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When is a Stokes Line not a Stokes Line?
III Real Conseq uences of the Higher Order Stokes Phenomenon

C.J.Howls
University of Southampton

November 30, 2004

1 Introduction

Rom all the examples of the activity of Stokes lines in the previous two papers Howts (2005ab) ,
the reader may be left with the impression that the higher order Stokes phenomenon is an
analytical relic whose influence is confined to the complex plane. In this paper we dem onstrate
that this is far from true, and that the higher order Stokes phenomenon can result in far reaching
effects in real space.

Here we shall study two pedagogical examples. The first is a linear partial differential equation
similar to that of the second paper Howls (2005b). Here we shall show that the activity of Stokes
lines has both a qualitative and quantitative effect on the large time behaviour of the solution.
The second examples is Burgers equation. Although an integrable nonlinear PDE we study it
because of its canonical role in the discussion of smoothed shock wave form ation. We shall see
that when viewed from an asymptotic problem, the higher order Stokes phenomenon is crucial
to the mechanism for the formation of the shock.

2 Example: Linear Partial Differential Equation

We study the effect of the higher order Stokes phenomenon on the large time behaviour of the

partial differential system $-\infty<x<+\infty,$ $t>0$ ,

$u_{t}-u_{x}= \epsilon^{2}u_{\sigma ixx}-\frac{1}{1+x^{2}}$ , $u(x, \mathrm{O})=\arctan x$ , (2. 1)

where $u_{x},$ $u_{xx},$ $u_{xxx}arrow 0$ as $|x|arrow$ oo and $0<\epsilon<<1$ . This system is intimately related to the
PDE studied in the second paper above (Howls $2005\mathrm{b}$). The full details have also appeared in
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Howls et at (2004). However here, for ease, we shall use an integral approach to $\mathrm{i}1^{1}[perp] \mathrm{u}\mathrm{s}\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{t}\mathrm{e}$ the
how the higher order Stokes phenomenon affects the remainder terms and expansions in different
regions of the real a $=(x, t)$ plane.

The system can be solved exactly by Fourier transforms as a sum of integrals

$u(x, t; \epsilon)=\arctan x+\sum_{j=1}^{2}I_{j}(x, t;\epsilon)+\sum_{j=3}^{4}I_{j}(x;\epsilon)$ , (2.2)

where
$I_{1}(x, t; \epsilon)=\oint_{0}^{\infty}\frac{\mathrm{i}p/2}{p^{2}-1}e^{-f(p;x,t)/\epsilon}dp=I_{2}^{*}(x,t;\epsilon)$ , (2.3)

$I_{3}(_{X\mathrm{i}} \epsilon)=\oint_{0}^{\infty}\frac{\mathrm{i}p/2}{1-p^{2}}e^{-p(1+ix)/\epsilon}dp=I_{4}^{*}(x;\epsilon)$ , (2.4)

and
$f(p;x, t)=p(1+\mathrm{i}x)+\mathrm{i}p(1-p^{2})t$, (2.5)

The star denotes complex conjugation. In $I_{1}$ and I3 (respectively I2 and $I_{4}$ ) the contours are
indented around the poles at $p=+1$ in prescribed manner such that there is (initially) no overail
pole contribution and the initial conditions are satisfied as $|x|arrow\infty$

For $t>0$ , asymptotic contributions to $I_{1}$ and $I_{2}$ can arise from the endpoints at $p=0$ , the pole
at $p=+1$ , and one of two saddlepoints. For $I_{3}$ and I4, analogous contributions can only arise
from the endpoint and the pole at $p=+1$ .

To study the time evolutionm of the problem in the real $(x, t)$ plane, without loss of generality
we can restrict our attention to $I_{1}$ .

The endpoint at $p=0$ , is denoted by the superscript/subscripts $e$ ; the pole $\mathrm{a}\mathrm{t} +1$ by $p_{1}$ , at $- 1$

by $p_{2}$ ; the saddies at

$p=\pm\sqrt{\frac{1}{3it}(1+\mathrm{i}(x+t))}$ (2.6)

by $s_{1}$ (for $+$ ) and 82 (for $-$ ). The choice of notation is now seen to agree with the labelling
of contributions in the second paper (Howls 2005b) allowing for the additional terms that arise
from the sum of complex conjugates.

