Borel Summability of Divergent Solutions for Singular 1st Order Linear PDEs of Nilpotent Type

名城大学理工学部数学科
（Department of Mathematics, Meijo University）
日比野正樹（Masaki HIBINO）

1 Introduction and Main Result.

In this paper we are concerned with the following first order linear partial differential equation:

\[(1.1) \quad A(x, y)D_{x}u(x, y) + B(x, y)D_{y}u(x, y) + C(x, y)u(x, y) = F(x, y),\]

where \(x, y \in \mathbb{C}, D_{x} = \partial/\partial x, D_{y} = \partial/\partial y.\) \(A, B, C\) and \(F\) are holomorphic at \((x, y) = (0, 0) \in \mathbb{C}^{2}.\)

First of all we give the following four fundamental assumptions:

\[(1.2) \quad A(x, 0) \equiv 0,\]
\[(1.3) \quad \frac{\partial A}{\partial y}(0, 0) \neq 0,\]
\[(1.4) \quad B(x, 0) \equiv \frac{\partial B}{\partial y}(x, 0) \equiv 0,\]
\[(1.5) \quad C(0, 0) \neq 0.\]

In the following we always assume (1.2) \(\sim\) (1.5). In §1.2 we will give one more important assumption (cf. (1.11)).

Remark 1.1 The assumptions (1.2) and (1.4) imply \(A(0, 0) = B(0, 0) = 0,\) which means that the equation (1.1) is *singular at the origin*. Moreover it follows from (1.2), (1.3) and (1.4) that the Jacobi matrix \(\partial(A, B)/\partial(x, y)|(x,y)=(0,0)\) is a nilpotent matrix

\[(1.6) \quad \begin{pmatrix} 0 & (\partial A/\partial y)(0, 0) \\ 0 & 0 \end{pmatrix}.\]

In this sense our equation is called of *nilpotent type*.

By assumptions we see that the equation (1.1) has a unique formal power series solution \(u(x, y) = \sum_{n=0}^{\infty} u_{n}(x)y^{n}\) (\(u_{n}(x)\) are holomorphic in a common neighborhood of \(x = 0\)), but it diverges in general and the rate of divergence is characterized in terms of the Gevrey index (cf. Definition 1.1, (3) and Theorem 1.1). So we are concerned with the existence of Gevrey asymptotic solutions, and especially we are interested in the Borel summability of such divergent solutions (cf. Definition 1.1, (5)). Our main purpose is to obtain the conditions under which such divergent solutions are Borel summable. The main result in this paper will be given in Theorem 1.2.
1.1 Definition and Fundamental Result.

Firstly, in order to state our problem precisely, let us introduce the notation.

Definition 1.1 (1) \(\mathcal{O}[R] \) denotes the ring of holomorphic functions on the closed ball \(B(R) = \{ x \in \mathbb{C}; |x| \leq R \} \), where \(R \) is a positive number.

(2) The ring of formal power series in \(y \in \mathbb{C} \) over the ring \(\mathcal{O}[R] \) is denoted as \(\mathcal{O}[R][[y]] \):

\[
\mathcal{O}[R][[y]] = \left\{ u(x, y) = \sum_{n=0}^{\infty} u_n(x)y^n; \ u_n(x) \in \mathcal{O}[R] \right\}.
\]

(3) We say that \(u(x, y) = \sum_{n=0}^{\infty} u_n(x)y^n \in \mathcal{O}[R][[y]] \) belongs to \(\mathcal{O}[R][[y]]_2 \) if there exist some positive constants \(C \) and \(K \) such that

\[
\max_{|x| \leq R} |u_n(x)| \leq CK^n n!
\]

for all \(n = 0, 1, 2, \ldots \). Therefore elements of \(\mathcal{O}[R][[y]]_2 \) diverge in general.

(4) For \(\theta \in \mathbb{R} \) and \(T > 0 \), we define the region \(O(\theta, T) \) by

\[
O(\theta, T) = \{ y; |y - Te^{i\theta}| < T \}.
\]

(5) Let \(u(x, y) = \sum_{n=0}^{\infty} u_n(x)y^n \in \mathcal{O}[R][[y]]_2 \). We say that \(u(x, y) \) is Borel summable in a direction \(\theta \) if there exists a holomorphic function \(U(x, y) \) on \(B(r) \times O(\theta, T) \) for some \(0 < r \leq R \) and \(T > 0 \) which satisfies the following asymptotic estimates: There exist some positive constants \(C \) and \(K \) such that

\[
\max_{|x| \leq r} \left| U(x, y) - \sum_{n=0}^{N-1} u_n(x)y^n \right| \leq CK^N N!|y|^N, \quad y \in O(\theta, T); \quad N = 1, 2, \ldots
\]

In general a given divergent power series \(u(x, y) \in \mathcal{O}[R][[y]]_2 \) is not necessarily Borel summable. However, if \(u(x, y) \) is Borel summable in a direction \(\theta \), we see that the above holomorphic function \(U(x, y) \) is unique (cf. Balser[1][2], Lutz-Miyake-Schäfke[5] and Malgrange[6]). So we call this \(U(x, y) \) the Borel sum of \(u(x, y) \) in a direction \(\theta \).

The following theorem is fundamental in the argument below.

Theorem 1.1 (cf. Hibino[4]) Let us assume (1.2) \(\sim (1.5) \). Then the equation (1.1) has a unique formal power series solution \(u(x, y) = \sum_{n=0}^{\infty} u_n(x)y^n \in \mathcal{O}[R][[y]]_2 \) for some \(R > 0 \).

On the basis of Theorem 1.1, let us study the Borel summability of the formal solution.

1.2 Main Result.

In the following we study the Borel summability of the formal solution under the following condition:

\[
\frac{\partial^2 B}{\partial y^2} (x, 0) \equiv 0.
\]
Now, before stating the main theorem, let us rewrite the equation (1.1).

