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ASYMPTOTICS FOR EXTENDED CELLULAR AUTOMATA

N. JOSHI

ABSTRACT. When restricted to the integers, ultra-discrete versions of differ-
ence equations can be considered as cellular automata. In this note, we describe
examples that show that asymptotic analysis of such equations are possible.
We pose questions about exponential asymptotics of such equations.

1. INTRODUCTION

Difference or discrete versions of the classical Painleve equations have stimulated
a great deal of recent interest [6, 1, 2, 3, 9]. These in turn lead to so-called ultra-
discrete equations, through a method that arose from $\min$-calculus $[8, 7]$ , which are
of interest because they can be interpreted as cellular automata.

In [5], we showed for the first time that ultra-discrete PainIev\’e equations in-
herit Lax pairs from the original discrete Painleve equation. We also displayed
some typical behaviours of the solutions in the limit when the independent variable
approaches infinity. However, no systematic study of asymptotic properties of ultra-
discrete equations appears to exist in the literature. Questions remain open on the
occurrence of exponential asymptotics in ultra-discrete equations. The purpose of
this paper is to stimulate this study by considering a simple example. In Section 2,
we consider asymptotics of first-order examples whose solutions are related to the
Airy functions.

2. A FIRST-ORDER EXAMPLE

2.1. Riccati Equation. Consider
(2.1) $y’(t)=t-y^{2}$

which is linearsiable through $y(t)=\psi^{l}(t)/\psi(t)$ . The resuiting equation for $\psi(t)$ is
$\psi’’(t)=t\psi(t)\Rightarrow\psi(t)=r_{0}A\mathrm{i}(t)+s_{0}B\mathrm{i}(t)$

where $r_{0},$ $s_{0}$ are constants. Therefore, we obtain the general solution $y(t)$ of the
Riccati equation (2.1) in terms of Airy functions:

(2.2) $y(t)=’ \frac{r_{0}A\mathrm{i}(t)+s_{0}B\mathrm{i}’(t)}{r_{0}A\mathrm{i}(t)+s_{0}B\mathrm{i}(t)}$ .

Since the asymptotic behaviours of Airy functions as $tarrow+\infty$ are well known
$A\mathrm{i}(t)\sim e^{-2t^{3/2}/3}/t^{1/4}$ , $B\mathrm{i}(t)\sim e^{+2t^{3/2}/3}/t^{1/4}$ , $tarrow+\infty$ ,

we can deduce corresponding behaviours of $y(t)$ in a straightforward fashion. In
general, the behaviour of $y(t)$ is algebraic in $t$ . If $s_{0}\neq 0$ , then the asymptotic
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series expansion of $y(t)$ contains terms that are hidden beyond all orders due to the
presence of the exponentially small behaviours that arise from the function $A\mathrm{i}(t)$

in the ratio (2.2).

2.2. Discrete and Ultra-Discrete Riccati Equations. An integrable q-discrete
version (see [4]) of Equation (2.1) is

(2.3) $\overline{x}:=x(n+1)=\frac{\alpha q^{n}+x(n)}{1+x(n)}$ .

This is also linearisable. Transforming variables by $x(n)=F(n)/G(n)$ , we obtain
the linearised equations

(2.4) $\overline{\overline{F}}=(q+1)\overline{F}+q(\alpha q^{n}-1)F$, G $=q^{-n}(\overline{F}-F)/\alpha$ .

Note that to ensure the equation is well-posed, we assume $|q|\neq 1$ or 0. Without
loss of generality, we assume below that q is real and that q $>1$ .

For each variabie (or parameter) v in a discrete (or difference) equation, the

ultra-discretisation process introduces a new variable V defined by v $=e^{\frac{V}{\epsilon}}$ . (Note

that this places constraints on the variables involved.) Then we take the limit
$\epsilonarrow 0^{+}$ of the equation using the identity

(2.5) $\lim_{\epsilonarrow 0^{+}}\epsilon$ iog $( \sum_{i=1}^{n}e^{\underline{A}_{\mathrm{A}}}\epsilon)=\max(A_{i},\cdot \mathrm{i}=1\ldots n,$0).