As we use the integral representations it is quite easy to see now that the asymptotic behaviours
are given by:

$e^{-f\mathrm{j}/\epsilon}T^{(g)}(\epsilon)$ (2.7)
where $j$ denotes $e,$ $s_{1}$ or $p_{1}$ , with the following expressions

$f_{e}(x, t)=0$ , $T^{(e)}( \epsilon;x, t)\sim\frac{1}{2\mathrm{i}}\sum_{r=1}^{\infty}(\sum_{m=0}^{r-1}\frac{\Gamma(2r+m)(\mathrm{i}t)^{m}}{m!(1+\mathrm{i}(x+t))^{2r+m}})\epsilon^{2r}$ , (2.8)
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Figure 1: The six regions in the real $(x, t>0)$ half-plane in which different asymptotic behaviours
for $I_{1}$ are possible. These regions are deliniated by Stokes lines. The notation “es”, for example,
refers to an endpoint switching on a saddle contribution. The dashed Stokes line between $\mathrm{V}$ and
VI is active, but irrelevant. The dotted line between regions III and IV is an inactive Stokes
line.

$f_{s_{1}}(x, t)= \frac{2\mathrm{i}(x+t-\mathrm{i})^{3/2}}{3\sqrt{3t}}$ , $T^{(\epsilon_{1})}(\epsilon;x,$
$\mathrm{A}\sim\sum_{r=0}^{\infty}T_{r}^{(e_{1})}\epsilon^{r+1/2}$ , (2.9)

$f_{\mathrm{P}1}(x, t)=1+\mathrm{i}x$ , $T^{(\mathrm{p}_{1})}( \epsilon;x, t)=-\frac{1}{2}\pi$. (2.10)

The first coefficient of the saddlepoint expansion about $s_{1}$ is

$T_{0}^{(s_{1})}= \frac{1}{2}\mathrm{i}\sqrt{\pi i}\frac{(3t)^{1/4}(x+t-\mathrm{i})^{1/4}}{x-2t-\mathrm{i}}$. (2.11)

It is important to note that contributions from the saddle and endpoint are both (asymptotic)
infinite series. The single term contribution from the pole is exact.

The conjugacy of $I_{2}$ and $I_{1}$ mean that they have analytically similar structures and the relevant
expansions are just the corresponding conjugates of (4.8). The contributions bom integral $I_{3}$

can be obtained by setting $t=0$ in (2.9) and (2.10), and multiplying the results by-l. The
corresponding expansions for I4 are the conjugates of those from I3.

With all the above contributions it is a straightforward task to draw the candidate Stokes curves
in the real $(x, t)$ plane, see figure 1.
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There are three candidates for Stokes curves:

. the line $x=0$ where
$F_{ep1}(x, t)\equiv f_{\mathrm{P}1}-f_{e}=1+\mathrm{i}x>0$ (2.12)

the endpoint may switch on a pole (residue) contribution;. along a curve running forward in time from negative $x$ to positive $x$ where

$F_{\mathrm{s}_{1}p_{1}}(x, t)\equiv$ $f_{p1}-f_{s_{\mathrm{I}}}=1+ \mathrm{i}x-2\mathrm{i}\frac{(x+t-\mathrm{i})^{3/2}}{3\sqrt{3t}}>0$ (2.13)

a saddle may switch on a pole contribution;. along the line $x\mathrm{B}$ $=1/\sqrt{3}$ running forward in time where

$F_{es_{1}}(x, t) \equiv f_{s_{1}}-f_{e}=2\mathrm{i}.\frac{(x+t-\mathrm{i})^{3/2}}{\mathrm{q}\sqrt{3t}}>0$, (2.14)

the endpoint may switch on a saddle.

An analysis of a sequence of plots of the steepest descent contours as a function of $x$ and $t$ Jeads
to the findings of figure 2. The endpoint $e$ contributes for all values of $x$ and $t$ .