By the condition (1.5), we see that \(C(x, y) \neq 0 \) in the neighborhood of \((x, y) = (0, 0)\). Therefore dividing both sides of (1.1) by \(C(x, y) \), we may assume that \(C(x, y) \equiv 1 \). Then it follows from (1.2), (1.3), (1.4) and (1.11) that the equation (1.1) is rewritten in the following form:

(1.12) \[
\{\alpha(x) + \beta(x, y)\} y D_{x}u(x, y) + \gamma(x, y) y^{2} D_{y}u(x, y) + u(x, y) = f(x, y),
\]

where \(\alpha, \beta, \gamma \) and \(f \) are holomorphic at the origin. Moreover they satisfy

(1.13) \(\alpha(0) \neq 0 \),

(1.14) \(\beta(x, 0) \equiv \gamma(x, 0) \equiv 0 \).

Furthermore in this paper we assume for simplicity that \(\alpha(x) \) is the constant. Precisely, we consider the Borel summability of the formal solution for the following equation:

(1.15) \[
\{\alpha + \beta(x, y)\} y D_{x}u(x, y) + \gamma(x, y) y^{2} D_{y}u(x, y) + u(x, y) = f(x, y),
\]

where \(\alpha \) is the constant satisfying \(\neq 0 \). Our purpose in this paper is to give the conditions under which the formal solution \(u(x, y) = \sum_{n=0}^{\infty} u_{n}(x) y^{n} \in \mathcal{O}[R][[y]]_{2} \) of the equation (1.15) is Borel summable in a given direction \(\theta \).

Now let us give the conditions which the coefficients should satisfy.

Assumptions.

First we define the region \(E_{+}(\theta, \kappa) (\kappa > 0) \) by

(1.16) \[
E_{+}(\theta, \kappa) = \{ \xi; \text{dis}(\xi, R_{+} e^{i\theta}) \equiv \inf\{ |\xi - \zeta|; \zeta \in R_{+} e^{i\theta} \} \leq \kappa \},
\]

where \(R_{+} = [0, +\infty) \) and \(R_{+} e^{i\theta} = \{ re^{i\theta}; r \in R_{+} \} \). We assume the following (A1) and (A2).

(A1) \(\beta(x, y), \gamma(x, y) \) and \(f(x, y) \) are continued analytically to \(E_{+}(\theta + \pi + \arg(\alpha), \kappa) \times \{ y \in C; |y| \leq c \} \) for some \(\kappa > 0 \) and \(c > 0 \).

(A2) \(\beta(x, y), \gamma(x, y) \) and \(f(x, y) \) have the following estimates on \(E_{+}(\theta + \pi + \arg(\alpha), \kappa) \times \{ y \in C; |y| \leq c \} \):

(1.17) \[
\sup_{x \in E_{+}(\theta + \pi + \arg(\alpha), \kappa), |y| \leq c} |\beta(x, y)| < \infty;
\]

(1.18) \[
\max_{|y| \leq c} |\gamma(x, y)| \leq \frac{K}{\{1 + |x|\}^{q}}, \quad x \in E_{+}(\theta + \pi + \arg(\alpha), \kappa),
\]

for some positive constants \(K > 0 \) and \(q > 1 \);

(1.19) \[
\max_{|y| \leq c} |f(x, y)| \leq Ce^{\delta|x|}, \quad x \in E_{+}(\theta + \pi + \arg(\alpha), \kappa)
\]

for some positive constants \(C > 0 \) and \(\delta > 0 \).

Then we obtain the following main result in this paper.

Theorem 1.2 Under the assumptions (A1) and (A2) the formal solution \(u(x, y) \) of the equation (1.15) is Borel summable in the direction \(\theta \).

Remark 1.2 When the formal solution \(u(x, y) \) of (1.15) is Borel summable, we see that its Borel sum is a holomorphic solution of (1.15). This is an immediate consequence of the uniqueness of the Borel sum.
2 Formal Borel Transform of Equations.

Before proving Theorem 1.2, we give some preliminaries.

Definition 2.1 For \(u(x, y) = \sum_{n=0}^{\infty} u_n(x) y^n \in \mathcal{O}[R][[y]]_2 \), we define a convergent power series \(B(u)(x, \eta) \) in a neighborhood of \((x, \eta) = (0, 0)\) by

\[
B(u)(x, \eta) = \sum_{n=0}^{\infty} u_n(x) \frac{\eta^n}{n!}.
\]

We call \(B(u)(x, \eta) \) the formal Borel transform of \(u(x, y) \).

When we want to check the Borel summability of a given formal power series \(u(x, y) = \sum_{n=0}^{\infty} u_n(x) y^n \in \mathcal{O}[R][[y]]_2 \), the following theorem plays a fundamental role in general.

Theorem 2.1 ([5] and [6]) For \(u(x, y) = \sum_{n=0}^{\infty} u_n(x) y^n \in \mathcal{O}[R][[y]]_2 \), let us put \(v(x, \eta) = B(u)(x, \eta) \). Then the following two conditions (i) and (ii) are equivalent:

(i) \(u(x, y) \) is Borel summable in a direction \(\theta \).

(ii) \(v(x, \eta) \) can be continued analytically to \(B(r_0) \times E_+(\theta, \kappa_0) \) for some \(r_0 > 0 \) and \(\kappa_0 > 0 \), and has the following exponential growth estimate for some positive constants \(C \) and \(\delta \):

\[
\max_{|x| \leq r_0} |v(x, \eta)| \leq C e^{\delta|\eta|}, \quad \eta \in E_+(\theta, \kappa_0).
\]

When the condition (i) or (ii) (therefore both) is satisfied, the Borel sum \(U(x, y) \) of \(u(x, y) \) in the direction \(\theta \) is given by

\[
U(x, y) = \frac{1}{y} \int_{\mathbb{R} e^{i\theta}} e^{-\eta/y} v(x, \eta) d\eta.
\]

