is well-defined) on {(z,n,t); lz| < ro, 7 € Ey (6, k0’ ~

1
;“LO pi) t € ng+1}~ Moreover on {(z,n,1); |z| <o, 1€ EL(8, k0" — ;Hé pi)y t € G} we

have the following representations:

1R~ : ,
IiWp(z,n,G"(R)) = —E/O B(B)n(x, (1] — R)ezarg(n)’(R_ Rl)ezarg(n))
x Wa(w,n, B, Ra)e "BMdRy,

Ing(x,ﬂ,Gn(R)) = / B $3 |77E )iarg(?}),o)wn(m,n’}zl,Rl)eiarg(n)de’

IsWa(z,n, G"(R))

Ri ‘ ‘
E]O A B(ﬂ)'rm(m:(lm — Ry)e’ arg(n)’ (R; — Rz)ezarg(n))

X Wn(mv UE Rl) Rz){ei arg(n) }2dR2d‘Rla

Ry 6 ,
___/ / (2, ¢, (R — Ry)et2rem)
¢=(In}—Ry)et o5

X Wa(z,n, B1, Re){e" ™™ }*dRyd Ry,

Wy (z,n, G"(R))

R
Lo @(R) = = [ B inl - R),0)
X RIWH(Z" 7, Ry, Rl){ei a.rg(n)}Zde’
R rRy ) )
TsWhn(z,n, G"(R)) = '"/ / Bﬁ)nn(%(hﬂ—Rl)ezwg(n)a(fﬁ—Rz)emrg(n))
o Jo

% RyWa(z,n, Ry, Ry){e' 8} dRad Ry,
IiWa(z,n,G"(R)) = /OR /OR1 B@)(, (|n] — R1)e 80 (Ry — Ry)e' ™)
x Wi (z,n, Ry, Ro){e' 8™ }2dRyd Ry,
where
49 W, 1) = Wil (Jn] = pu+ 1) 580, G =0 ),

Let us estimate each Z,Wp(z,n, G"(R)).
On I Wy(z,n,G"(R)): It follows from the assumption of the induction that

(4.5) |Wa(z,n, R, Ry)]

n

< Cyelillgmi B (gar) ng) 1 7 (:) (l+1ﬂl q-l)Z( B )
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Hence (3.15) and &y < 47 imply that
1T, Wz, U,G"(R))]
Ry

Cre®ilnl(9ar) ”MZ —1)k (n) 1+Jnl e Z( _n>/0 - dR:

s 1 n 1 2n+-1 n Rl
= 016‘”<9M”MZ e T e (-3-a)7

I=n+1

IA

On Iy;Wy(z,n, G'(R)): Let us consider R; instead of R in (4.5). Then we have
(46) [Wa(z,n, Ry, Ra)l

C‘leéll"i@M)né(qj 1)F (n) L+l 1Rl)“ Vi ( n”> 4

Clew(gM)né(q—l 7 (&) e 1>Z( . n)

Hence we see by (3.15) and g < & that ZoWr(z,n, G”(R)) has the same estimate as that of
I1Wp(z,n,G"(R)). Therefore it holds that

AN

IA

(4.7) [T Wa(z,n, G"(R))| + isz (@,n, G"(R))]
. 1 2n+1 n Rl
< Cle‘sl!?ﬂ(gM) (2M) Z l)k (ﬂ’) (1 m lnl = R)k(q_l) l=§—l (l 1 n) ik

On ZsWhp(z,n,G"(R)): Tt follows from the assumption of the induction that
(48)  [Walz,m, Ry, Ra)|

< CyedimediBidifz (9M)" i 1 (n) 1 i ( m )R_Ql
- LAY —_ k(g—1 — |
= (¢~ 1)F \k/ (1 + [n| — Rp)*@D l—n) Il
~ 1 7
< Cleéliﬂle—(hlﬁ 661R2 (gM)n z - ( ) : Z ( )
(g —1)% \k 1+!?7| Mol £\l —n

Hence (3.15) and §y < §; imply that
\ZsWhn(z,n, G"(R))|
< Cle‘h'”’(QM)”M

Ry RQ
g Z(q—l ( ) 1+inl R)Ha-1) Zf A

81ln] n 1 sy n R
_ n
= QM) MZ i )(HJm*R)k(q—”zZ (20T

=n-+2
Similarly we can prove that I4Wn(m,n, G"(R)) and ZyWp{(z,n, G"(R)) have the same esti-
mates as that of Z3W,,(z,n, G"(R)). Therefore it holds that

(4.9) LW (z,n, GT(R)| + | ZsWh(z, 1, GT(R))| + |Z: Wy (z,n, G"(R))]

il "1 fn 1 Ny R
< Cre™MOM )™ (3M i
> 1€ (oM™ ( )k:0 (q— )k \k ( ) (1+ {"?l R)k q-1) Z ( 2 - n) !