In region $\mathrm{I}$ , only the endpoint term contributes. Across the Stokes line between regions I
and $\mathrm{I}\mathrm{I}$ , the dom inant endpoint switches on a subdominant contribution from $s_{1}$ . Across the
Stokes curve between regions II and III, $s_{1}$ switches on a (reiatively) subdominant contribution
from $p_{1}$ (which in turn is sub-subdominant to the contribution from $e$ . Crossing $x=0$ from
region I clockwise into region $\mathrm{V}\mathrm{I},$ $e$ switches on a subdominant pole contribution from $p_{1}$ . This
combination persists across the apparent Stokes line between $s_{1}$ , pi and into region $\mathrm{V}$ , since
there is no $s_{1}$ yet present to switch $\mathrm{o}\mathrm{n}/0\mathrm{f}\mathrm{f}$ a contribution from $p_{1}$ . Across the line between $\mathrm{V}$

arrd $\mathrm{I}\mathrm{V},$
$s_{1}$ is finally switched on by $e$ . Thus there are contributions from $e,$ $s_{1}$ and $p_{1}$ in both

regions III and $\mathrm{I}\mathrm{V}$ .

From (2.12) the axis along $x=0,$ $t>1/\sqrt{3}$ delineating regions III and IV should be a Stokes
curve where a dominant $e$ switches on or off a subdominant contribution from $p_{1}$ . However,
the presence of such a Stokes curve would lead to a contradiction. For example, by continuing
from region III anti-clockwise to IV, $e$ should then switch off $p_{1}$ so that no contribution from

$p_{1}$ existed in $\mathrm{I}\mathrm{V}$ . To the contrary, the clockwise continuation around $t=1/\sqrt{3}$ from region I
suggests that IV should indeed contain a $p_{1}$ contribution. The conclusion is that despite the
presence of the necessary dominant and subdominant terms, no Stokes phenomenon can take
place. This is confirmed by a steepest descent analysis (see insets in figure 1).

This picture is entirely consistent with the Stokes curve geometry plotted for a real $\mathrm{t}$-section in
figure 4 of the second paper (Howls 2005b). When $t<1/\sqrt{3}$, the kidney-shaped higher order
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Figure 2: The Stokes curves (solid lines) and the higher order Stokes curve (bold line) for $I_{1}$

(centre pane) compared with real sections complex $x$-planes (left and right panes) at times
$t=t_{1}=1/\sqrt{3}$ (dotted line in middle pane) and $t=t_{2}>1/\sqrt{3}$ (dashed line in middle pane).
Only the active and relevant Stokes curves have been drawn. The kidney-shaped higher order
Stokes curve grows in size from $t=0^{+}$ and first intersects real $(x, t)$ space at $t=t_{1}=1/\sqrt{3}$, the
minimum of the higher order Stokes curve in real $(x, t)$ space. Thereafter the Stokes curve $S_{ep}$

is inactive. The points $\alpha,$
$\beta,$ $\gamma,$

$\delta$ indicate the intersections of the Stokes and higher order Stokes
curves at $t_{2}$ (right pane) with the real $(x, t)$ plane (centre pane).

Stokes line in the complex $x$-plane does not intersect the real $(x, t)$ plane. The Stakes curve
$S_{e>\mathrm{p}}$ is active for $\Im(x)$ below the SCP but inactive above the higher order Stokes curve. As
$t$ evolves between $0^{+}$ and $1/\sqrt{3}$ the intersection of the active $S_{e>p}$ curve traces out the active
Stokes line delineating regions I and $\mathrm{V}\mathrm{I}$ . At $t=1/\sqrt{3}$ the SCP intersects with real $(x, t)$ plane
at $(0, 1/\sqrt{3})$ and switches off the curve delineating regions III and $\mathrm{I}\mathrm{V}$ . The curves delineating

II and III, IV and $\mathrm{V}$ respectively, are still active. The locus of the points of intersection of the
higher order Stokes curve in the complex $x$-plane and the real $(x, t)$ plane is the $U$-shaped curve
defined by

$\frac{F_{es_{1}}}{F_{\mathit{3}1\mathrm{P}1}}>0$ , (2.15)

that runs between infinities in regions II and $\mathrm{V}$ , through the point $(x, t)=(0,1/\sqrt{3})$ , see figure

2.

In figure 3 we display the overall combination of terms that contribute from the sum of the four
integrais. For the integrals $I_{3}(x;\epsilon)$ and I4(x; $\epsilon$ ) a single Stokes line exists along the whole of the
$t$-axis. Superposing this on the integrals $I_{1}(x,t;\epsilon)$ and I2(x, $t;\epsilon$) we find that the composite ex-
pansion has a Stokes line along the $t$-axis for $t>1/\sqrt{3}$ , but not for $t<1/\sqrt{3}$ . This does not alter
the role of the higher order Stokes phenomenon, which has determined the constituent Stokes

behaviour of $I_{1}(x, t;\epsilon)$ and $I_{2}(x, t;\epsilon)$ . Hence, in regions $\mathrm{I}$ , VI and $\mathrm{V}$ only the endpoints of the

four integrals contributes to the asymptotics, In region II and IV there are also contributions
from the saddle points, and region III is the only region were also the pole contributes.
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Figure 3: The active and relevant Stokes lines together with the asymptotic contributions in
each region for the complete expansion of (2.1) generated by sum of integrals in (2.2).