Therefore in order to prove Theorem 1.2, it is sufficient to prove that the formal Borel transform \(v(x, \eta) = B(u)(x, \eta) \) of the formal solution \(u(x, y) \) satisfies the above condition (ii) under the assumptions (A1) and (A2). In order to do that, firstly let us write down the equation which \(B(u)(x, \eta) \) should satisfy. By operating the formal Borel transform to (1.15), we see that \(B(u)(x, \eta) \) is a solution of the following equation:

\[
\alpha \int_{0}^{\eta} D_x v(x, t) dt + \int_{0}^{\eta} B(\beta)(x, \eta - t) D_x v(x, t) dt
\]

\[
+ \int_{0}^{\eta} B(\gamma)(x, \eta - t) \cdot tv(x, t) dt - \int_{0}^{\eta} B(\gamma)(x, \eta - t) v(x, t) dt + v(x, \eta)
\]

\[
= B(f)(x, \eta),
\]

where \(B(\beta)(x, \eta) \), \(B(\gamma)(x, \eta) \) and \(B(f)(x, \eta) \) are the formal Borel transforms of \(\beta(x, y) = \sum_{n=1}^{\infty} \beta_n(x) y^n \), \(\gamma(x, y) = \sum_{n=1}^{\infty} \gamma_n(x) y^n \) and \(f(x, y) = \sum_{n=0}^{\infty} f_n(x) y^n \), respectively, that is,

\[
B(\beta)(x, \eta) = \sum_{n=1}^{\infty} \beta_n(x) \frac{\eta^n}{n!}, \quad B(\gamma)(x, \eta) = \sum_{n=1}^{\infty} \gamma_n(x) \frac{\eta^n}{n!} \quad \text{and} \quad B(f)(x, \eta) = \sum_{n=0}^{\infty} f_n(x) \frac{\eta^n}{n!}.
\]
Furthermore by operating D_η to the equation (2.4) from the left, we see that $B(u)(x, \eta)$ is a solution of the following initial value problem:

\[
\begin{align*}
\{D_\eta + \alpha D_x\} v(x, \eta) &= -\int_0^\eta B(\beta)(x, \eta - t) D_x v(x, t) dt - B(\gamma)(x, 0) \cdot \eta v(x, \eta) \\
&\quad - \int_0^\eta B(\gamma)(x, \eta - t) \cdot tv(x, t) dt \\
&\quad + \int_0^\eta B(\gamma)(x, \eta - t) v(x, t) dt + g(x, \eta), \\
v(x, 0) &= f(x, 0),
\end{align*}
\]

where $g(x, \eta) = B(f)(x, \eta)$.

It is easy to prove that $B(u)(x, \eta)$ is the unique locally holomorphic solution of (2.5). Hence Theorem 1.2 will be proved by showing that under the assumptions (A1) and (A2) the solution $v(x, \eta)$ of the equation (2.5) satisfies the condition (ii) in Theorem 2.1.

3 Proof of Theorem 1.2.

Let us prove that the solution $v(x, \eta)$ of the equation (2.5) satisfies the condition (ii) in Theorem 2.1. Firstly we remark that in general the solution $V(x, \eta)$ of the initial value problem of the following first order linear partial differential equation

\[
\begin{align*}
\{D_\eta + \alpha D_x\} V(x, \eta) &= k(x, \eta), \\
V(x, 0) &= l(x)
\end{align*}
\]

is given by

\[
V(x, \eta) = \int_0^\eta k(x - \alpha(\eta - t), t) dt + l(x - \alpha \eta).
\]

Proof of Theorem 1.2. First, let us transform the equation (2.5) into the integral equation. It follows from (3.2) that the equation (2.5) is equivalent to the following equation:

\[
v(x, \eta) = f(x - \alpha \eta, 0) + \int_0^\eta g(x - \alpha(\eta - t), t) dt + Iv(x, \eta) + \sum_{i=5}^7 I_i v(x, \eta),
\]

where each operator I and I_i ($i = 5, 6, 7$) is given by

\[
Iv(x, \eta) = -\int_0^\eta \int_0^t B(\beta)(x - \alpha(\eta - t), t - s) v_x(x - \alpha(\eta - t), s) ds dt,
\]

and

\[
I_5 v(x, \eta) = -\int_0^\eta B(\gamma)(x - \alpha(\eta - t), 0) \cdot tv(x - \alpha(\eta - t), t) dt,
\]

\[
I_6 v(x, \eta) = -\int_0^\eta \int_0^t B(\gamma)(x - \alpha(\eta - t), t - s) \cdot sv(x - \alpha(\eta - t), s) ds dt,
\]

\[
I_7 v(x, \eta) = \int_0^\eta \int_0^t B(\gamma)(x - \alpha(\eta - t), t - s) v(x - \alpha(\eta - t), s) ds dt.
\]
Moreover, let us transform $Iv(x, \eta)$. By using Fubini's theorem, we write $\int_0^n \int_0^t \cdots dsdt = \int_0^n \int_s^t \cdots dt$. Here we remark that

$$
\int_s^t B(\beta)(x-\alpha(\eta-t),t-s)v_x(x-\alpha(\eta-t),s)dt = \frac{1}{\alpha} \int_s^t B(\beta)(x-\alpha(\eta-t),t-s) \frac{\partial}{\partial t}v(x-\alpha(\eta-t),s)dt.
$$

Therefore by an integration by parts and Fubini's theorem again we see that (2.5) is equivalent to the following equation:

$$
(3.4) \quad v(x, \eta) = f(x - \alpha \eta, 0) + \int_0^n g(x - \alpha(\eta-t), t)dt + \sum_{i=1}^7 I_i v(x, \eta),
$$

where each operator I_i $(i = 1, 2, 3, 4)$ is given by

$$
\begin{align*}
I_1 v(x, \eta) &= -\frac{1}{\alpha} \int_0^n B(\beta)(x, \eta-t)v(x,t)dt, \\
I_2 v(x, \eta) &= \frac{1}{\alpha} \int_0^n B(\beta)(x-\alpha(\eta-t),0)v(x-\alpha(\eta-t),t)dt, \\
I_3 v(x, \eta) &= \frac{1}{\alpha} \int_0^n \int_0^t B(\beta)(x-\alpha(\eta-t),t-s)v(x-\alpha(\eta-t),s)dsdt, \\
I_4 v(x, \eta) &= \frac{1}{\alpha} \int_0^n \int_0^t B(\beta)(x-\alpha(\eta-t),t-s)v(x-\alpha(\eta-t),s)dsdt,
\end{align*}
$$

and I_5, I_6 and I_7 are same as (3.3).