Moreover let us note that

(4.10) (l_;bu_n)Jf(z_;_n):(z—n(:il))

Then it follows from (4.7) and (4.9) that

(4.11) Y |ZTiWa(z,n,G"(R))]
i=1,2,3,4,7
. ) n ] . 2(n+1) n+1 Rl
< Cie®t(9M) (3M)I§=_;)(q__l)k( )(1+177| k(q-—l) Z (Z—(n—f—l))q”lf_'

On ZsWy(z,n, G"(R)): (3.15), (4.6) and dg < 01 imply that
\ZsWh(z, U,G"(R)))

< ¢l (9M)

ny [ R, o/ n O\ Ry
- 1)k (k) /o (1+ || — Ry)kla-1i+a iz:;: (l - n) —ﬁ"de

k= 0
n R 2n I4+1
51|TI| kA 1 ke’ R
S GETOMPM 2, (ks)fc = e R (l—n> i
Here it holds that
1 11 1 R

412 R: =
(*.12) /0 (1 +n] —R1>k(q_1>+qd ' [’H—lq—l (1+n| _Rl)(k+1)(q-1)]}z1:.0

11 1
<
= k+1qg—1(1+|ng ~ R)*D-1)

and that

i(zi&? = i(zf )“*’ )(zR:rll) = 2§1 (z—?—n)l%l

I—n I=n I=n+1
In+1 l
n R
< 2n+1) Y (l_l_n)‘““
I=n+1
Hence we have
(4.13) \ZsWn(z,n, G"(R))]

< C’leélim (9M)" M

" 1 n\ 2(n + 1) 1 zfl n R
% Z (q— DFI\k) k+1 (1+ |- R)*DED z [-1—mn/ 1!

k=0 =n+1
= Ciehl (QM)”M

X’i& ( )2(n+1) 1 2%( n )_R_i
< (g —1)F E (+ - RFeD £ \i-1-n/ Il
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On ZgWy(z,n, G"(R)): (3.15), (4.8) and &y < 6; imply that

IIEWn(x: n, GU(R))i
< et (QM)”M

n R i 2n n R R2H—l
——dRydR;.
* Z - l)k ( ) /o (1+ |n| = Ry)kla-1+a ; (5 - n) o &

k=

Here let us estimate as

R: R2l+1 R12+2 RH-Z
f2 <2n+1 ,
fo = gy S 2 Uy

Then (4.12) and (4.14) imply that

(4.14) l=n,n+1,...,2n.

(4.15) | ZsWe(z, 1, G"(R))]
< Ciehlopynm

= 1 n\ 2(n + 1) n Ri+2
X kzzo (g — 1)ktL (k;) kE+1 (14 |n|— R)k+D-1 Z ( ) (1+2)!
= Ciel(9any" M

n+1 2(n+]:) 1
><Z( -11) (kﬁl)%nljl) 1+ -IRMq—l) 2. (z—;—n)lzil'
k=1 q ( |77] ) l=n+2 *

Therefore by (4.10), (4.13) and (4.15) we obtain

(4.16) \ZsWn(z, 7, G"(R))| + [ZeWn(z, 7, G"(R))]
< Cefhlgnrym
n+l 2(n+1)

1 n \2(n+1) 1 n+1 \R
Xé(q—l)’“(k—l) ko (14 n] - R)ke-1) zn;l<l (n+1)) i

=

Finally let us combine (4.11} and (4.16). Then it holds that

(Whii(z,n, G"(R))]
7

i=]
|| 3 2 :
é1ln n .
< Cie®"M(9M)(3M) {1 + ;Z(k) + (g — Dt (1+n] - R)(n+l)(q~1) }
2(n+1) I
R
X Z ( (n+ 1)) Nk

I=n+1

where

70 -{ () () S e e
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Here let us note that

() (o)t = () () = (')

Then we obtain that

lWTH-l (ma un GW<R)N

< Cref(OM)"(3M)
1
1 n+1 1
X 341+ —7
{ DDy ( : ) T+ o - RO
L1 1 2(75) ntl \R
= (o~ e [ 2o \i = (n41)) T
n+1 2(n+1)
1 n+1 n+1 \R
= 81|} gM 41 5
1M Z(q_l)fc (1+\72| R)*a-1) Z —(n+1)) 1V’
which implies the lemma for n + 1. The proof is completed. |
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