A further significant consequence of this example is the necessity to include exponentially sub
subdominant terms in the large time asymptotic analysis. For $x>0,$ $t\approx \mathrm{O}$ , the dominance of
the asymptotic contributions is (cf. (2.12),(2.13),(2.14))

$|e^{-f/\epsilon}eT^{(e)}|>|e^{-f/\epsilon}s_{1}T^{(s_{1})}|>|e^{-f/\epsilon}\mathrm{p}_{1}T^{(p_{1})}|$ . (2.16)

The longer time behaviour in region III involves all three such contributions, with $e^{-f_{B}/\epsilon}1T^{\{s_{1})}$

a decaying function of time but $e^{-f\mathrm{p}_{1}}/\epsilon T^{\langle p_{1})}$ independent of time. Consequently $e^{-f_{\mathrm{p}_{1}}/\epsilon}T^{(p_{1})}$

develops as the principle time independent oscillatory background to the montonic $e^{-f/\epsilon}eT^{(e)}$ .
If the sub-subdominant $e^{-h_{1}/\epsilon}T^{(\mathrm{p}_{1}\rangle}$ had been initially neglected as irrelevant near to $t=0$ ,
then an incorrect large $t$ , finite-x behaviour would have been predicted. This can be verified by
carrying out a similar analysis for the other integrals $I_{2},$ $I_{3}$ , I4 and combining the results.

In figure 4 we display a comparison of a numerical evaluation of the sum of the four integrals
in (2.2) in the real $($$, $t)$ -plane against the leading order behaviours of the asymptotics within
each Stokes region for the $\epsilon=$ 0.125. The plot in the middle of figure 4 is the sum of the four
integrals, evaluated numerically. The brightness indicates the height. The plot at the bottom of
figure 4 is the result of taking just the leading order behaviours of all asymptotic contributions
in each region as detailed in figure 3.

In figure 5 we take a section for $t=30,$ $\epsilon=0.5$ and plot the spatial dependence of solutions and
approxim ations. The plot at the top is the leading order asymptotic approximation that started
at $t=0^{+}$ by ignoring the initially sub subdominant $e^{-fp_{1}}/\epsilon T^{(p_{1})}$ . The middle plot is the exact
solution. The bottom plot is the leading order asymptotic evolved according to the activity of
Stokes lines.

The agreement within figures 4 and 5 is obvious in regions IV, V and VI when $x<0$ . The
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Figure 4: The plot in the middle is the solution of the PDE (2.1) minus $\arctan x$ with $\epsilon=$

0.125. The plot at the bottom is the result of taking leading order behaviours of all asymptotic
contributions in each region (see figure 3), and the plot at the top is the same, except that the
contributions from the sub-subdominant poles is omitted.

asym ptotics arising from a neglect of the sub-subdominant pole (top plots) is however at odds
with the exact result in region III. The exact wave structure is dominated at larger times
in this region by the initially sub subdominant pole contribution A neglect of this would have
resulted in a false conclusion being drawn as to the large time behaviour. Finaliy only in the
neighbourhoods of the active Stokes curves do we observe that the sum of the leading order
behaviours changes discontinuously,

This example clearly demonstrates that the real time evolution of the solution of even linear
PDEs may be affected by the change in activity of Stokes curves caused by higher order Stokes
surfaces that emanate from complex singularities.
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Figure 5: The plot in the middle is the exact solution of the PDE (2.1) at $t=30$ obtained from
quadrature with $\epsilon=0.5$ . The plot at the bottom is the result of taking leading order behaviours
of all asymptotic contributions in each region and the plot at the top is the same, except that
the contributions from the sub-subdominant poles is omitted. The disagreement between the
exact and asymptotic approximations near to $t=-30$ and $t=60$ is due to the proximity of the
turning points TP in the complex plane at $x=2t+\mathrm{i}$ and $x=\mathrm{i}-t$ which cause the leading
orders to be the smallest term in the expansion, i.e., a man-uniform asymptotic analysis becomes
questionable in this region.
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3 Smoothed Shock Waves