In order to prove that the solution $v(x, \eta)$ of (3.4) satisfies the condition (ii) in Theorem 2.1 we employ the iteration method. Let us define $\{v_n(x, \eta)\}_{n=0}^\infty$ inductively as follows:

$$
v_0(x, \eta) = f(x - \alpha \eta, 0) + \int_0^n g(x - \alpha(\eta-t), t)dt.
$$

For $n \geq 0$,

$$
(3.6) \quad v_{n+1}(x, \eta) = v_0(x, \eta) + \sum_{i=1}^7 I_i v_n(x, \eta).
$$

Next, we define $\{w_n(x, \eta)\}_{n=0}^\infty$ by $w_0(x, \eta) = v_0(x, \eta)$ and $w_n(x, \eta) = v_n(x, \eta) - v_{n-1}(x, \eta)$ $(n \geq 1)$, and define $\{W_n(x, \eta, t)\}_{n=0}^\infty$ by

$$
(3.7) \quad W_n(x, \eta, t) = w_n(x - \alpha(\eta-t), t).
$$

Definition 3.1

1. For $\lambda \geq 0$ and $\rho > 0$, $U_\rho[0, \lambda]$ denotes the ρ-neighborhood of $[0, \lambda]$ in \mathbb{C}. Precisely,

$$
U_\rho[0, \lambda] = \{\tau \in \mathbb{C}; \text{dis}(\tau, [0, \lambda]) < \rho\}.
$$

2. For $\eta \in \mathbb{C}$ we define the function $G^n(\tau)$ by

$$
G^n(\tau) = \tau e^{i \text{arg}(\eta)}, \quad \tau \in \mathbb{C},
$$

where $\text{arg}(\eta)$ is the argument of η.

and define G^η and G^η_ρ as follows:

\[G^\eta = \{ G^\eta(R) \in \mathbb{C}; 0 \leq R \leq |\eta| \}, \]
\[G^\eta_\rho = \{ G^\eta(\tau) \in \mathbb{C}; \tau \in U_\rho[0, |\eta|) \}. \]

We remark that G^η is the segment from 0 to η and that G^η_ρ is the ρ-neighborhood of G^η.

Now we can take $r_0 > 0$ and $\kappa_0 > 0$ such that

\[\{ x - \alpha \zeta; |x| \leq r_0, \zeta \in E_+ (\theta, \kappa_0) \} \subset E_+ (\theta + \pi + \arg(\alpha), \kappa), \]
where $\kappa > 0$ is the constant given in the assumption (A1). So let us define $\tilde{\beta}(x, \zeta, y)$, $\tilde{\gamma}(x, \zeta, y)$ as follows:

\[\tilde{\beta}(x, \zeta, y) = \beta(x - \alpha \zeta, y), \]
\[\tilde{\gamma}(x, \zeta, y) = \gamma(x - \alpha \zeta, y). \]

Then it follows from the assumptions and (3.8) that $\tilde{\beta}(x, \zeta, y)$ and $\tilde{\gamma}(x, \zeta, y)$ are holomorphic on $\{ x \in \mathbb{C}; |x| \leq r_0 \} \times E_+ (\theta, \kappa_0) \times \{ y \in \mathbb{C}; |y| \leq c \}$. Moreover it holds that

\[\sup_{|x| \leq r_0, \zeta \in E_+ (\theta, \kappa_0), |y| \leq c} |\tilde{\beta}(x, \zeta, y)| < \infty \]
and

\[\max_{|x| \leq r_0, |\zeta| \leq c} |\tilde{\gamma}(x, \zeta, y)| \leq \frac{K_0}{(1 + |\zeta|)^q}, \zeta \in E_+ (\theta, \kappa_0), \]
for some positive constant K_0.

Next let us define $B(\tilde{\beta})(x, \zeta, \eta)$ and $B(\tilde{\gamma})(x, \zeta, \eta)$ by

\[B(\tilde{\beta})(x, \zeta, \eta) = B(\beta)(x - \alpha \zeta, \eta) \left(= \sum_{n=1}^{\infty} \beta_n(x - \alpha \zeta) \frac{\eta^n}{n!} \right) \]
and

\[B(\tilde{\gamma})(x, \zeta, \eta) = B(\gamma)(x - \alpha \zeta) \eta \left(= \sum_{n=1}^{\infty} \gamma_n(x - \alpha \zeta) \frac{\eta^n}{n!} \right). \]

Then we see from (3.11), (3.12) and Cauchy's integral formula that $B(\tilde{\beta})(x, \zeta, \eta)$ and $B(\tilde{\gamma})(x, \zeta, \eta)$ are holomorphic on $\{ x \in \mathbb{C}; |x| \leq r_0 \} \times E_+ (\theta, \kappa_0) \times \mathbb{C}$ and that there exist some positive constants M and δ_0 such that

\[\max_{|\zeta| \leq r_0, \zeta \in E_+ (\theta, \kappa_0)} |B(\tilde{\beta})(x, \zeta, \eta)| \leq \frac{M}{(1 + |\zeta|)^q} e^{\delta_0 |\eta|}, \zeta \in E_+ (\theta, \kappa_0), \eta \in \mathbb{C}, \]
\[\max_{|\zeta| \leq r_0, \zeta \in E_+ (\theta, \kappa_0)} |B(\tilde{\gamma})(x, \zeta, \eta)| \leq \frac{M}{(1 + |\zeta|)^q} e^{\delta_0 |\eta|}, \zeta \in E_+ (\theta, \kappa_0), \eta \in \mathbb{C}, \]
where $\kappa' = \kappa_0/2$. Under these preparations let us take a monotonically decreasing positive sequence $\{\rho_n\}_{n=0}^{\infty}$ satisfying

(3.16) \[\kappa_0' = \kappa_0 - \sum_{n=0}^{\infty} \rho_n > 0. \]

Then we obtain the following lemma:

Lemma 3.1 $W_n(x, \eta, t)$ is continued analytically to $\{(x, \eta, t); |x| \leq r_0, \eta \in E_+ (\theta, \kappa_0' - \sum_{j=0}^{n} \rho_j), t \in G^n\}$ with the estimate

(3.17) \[|W_n(x, \eta, G^n(R))| \leq C_1 e^{\delta_1 |\eta|} (9M)^n \sum_{k=0}^{n} \frac{1}{(q-1)^k} \binom{n}{k} \sum_{l=n}^{2n} \frac{1}{(l-n) \frac{R^l}{l!}} \]

for some positive constants C_1 and δ_1 (δ_1 is the constant given in (1.19)).