Writing x $=e^{X/\epsilon},$ $\alpha=e^{A/\epsilon},$ q $=e^{Q/\epsilon}$ , this ultra-discretisation process applied to
Equation (2.3) yields

(2.6) $\overline{X}=\max(A+Q$ n,$X)- \max(X,$0)

Note that by our assumption on q, we have Q $>0$ .

2.3. Asymptotic Analysis. The asymptotic analysis of the discrete equation
(2.3) as n $arrow$ oo can be deduced by investigating balances (i.e., limiting forms
of the equation in which the largest terms remain). The only consistent balance
yields

$x(n)\sim\alpha^{1/9}.q^{-1/4}q^{n/2}$ , as n $arrow\infty$ .

A similar asymptotic analysis of Equation (2.6) yields

$X(n) \sim\frac{Q}{2}n$ , as n $arrow\infty$ .

However, these leading order results do not admit possible terms that are exponen-
tially small in the asymptotic expansion of X. To shov this, we take

$X(n)= \frac{Q}{2}n+\xi(n)$ , $\xi(n)<<\frac{Q}{2}n$ , n $arrow\infty$ .

Substitution into Equation (2.6) shows that

$\overline{\xi}=\max(A+Q$ n, Q $n/2+ \xi)-Qn/2-Q/2-\max$ (Q $n/2+\xi,$0).

if $\xi$ is bounded as n $arrow\infty$ , this implies

$\overline{\xi}+\xi=A-\frac{Q}{2}$ ,
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where we have used the fact that $Q>0$ to eliminate the maxima in the equation.
This has the explicit solution

$\xi(n)=\xi_{0}(-1)^{n}+\frac{A}{2}-\frac{Q}{4}$ ,

where $\xi_{0}$ is an arbitrary number. If 4 is not bounded, but is such that $\xi>>Qn/2$ ,
then we get a contradiction. Therefore, we have captured the asymptotic behaviour
of the general solution and there appears to be no hidden behaviours.

Asymptotic analysis through the linearized equation gives the same result. Writ-
ing the ultra-discrete representation of $F=e^{\Phi/\epsilon}$ , the first of the equations (2.4)
yields

(2.7) $\overline{\overline{\Phi}}=\max(C+\overline{\Phi}, D(n)+\Phi)$

where $q+1=e^{C/\epsilon}$ and $q(\alpha q^{n} - 1)$ $=e^{D(n)/\epsilon}$ . When $n\gg 1$ , we have $D(n)\sim$

$(n+1)Q+A$ . In other words, the leading asymptotic behaviour is given by

$\Phi\sim\frac{Q}{4}n(n-1)$ , as $narrow\infty$ .

We get the above leading asymptotic behaviour for $X$ after using this in the second
of the linearized equations (2.4).

In other words, there appears to be no exponentially small asymptotic term in
the behaviour of the ultra-discrete Riccati equation.

2.4. Concluding Remarks. Despite the fact that equations such as (2.6) can be
regarded as cellular automata, asymptotic analysis is possible because the automata
are embedded in more general equations in which analysis is possible in limits.
We considered a simple example to obtain an explicit comparison with well-known
special functions that exhibit exponential asymptotics. However, as we have shown,
the ultra-discrete equation (2.6) does not appear to allov asymptotic expansions
with exponentially small terms hidden beyond all orders. Such terms appear to
be lost in the limiting procedure (see (2.5)) that leads from an ODE to an ultra-
discrete equation. This procedure is not invertible. If we consider the asymptotic
expansion of a function as a formal sum, and apply this procedure, the exponentially
small terms do not appear to remain after the limit $\epsilonarrow 0+$ . Nevertheless, it is
intriguing to ask whether there is an interpretation of such terms which will lead
to the appearance of exponential asymptotics in the ultra-discrete setting.
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