In this example we dem onstrate the effect of the higher order Stokes phenomenon on a nonlim ear
PDE in the real $\mathrm{a}=$ $(x$ , ? $)$ plane. Specifically we will examine its role in the development of
smoothed shock waves via the canonical example of Burgers equation. The extra asymptotic
complications introduced into Borel-type analysis by nonlinearities are well discussed in the
recent literature see for$\mathrm{n}$ example (but not exclusively), Costin & Costin (2001), Costin &
Kohut (2004), Costin & Tanveer (2004), Olde Daalhuis $(2004\mathrm{a}\mathrm{b})$ .

We provide an overview of the work here, as the details will appear elsewhere Howls et $al$ (2005).

We start with the Burgers equation

$u_{t}+uu_{x}=\epsilon u_{xx}$ , (3.1)

where
$x\in C$ , $t\geq 0$ , $\epsilonarrow 0^{+}$ , (3.2)

and choose initial Cauchy cond itions

$u(x, 0)= \frac{1}{1+x^{2}}$ , and $uarrow \mathrm{O}$ as $|x|arrow\infty$ . (3.3)

Obviously, Burgers equation may be solved using the Cole-Hopf integral representation, or using
approximate matching techniques to locate the position of the smoothed shock that form $\mathrm{s}$ after
a finite time. However we shall approach this pedagogical example from an exponential asymp-
totics point of view to provide an alternative, novel, view of the smoothed shock formation.

The small $\epsilon>0$ expansion of the solution can be deduced to have a template of the form

$u(x, t; \epsilon)\sim u^{(0)}(x, t;\epsilon)+\sum_{n=1}^{\infty}C_{1}^{n}u^{\langle n,1)}(x, t;\epsilon)+\sum_{n=1}^{\infty}C_{2}^{n}u^{(n,2)}(x, t;\epsilon)$ (3.4)

where

$u^{(0)}(x, t;\epsilon)$ $\sim$ $\sum a_{r}$ ($x\infty$ , th ) $\epsilon^{r}$ (3.5)
$\tau=0$

$u^{(n,j)}(x,t;\epsilon)$ $e^{-nj_{j}(x,t)/\epsilon} \sum_{r=0}^{\infty}a_{r}^{(n_{I}}’)(x, t)\epsilon^{r}$ , $j=1,2$, $n=1,2,3,$ $\cdots$ . (3.6)

By substitution into (3.1) we see that $a\mathrm{o}(x, t)$ satisfies the inviscid Burgers equation

$\frac{\partial a_{0}}{\partial t}$ % $a_{0} \frac{\partial a_{0}}{\partial x}=0$ , ag $(x, 0)= \frac{1}{1+x^{2}}$ , (3.7)
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and for $r\geq 1$ the $a_{r}(x, t)$ satisfy

$\frac{\partial a_{r}}{\partial t}+\sum_{\epsilon=0}^{r}a_{r-s}\frac{\partial a_{s}}{\partial x}=\frac{\partial^{2}a_{r-1}}{\partial x^{2}}$ , $a_{r}(x_{r}0)=0$ . (3.8)

The leading orders of the largest of the subdominant exponential contributions satisfy $\emptyset(e^{-nf/\epsilon})$

generates

$\frac{\partial a_{0}^{(1\mathrm{j})}}{\partial t}+(a_{0}+2f_{x})\frac{\partial a_{0}^{(1,j)}}{\partial x}+(\frac{\partial a_{0}}{\partial x}-a_{1}f_{x}+f_{xx})a_{0}^{(1,j)}=0$ , (3.9)

The exponential functions $fj(x, t)$ satisfy the first order nonlnear equation

$f_{t}+a_{0}f_{x}+f_{x}^{2}=0$ . (3.10)

The boundary data for these functions can be found by consideration of the rays of (3.7).