We shall prove Lemma 3.1 in §4. Here let us admit it. Then Theorem 1.2 is proved as follows: It follows from Lemma 3.1 that $w_n(x, \eta)$ is continued analytically to $B(r_0) \times E_+ (\theta, \kappa_0' - \sum_{j=0}^{n} \rho_j)$ with the estimate

\[|w_n(x, \eta)| = |W_n(x, \eta, G^n(|\eta|))| \leq C_1 e^{\delta_1 |\eta|} (9M)^n \sum_{k=0}^{n} \frac{1}{(q-1)^k} \binom{n}{k} \sum_{l=n}^{2n} \frac{1}{(l-n) \frac{|\eta|^l}{l!}}. \]

Hence on $B(r_0) \times E_+ (\kappa_0')$ we obtain

\[\sum_{n=0}^{\infty} |w_n(x, \eta)| \leq \tilde{C} e^{\tilde{\delta} |\eta|}, \]

for some positive constants \tilde{C} and $\tilde{\delta}$.

This shows that $v_n(x, \eta) (= \sum_{k=0}^{n} w_k(x, \eta))$ converges to the solution $V(x, \eta)$ of (3.4) uniformly on $B(r_0) \times E_+ (\kappa_0')$. Therefore $V(x, \eta)$ is the analytic continuation of $v(x, \eta)$ and it holds that

\[\max_{|x| \leq r_0} |V(x, \eta)| \leq \tilde{C} e^{\tilde{\delta} |\eta|}, \eta \in E_+ (\theta, \kappa_0'). \]

It follows from the above argument that $v(x, \eta)$ satisfies the condition (ii) in Theorem 2.1. This completes the proof of Theorem 1.2.

4 Proof of Lemma 3.1.

Let us prove Lemma 3.1. It is proved by the induction with respect to n.

Proof of Lemma 3.1. The case $n = 0$ have been already proved in [3]. We assume that the claim of the lemma is proved up to n and prove it for $n + 1$.
By (3.6) and (3.7) we have the following relation between W_n and W_{n+1}:

\[(4.1) \quad W_{n+1}(x, \eta, t) = \sum_{i=1}^{7} I_i W_n(x, \eta, t),\]

where

\[
I_1 W_n(x, \eta, t) = I_1 w_n(x - \alpha(\eta - t), t) = -\frac{1}{\alpha} \int_0^t B(\bar{\beta})_{\eta}(x, \eta - t, t-s) W_n(x, \eta - s + t, s) ds,
\]

\[
I_2 W_n(x, \eta, t) = I_2 w_n(x - \alpha(\eta - t), t) = \frac{1}{\alpha} \int_0^t \int_0^s B(\bar{\beta})_{\eta\eta}(x, \eta - s, s-z) W_n(x, \eta - s + z, z) dz ds,
\]

\[
I_3 W_n(x, \eta, t) = I_3 w_n(x - \alpha(\eta - t), t) = -\frac{1}{\alpha} \oint_{0}^{t} \int_{0}^{s} \frac{\partial}{\partial \zeta} B(\bar{\beta})_{\eta}(x, \zeta, s-z)|_{\zeta=\eta-s} W_n(x, \eta - s + z, z) dz ds,
\]

\[
I_4 W_n(x, \eta, t) = I_4 w_n(x - \alpha(\eta - t), t) = \frac{1}{\alpha} \int_{0}^{t} B(\bar{\beta})_{\eta}(x, \eta - s, 0) W_n(x, \eta - s, s) ds,
\]

\[
I_5 W_n(x, \eta, t) = I_5 w_n(x - \alpha(\eta - t), t) = -\frac{1}{\alpha} \oint_{0}^{t} \int_{0}^{s} B(\bar{\gamma})_{\eta\eta}(x, \eta - s, s-z) W_n(x, \eta - s + z, z) dz ds,
\]

\[
I_6 W_n(x, \eta, t) = I_6 w_n(x - \alpha(\eta - t), t) = \int_{0}^{t} \oint_{0}^{s} B(\bar{\gamma})_{\eta}(x, \eta - s, 0) \cdot s W_n(x, \eta - s, s) ds,
\]

\[
I_7 W_n(x, \eta, t) = I_7 w_n(x - \alpha(\eta - t), t) = \oint_{0}^{t} f_{0}^{s} B(\bar{\gamma})_{\eta}(x, \eta - s, s-z) W_n(x, \eta - s + z, z) dz ds.
\]

Let us prove that each $I_i W_n(x, \eta, t)$ ($i = 1 \sim 7$) is well-defined on $\{(x, \eta, t); |x| \leq r_0, \eta \in E_+^{\theta, \kappa_0' - \sum_{j=0}^{n+1} \rho_j}, t \in G_{\rho_{n+1}}^{\eta}\}$ by taking suitable paths of integrations. Let $|x| \leq r_0, \eta \in E_+^{\theta, \kappa_0' - \sum_{j=0}^{n+1} \rho_j}, t \in G_{\rho_{n+1}}^{\eta}$, and let us write $t = G_{\rho_{n+1}}^{\eta}(\tau)$ ($\tau \in U_{\beta n+1}[0, |\eta|]$).

On $I_1 W_n(x, \eta, G_{\beta n}^{\eta}(\tau))$: Let us take a path of integration as

\[(4.2) \quad s(\sigma) = \sigma e^{i \arg(\eta)} \quad (\sigma \in [0, \tau]),\]

where $[0, \tau]$ is a segment from 0 to τ. Then we have $\eta - G_{\rho_{n}}^{\eta}(\tau) + s(\sigma) \in E_+^{\theta, \kappa_0' - \sum_{j=0}^{n} \rho_j}$ and $s(\sigma) \in G_{\rho_{n}}^{\eta} - G_{\rho_{n}}^{\eta}(\tau) + s(\sigma)$. Hence $W_n(x, \eta - G_{\rho_{n}}^{\eta}(\tau) + s(\sigma), s(\sigma))$ is well-defined. It is clear that $B(\bar{\beta})_{\eta}(x, \eta - G_{\rho_{n}}^{\eta}(\tau), G_{\rho_{n}}^{\eta}(\tau) - s(\sigma))$ is well-defined. Therefore $I_1 W_n(x, \eta, G_{\rho_{n}}^{\eta}(\tau))$ is well-defined.