There are three rays of (3.7) through each point $(x, t)$ . These are the lines

$x=xj+a\mathrm{o}(xj)t$ , $j=0,1,2$ , (3.11)

where here and henceforth, we have abbreviated $a_{0}(x_{j}, 0)$ to $a_{0}(x_{j})$ and the $x_{\mathrm{J}}$ are the inter-
section points of these rays with the complex plane $t=0$ , or alternatively, the locations of the
saddlepoints in the Cole Hopf solution. On these rays the $a_{0}$ take the constant values

$a_{0}(x_{\mathrm{J}})= \frac{1}{1+x_{j}^{2}’}$ $j=0,1,2$ . (3.12)

The root $x\mathit{0}$ of (3.11) is chosen to be the one that is real for all real $(x, t)$ . The families of rays
generated by the $x_{j}$ are tangential at caustics which simultaneously satisfy (3.11) and

$0=1+ \frac{da_{0}(x_{j})}{dx_{j}}t$ , $j=0,1,2$ , (3.13)

For the chosen initial conditions the caustics are given by

$t= \frac{2}{27}(x(x^{2}+9)\pm(x^{2}-3)^{3/2})$ . (3.14)

Since we restrict ourselves to $t>0$ the caustics are one-dimensional curves. There are two real
and two complex caustics in the $(x,t)$ space under consideration, see figure 6. On the complex
caustic with $\Im x>0$ , roots $x_{0}$ and $x_{1}$ coalesce and so we call this caustic $c_{01}$ . On the complex
caustics with $\Im x<0_{\}}x_{0}$ and $x_{2}$ coalesce and is thus labelled $C_{02}$ . On the real caustics $c_{R},$ $x_{1}$

and $x_{2}$ coalesce.

These caustics $c_{R}$ separate the regions in the real $(x,t)$ plane in which the classical smoothed
shock of Burgers’ equation forms (‘inside’ the caustic) from regions where the amplitude or the
travelling wave changes over a longer spatial scale (‘outside’ the caustic), see figure 7.
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Figure 6: Caustics in complex $x$-space for real $t$ and a path of analytic continuation around
them.

Figure 7: Rays and caustics for Burgers’ equation with initial data (3.3) for $x,$ $t\geq 0$ . The real
caustics are marked in bold.
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As $x_{1}$ and $x_{2}$ are complex outside $C_{R}$ , imposition of reality on the solution is sufficient to ensure
uniqueness of the solution in the real $(x, t)$ plane outside the real caustics. The unique solution
to the inviscid Burgers’ equation outside the caustic in the real $(x, t)$ plane is thus $a_{0}(x_{0}(x, t))$ .

It is obvious, and well known, that inside $C_{\mathcal{R}}$ , the multivalued leading order invisicid behaviour
$ao(x, t)$ that satisfies the inviscid Burgers’ equation cannot adequately represent the solution of
viscid Burgers’ equation. By using exponential asymptotics the effect of the multivaluedness of
$a0(x, t)$ may be corrected.

Note that the $a_{0}$ appearing in (3.10) is identical to the choice of $a0$ in the leading order behaviour
$u0$ in (3.5) . It is therefore $a_{0}(x_{0}(x, t))$ , which is compietely determined by (3.7), where $x_{0}(x$ , ? $)$

is the real solution of (3.11).

The exponents $f_{j}(x, t)$ must vanish on the complex caustics, since here they coalesce with the
exponent of the leading order solution, i.e., $f_{0}(x, t)\equiv 0$ , so that the exponential correction terms
are there of the same order as the first series in (3.4). Thus the boundary data for the solutions
of (3.10) are

$f_{j}(x, t)=0$ on $C_{0j}$ , $j=1,2$ . (3.15)

and
$f1(x, t)=f_{2}(x, t)$ on $C_{R}$ . (3.16)

Cole-Hopf, or direct analysis of the PDE reveals that

$f_{j}(x(x0, xj),$ $t(x0,xj))= \frac{1}{2}\int_{x_{0}}^{x_{j}}a_{0}(z)dz-\frac{1}{4}(a_{0}(x_{0})+a_{0}(x_{j}))(x_{j}-x_{0})$ , (3. 17)

$j=1,2$ .

It can also be shown that

$a_{0}^{(1,1)}(x_{0}, x_{1})=(a_{0}(x_{1})-a_{0}(x_{0}))\sqrt{\frac{a_{0}(x_{1})-a_{0}(x_{0})-a_{0}’(x_{0})(x_{1}-x_{0})}{a_{0}(x_{1})-a_{0}(x_{0})-a_{0}’(x_{1})(x_{1}-x_{0})}}$. (3.18)

This results holds for all values of $x0$ and $x_{1}$ .

We now turn to the singularity structure in the Borel plane. It is actually a lot more complicated
than we shall outline here (see Howls et at 2005). However for the purposes of this paper it will
suffice to consider the following simplified story.

The location of singularities visible from $\tau=f_{0}(x, t)$ are indicated in figure 8 for a typical
value of $(x, t)$ . Rom (3) we deduce that in the Borel plane, (logarithmic) branch-points exist at
$\tau=nfj,$ $j=1,2,$ $n=1,2,3,$ $\cdots.$ A detailed analysis of the transseries (see e.g., Olde Daalhuis
$2004\mathrm{a}\mathrm{b})$ or the Cole-Hopf rePresentation shows that the Borel transform of $u^{(1,1)}(x, t;\tau)$ must
see a branch-point at $\tau=f_{2}(x, t)$ . Likewise the Borel transform of $u^{(1,2)}(x, t;\tau)$ must see a
branch-point at $\tau=f_{1}(x, t)$ .
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Note that for certain values of $(x, t)$ these singularities may appear to coalesce in the Borel
plane. However oniy when the singularities lie on the same Riemann sheet can this give rise to
actual caustics and divergences in the asymptotic representations.

Now we consider the analytic continuation of the transseries expansion in the real plane from
regions outside the $c_{R}$ to inside. Without loss of generality, we perform this at a constant
$t>8/\sqrt{27}$ . The space of continuation is therefore a complex $x$-plane in which the caustics
degenerate to a pair of turning points. Due to symm etry of the initial conditions as $|x|arrow\infty$

we shall also initially just consider the continuation around the turning point with the largest
values of $\Re x$ . We label this point $x_{\mathrm{c}+}$ .

We take a path in the complex $x$-plane along the points $xA,$ $xB,$ $\cdots$ , see figures 6, 8. This
complex path is taken to avoid any singular behaviour in the exponentially sm all transseries
$u^{(n,1)}$ and $u^{(n,2)}$ , ( $u^{(0)}$ is actually regular at $C_{R}$), which nevertheless will play a vital role inside
the caustic region. It is obviously possible to obtain a uniform asymptotic approximation across
the caustic involving Airy functions. However we are interested here in the morefundamental
exponential asymptotic behaviour that underpins other procedures.

Surrounding the central diagram of the complex $x$-plane in figure 8, are snapshots of the locations
of the singularities as viewed from $\tau=f_{0}$ in the Borel plane at the positions $x_{A},$ $x_{B},$ $\cdots$ . As
we move around the complex $x$-plane, the arrays of singularities will pivot about $fo=0$ .

We also plot the sections through the Stokes surfaces $S_{i>j}$ across which contributions involving
$f_{i}$ can switch on $f_{j}$ . Note that at the turning point $x_{c+}f_{1}=f_{2}>0$ , hence this turning point
does not directly involve $f_{0}$ . Thus the Stokes lines $S_{0>1}$ and $S_{0>2}$ both pass through the turning
point inertly and $f_{0}$ dominates $f_{1}$ and $f_{2}$ all along this line in the vicinity of $x_{c+}$ . On the other
hand the Stokes lines $S_{1>2}$ and $S_{2>1}$ sprout at angles of $2\pi/3$ from $x_{c+}$ (reflecting the Airy-type
nature of the simple coalsecence). A higher order curve $S_{021}$ exists for $(x,t)$ in the locality of
$x_{\mathrm{C}+}$ and is also shown in figure 8. Note that a branch cut also emanates from $x>x_{c+}$ . However,
1n what follows we can avoid all interaction with it, and so for simpiicity we have not included
it in the figure.

It transpires Howls et al (2005) that we only actually have to consider the Stokes lines $S_{0>1}$ ,
$S_{0>2},$ $S_{1>2}$ and $S_{2>1}$ .

We now start on the real $x$-axls outside the caustic region where $x>x_{\mathrm{c}+}$ . We pick a general
point $x_{A}$ , and aim to continue to $x<x_{c+}$ in the complex $x$-plane. At $x_{A}$ , to satisfy the decay of $u$

as $|x|arrow$ oo (3.3), comparison of the full template for the expansion (3) reveals that $C_{1}=C_{2}=0$ .
Hence we have

$u(x_{A},t\cdot, \epsilon)\sim u^{(0)}(xA,t;\epsilon)$ , $(3,19)$

as the complete asymptotic expansion.