On $I_2 W_n(x, \eta, G_{\rho_{n}}^{\eta}(\tau))$ and $I_3 W_n(x, \eta, G_{\rho_{n}}^{\eta}(\tau))$: Let us take a path of integration as (4.2). Then we obtain $\eta \in E_+^{\theta, \kappa_0' - \sum_{j=0}^{n} \rho_j}$ and $s(\sigma) \in G_{\rho_{n}}^{\eta}$. Hence $W_n(x, \eta, s(\sigma))$ is well-defined. It is clear that $B(\bar{\beta})_{\eta}(x, \eta - s(\sigma), 0)$ and $B(\bar{\gamma})_{\eta}(x, \eta - s(\sigma), 0)$ is well-defined. Therefore $I_2 W_n(x, \eta, G_{\rho_{n}}^{\eta}(\tau))$ and $I_3 W_n(x, \eta, G_{\rho_{n}}^{\eta}(\tau))$ are well-defined.

On $I_i W_n(x, \eta, G_{\rho_{n}}^{\eta}(\tau))$ ($i = 3, 4, 6$ and 7): We only state paths of integrations. The suitable
paths of integrations are

\[
\begin{align*}
\{ s(\sigma) &= \sigma e^{i \arg(\eta)} \quad (\sigma \in [0, \tau]), \\
z(\lambda) &= \lambda e^{i \arg(\eta)} \quad (\lambda \in [0, \sigma]).
\end{align*}
\]

By taking the above paths of integrations, we see that each $I_i W_n(x, \eta, G^\eta(R))$ ($i = 1 \sim 7$) is well-defined (therefore $W_{n+1}(x, \eta, t)$ is well-defined) on $\{(x, \eta, t); \; |x| \leq r_0, \; \eta \in E_+ (\theta, \kappa_0' - \sum_{j=0}^{n+1} \rho_j), \; t \in G^\eta\}$. Moreover on $\{(x, \eta, t); \; |x| \leq r_0, \; \eta \in E_+ (\theta, \kappa_0' - \sum_{j=0}^{n+1} \rho_j), \; t \in G^\eta\}$ we have the following representations:

\[
\begin{align*}
I_1 W_n(x, \eta, G^\eta(R)) &= -\frac{1}{\alpha} \int_0^R B(\overline{\beta})_{\eta}(x, (\eta\!-\!R)e^{i \arg(\eta)}, (R\!-\!R_1)e^{i \arg(\eta)}) \\
&\quad \times \overline{W}_n(x, \eta, R, R_1)e^{i \arg(\eta)} dR_1,
I_2 W_n(x, \eta, G^\eta(R)) &= \frac{1}{\alpha} \int_0^R B(\overline{\beta})_{\eta}(x, (\eta\!-\!R_1)e^{i \arg(\eta)}, 0) \overline{W}_n(x, \eta, R_1, R_2)e^{i \arg(\eta)} dR_1,
I_3 W_n(x, \eta, G^\eta(R)) &= \frac{1}{\alpha} \int_0^R \int_0^{R_1} B(\overline{\beta})_{\eta\eta}(x, (\eta\!-\!R_1)e^{i \arg(\eta)}, (R_1\!-\!R_2)e^{i \arg(\eta)}) \\
&\quad \times \overline{W}_n(x, \eta, R_1, R_2)\{e^{i \arg(\eta)}\}^2 dR_2 dR_1,
I_4 W_n(x, \eta, G^\eta(R)) &= -\frac{1}{\alpha} \int_0^R \int_0^{R_1} \frac{\partial}{\partial \zeta} B(\overline{\beta})_{\eta}(x, \zeta, (R_1\!-\!R_2)e^{i \arg(\eta)}) |_{\zeta=(\eta\!-\!R_1)e^{i \arg(\eta)}} \\
&\quad \times \overline{W}_n(x, \eta, R_1, R_2)\{e^{i \arg(\eta)}\}^2 dR_2 dR_1,
I_5 W_n(x, \eta, G^\eta(R)) &= -\int_0^R B(\overline{\gamma})_{\eta}(x, (\eta\!-\!R_1)e^{i \arg(\eta)}, 0) \\
&\quad \times R_1 \overline{W}_n(x, \eta, R_1, R_1)\{e^{i \arg(\eta)}\}^2 dR_1,
I_6 W_n(x, \eta, G^\eta(R)) &= -\int_0^R \int_0^{R_1} B(\overline{\gamma})_{\eta\eta}(x, (\eta\!-\!R_1)e^{i \arg(\eta)}, (R_1\!-\!R_2)e^{i \arg(\eta)}) \\
&\quad \times R_2 \overline{W}_n(x, \eta, R_1, R_2)\{e^{i \arg(\eta)}\}^3 dR_2 dR_1,
I_7 W_n(x, \eta, G^\eta(R)) &= \int_0^R \int_0^{R_1} B(\overline{\gamma})_{\eta}(x, (\eta\!-\!R_1)e^{i \arg(\eta)}, (R_1\!-\!R_2)e^{i \arg(\eta)}) \\
&\quad \times \overline{W}_n(x, \eta, R_1, R_2)\{e^{i \arg(\eta)}\}^2 dR_2 dR_1,
\end{align*}
\]

where

\[
\overline{W}_n(x, \eta, \mu, \nu) = W_n(x, (|\eta|-\mu+\nu)e^{i \arg(\eta)}, G^{(|\eta|-\mu+\nu)e^{i \arg(\eta)}}(\nu)).
\]

Let us estimate each $I_i W_n(x, \eta, G^\eta(R))$.

On $I_1 W_n(x, \eta, G^\eta(R))$: It follows from the assumption of the induction that

\[
|\overline{W}_n(x, \eta, R, R_1)| \leq C_1 e^{\delta_1 |\eta|} e^{-\delta_1 R} e^{\delta_1 R_1} (9M)^n \sum_{k=0}^{n} \frac{1}{(q-1)^k} \binom{n}{k} \frac{1}{(1+|\eta|-R)^k(q^2-1)^k} \sum_{l=0}^{2n} \binom{n}{l-n} \frac{R_1^l}{l!}.
\]
Hence (3.15) and $\delta_0 \leq \delta_1$ imply that

$$|I_1 W_n(x, \eta, G^\eta(R))| \leq C_1 e^{\delta_1 |\eta|} (9M)^n M \sum_{k=0}^{n} \frac{1}{(q-1)^k} \binom{n}{k} \frac{1}{(1 + |\eta| - R)^k(q-1)} \sum_{l=n}^{2n} \frac{l!}{(l-n)} \int_0^{R} \int_0^{R} \frac{dR_1}{l!} dR_2.$$

$$= C_1 e^{\delta_1 |\eta|} (9M)^n M \sum_{k=0}^{n} \frac{1}{(q-1)^k} \binom{n}{k} \frac{1}{(1 + |\eta| - R)^k(q-1)} \sum_{l=n+1}^{2n+1} \frac{l!}{(l-n)} \frac{R^l}{l!}.$$

On $I_2 W_n(x, \eta, G^\eta(R))$: Let us consider R_1 instead of R in (4.5). Then we have

(4.6) $$|I_2 W_n(x, \eta, R_1, R_2)| \leq C_1 e^{\delta_1 |\eta|} e^{-\delta_1 R_1} e^{\delta_1 R_2} (9M)^n \sum_{k=0}^{n} \frac{1}{(q-1)^k} \binom{n}{k} \frac{1}{(1 + |\eta| - R)^k(q-1)} \sum_{l=n}^{2n} \frac{R_2^l}{l!}.$$

Hence we see by (3.15) and $\delta_0 \leq \delta_1$ that $I_2 W_n(x, \eta, G^\eta(R))$ has the same estimate as that of $I_1 W_n(x, \eta, G^\eta(R))$. Therefore it holds that

(4.7) $$|I_1 W_n(x, \eta, G^\eta(R))| + |I_2 W_n(x, \eta, G^\eta(R))| \leq C_1 e^{\delta_1 |\eta|} (9M)^n (2M) \sum_{k=0}^{n} \frac{1}{(q-1)^k} \binom{n}{k} \frac{1}{(1 + |\eta| - R)^k(q-1)} \sum_{l=n+1}^{2n+1} \frac{R^l}{l!}.$$

On $I_3 W_n(x, \eta, G^\eta(R))$: It follows from the assumption of the induction that

(4.8) $$|I_3 W_n(x, \eta, R_1, R_2)| \leq C_1 e^{\delta_1 |\eta|} e^{-\delta_1 R_1} e^{\delta_1 R_2} (9M)^n \sum_{k=0}^{n} \frac{1}{(q-1)^k} \binom{n}{k} \frac{1}{(1 + |\eta| - R)^k(q-1)} \sum_{l=n+2}^{2(n+1)} \frac{R_2^l}{l!}.$$

Hence (3.15) and $\delta_0 \leq \delta_1$ imply that

$$|I_3 W_n(x, \eta, G^\eta(R))| \leq C_1 e^{\delta_1 |\eta|} (9M)^n M \sum_{k=0}^{n} \frac{1}{(q-1)^k} \binom{n}{k} \frac{1}{(1 + |\eta| - R)^k(q-1)} \sum_{l=n+2}^{2(n+1)} \frac{l!}{(l-2-n)} \frac{R^l}{l!}.$$

Similarly we can prove that $I_4 W_n(x, \eta, G^\eta(R))$ and $I_7 W_n(x, \eta, G^\eta(R))$ have the same estimates as that of $I_3 W_n(x, \eta, G^\eta(R))$. Therefore it holds that

(4.9) $$|I_3 W_n(x, \eta, G^\eta(R))| + |I_4 W_n(x, \eta, G^\eta(R))| + |I_7 W_n(x, \eta, G^\eta(R))| \leq C_1 e^{\delta_1 |\eta|} (9M)^n (3M) \sum_{k=0}^{n} \frac{1}{(q-1)^k} \binom{n}{k} \frac{1}{(1 + |\eta| - R)^k(q-1)} \sum_{l=n+2}^{2(n+1)} \frac{l!}{(l-2-n)} \frac{R^l}{l!}.$$
Moreover let us note that

\begin{equation}
\binom{n}{l-1-n} + \binom{n}{l-2-n} = \binom{n+1}{l-(n+1)}.
\end{equation}

Then it follows from (4.7) and (4.9) that

\begin{equation}
\sum_{i=1,2,3,4,7} |I_i W_n(x, \eta, G^\eta(R))| \leq C_1 e^{\delta_1 |\eta|} (9M)^n (3M) \sum_{k=0}^{n} \frac{1}{(q-1)^k} \binom{n}{k} \frac{1}{(1+|\eta|-R)^{k(q-1)}} \sum_{l=n+1}^{2(n+1)} \binom{n+1}{l-(n+1)} \frac{R^l}{l!}.
\end{equation}

On $I_5 W_n(x, \eta, G^\eta(R))$: (3.15), (4.6) and $\delta_0 \leq \delta_1$ imply that

\begin{align*}
|I_5 W_n(x, \eta, G^\eta(R))| &\leq C_1 e^{\delta_1 |\eta|} (9M)^n M \sum_{k=0}^{n} \frac{1}{(q-1)^k} \binom{n}{k} \oint_{0}^{R} \frac{R_{1}}{(1+|\eta|-R_{1})^{k(q-1)+q}} \sum_{l=n}^{2n} \binom{n l- n}{l-n} \frac{R_{1}^{l}}{l!} dR_{1} \\
&\leq C_1 e^{\delta_1 |\eta|} (9M)^n M \sum_{k=0}^{n} \frac{1}{(q-1)^k} \binom{n}{k} \int_{0}^{R} \frac{1}{(1+|\eta|-R)^{(k+1)(q-1)}} \sum_{l=n}^{2n} \binom{n l- n}{l-n} \frac{R^{l}}{l!} dR.
\end{align*}

Here it holds that

\begin{equation}
\int_{0}^{R} \frac{1}{(1+|\eta|-R_{1})^{k(q-1)+q}} dR_{1} = \left[\frac{1}{k+1} \frac{1}{q-1} \frac{1}{(1+|\eta|-R_{1})^{(k+1)(q-1)}} \right]_{R_{1}=0}^{R} \leq \frac{1}{k+1} \frac{1}{q-1} \frac{1}{(1+|\eta|-R)^{(k+1)(q-1)}}
\end{equation}

and that

\begin{align*}
\sum_{l=n}^{2n} \binom{n l- n}{l-n} \frac{R^{l+1}}{l!} &\leq \sum_{l=n}^{2n} \binom{n l- n}{l-n} (l+1) \frac{R^{l}}{(l+1)!} = \sum_{l=n+1}^{2n+1} \binom{n l-1-n}{l-1-n} \frac{R^{l}}{l!} \\
&\leq 2(n+1) \sum_{l=n+1}^{2n+1} \frac{R^{l}}{l!}.
\end{align*}

Hence we have

\begin{equation}
|I_5 W_n(x, \eta, G^\eta(R))| \leq C_1 e^{\delta_1 |\eta|} (9M)^n M
\end{equation}

\begin{align*}
&\times \sum_{k=0}^{n} \frac{1}{(q-1)^{k+1}} \binom{n}{k} \frac{2(n+1)}{k+1} \frac{1}{(1+|\eta|-R)^{(k+1)(q-1)}} \sum_{l=n+1}^{2n+1} \binom{n l-1-n}{l-1-n} \frac{R^{l}}{l!} \\
&= C_1 e^{\delta_1 |\eta|} (9M)^n M
\end{align*}

\begin{align*}
&\times \sum_{k=1}^{n+1} \frac{1}{(q-1)^k} \binom{n}{k} \frac{2(n+1)}{k} \frac{1}{(1+|\eta|-R)^{k(q-1)}} \sum_{l=n+1}^{2n+1} \binom{n l-1-n}{l-1-n} \frac{R^{l}}{l!}.
\end{align*}
On $I_6 W_n(x, \eta, G^\eta(R))$: (3.15), (4.8) and $\delta_0 \leq \delta_1$ imply that

$$
|I_6 W_n(x, \eta, G^\eta(R))| \leq C_1 e^{\delta_1 |\eta|} (9M)^n M \sum_{k=0}^{n} \frac{1}{(q-1)^k} \binom{n}{k} \oint_{0}^{R} \frac{1}{(1 + |\eta| - R_1)^k} \sum_{l=n}^{2n} \binom{n}{l-n} \oint_{0}^{R_1} \frac{R_2^{l+1}}{l!} dR_2 dR_1 .
$$

Here let us estimate as

(4.14) $\int_{0}^{R_1} \frac{R_2^{l+1}}{l!} dR_2 = \frac{R_1^{l+2}}{l!(l+2)} \leq 2(n+1) \frac{R^{l+2}}{(l+2)!}$, $l = n, n+1, \ldots, 2n$.

Then (4.12) and (4.14) imply that

(4.15) $|I_6 W_n(x, \eta, G^\eta(R))| \leq C_1 e^{\delta_1 |\eta|} (9M)^n M \sum_{k=1}^{n+1} \frac{1}{(q-1)^k} \binom{n+1}{k} \frac{2(n+1)}{k} \frac{1}{(1 + |\eta| - R)^{k(q-1)}} \sum_{l=n+2}^{2(n+1)} \binom{n+1}{l-(n+1)} \frac{R^l}{l!}$

Therefore by (4.10), (4.13) and (4.15) we obtain

(4.16) $|I_3 W_n(x, \eta, G^\eta(R))| + |I_6 W_n(x, \eta, G^\eta(R))| \leq C_1 e^{\delta_1 |\eta|} (9M)^n M \sum_{k=1}^{n+1} \frac{1}{(q-1)^k} \binom{n+1}{k} \frac{2(n+1)}{k} \frac{1}{(1 + |\eta| - R)^{k(q-1)}} \sum_{l=n+1}^{2(n+1)} \binom{n+1}{l-(n+1)} \frac{R^l}{l!}$

Finally let us combine (4.11) and (4.16). Then it holds that

$$
|W_{n+1}(x, \eta, G^\eta(R))| \leq \sum_{i=1}^{7} |I_i W_n(x, \eta, G^\eta(R))| \leq C_1 e^{\delta_1 |\eta|} (9M)^n (3M) \cdot \left\{ 1 + \sum_{k=1}^{n} Z(k) + \frac{2}{(q-1)^{n+1}} \frac{1}{(1 + |\eta| - R)^{(n+1)(q-1)}} \sum_{l=n+1}^{2(n+1)} \frac{R^l}{l!} \right\}
$$

where

$$
Z(k) = \frac{1}{(q-1)^k} \left\{ \binom{n}{k} + \binom{n}{k-1} \frac{2(n+1)}{k} \right\} \frac{1}{(1 + |\eta| - R)^{k(q-1)}}, \quad k = 1, \ldots, n.
$$
Here let us note that
\[
\binom{n}{k} + \binom{n}{k-1} \frac{2(n+1)}{k} = \binom{n}{k} + 2 \binom{n+1}{k} \leq 3 \binom{n+1}{k}.
\]
Then we obtain that
\[
|W_{n+1}(x, \eta, G^{\eta}(R))| \leq C_1 e^{\delta_1 |\eta|} (9M)^n (3M) \\
\times 3 \left\{ 1 + \sum_{k=1}^{n} \frac{1}{(q-1)^k} \binom{n+1}{k} \frac{1}{(1+|\eta|-R)^k(q-1)} \right. \\
\left. + \frac{1}{(q-1)^{n+1}} \frac{1}{(1+|\eta|-R)^{(n+1)(q-1)}} \right\} \sum_{l=n+1}^{2(n+1)} \binom{n+1}{l} \frac{R^l}{l!} \\
= C_1 e^{\delta_1 |\eta|} (9M)^{n+1} \sum_{k=0}^{n+1} \frac{1}{(q-1)^k} \binom{n+1}{k} \frac{1}{(1+|\eta|-R)^k(q-1)} \sum_{l=n+1}^{2(n+1)} \binom{n+1}{l} \frac{R^l}{l!},
\]
which implies the lemma for $n + 1$. The proof is completed.

References