At $x_{B}$ we cross the Stokes line $S_{0>1}$ . Here the array of singularities $nfi,$ $n=1,2,3,$ $\cdots$ lines



48

Figure 8: The central panel depicts part of the complex $x$-plane at constant $t>8/\sqrt{27}$ for ex-
pansion (3.4) and illustrates the location of Stokes and higher order Stokes curves. Surrounding
the central panel are snapshots of the distribution of singularities in the Borel plane, as seen
from $f_{0}$ , at the various values of $x$ indicated. See the main text for a full description of what
happens at the indicated values of $x$ .
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up horizontally with the direction of Borel integration. Consequently a nonlinear Stokes phe-
nomenon takes piace involving all the

$nf_{1}$
, see Olde Daalhuis $(2004\mathrm{a}\mathrm{b})$ . After crossing the line

(at point $\=xc$ ) the asymptotics is now a transseries that takes the form

$u(x, t; \epsilon)\sim u^{(0)}(x, t,\cdot\epsilon)+\sum_{n=1}^{\infty}K_{01}^{n}u^{(n,1)}(x, t;\epsilon)$ , (3.20)

where $K_{01}$ is a Stakes constant, We can show (either fiiom Cole-Hopf or directly from the PDE
that $K_{01}=1$ .

At $x_{D}$ we encounter the Stokes lne $S_{2>1}$ . At this point singularity $f_{1}-f_{2}>0$ and so there is a
potential for a Stakes phenomenon to take place. However, singularity $f_{2}$ is not contributing to
the transseries expansion of the function we are interested in at $x_{D}$ . Hence no Stokes phenomenon
between $f_{2}$ and $f_{1}$ actually takes place and this is again an irrelevant Stokes curve,

At $xE$ , we encounter the higher order Stokes line $S_{021}$ . On this curve the Borel singularities $f_{0},$ $f_{1}$

and $f_{2}$ and all their multiples are collinear. Here we see that rather than having a finite number
of collinear singularities, we must deal with and infinite set, leading to an infinite number of
Riemann sheets.

As inlinear cases, since $|fi|>|f_{2}|$ , on the line of collinearity in the Borel plane the singularity
$f_{2}$ lies in between

$f_{0}$

and $f_{1}$ . When we cross the higher order Stokes line, when viewed from $f_{0_{i}}$

the singularity at

$f_{1}$

moves across a cut from $f_{2}$ and onto a different Riemann sheet from

$f_{0}$
.

A more detailed analysis of all the other singularities Howls et $al$ (2005) shows that on crossing
the higher order Stokes line all the singularities in the array $f_{1},2f_{1},3f_{1},$ $\cdots$ move on to mutually
different Riemann sheets and are so are directly invisible from the original expansion point $fo$ ,
and the singutarities $nf_{1}$ can no longer see $mf_{1},$ $m\neq n$ .

At $xF$ , the arrays are no-longer collinear with one another. However the $nf_{1}$ are still collinear
with

$f_{0}$

: just because they might be on different Riemann sheets, this does not grant them the
autono1ny to move independently.

At $x_{G}$ , where $x$ is real, but $x<x_{c+},$

$f_{0}$

and the arrays $nf_{i}$ ,$mf_{2}$ are all again colinear, this
time along the horizontal direction of Borel integration and $0<f_{i}<f_{2}$ . A Stokes line therefore
potentially exists between

$f_{0}$

and the $nf_{1}$ . However, since the $nf_{1}$ are now all on different
Riemann sheets from

$f_{0}$

, they are invisible to

$f_{0}$

and cannot cross the actual Borel integration
contour, which is anchored at

$f_{0}$

but on the principal Riemann sheets. Thus the the Stokes
line $S_{0>1}$ is inactive and no Stokes phenomenon between $f_{0}$ and any element of

$nf_{1}$

takes place.
There is also the possibility of a Stokes phenomenon between $f_{0}$ and $nf_{2}$ or even $fi$ and $nf_{2}$ ,
but these are of lower exponential order and will not concern us here.

It is important now to recall that $\=x_{c+}$ is not a turning point/caustic for 0 and

$nf_{1}$

. Hence
the activity of the the Stokes curve $0>1$ has changed at a reguiar point across the higher order
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Stokes curve that passes through $\=x_{c+}$ .

We mow examine the structure of the ‘dominant’ part of the transseries on the real $x$-axls inside
$c_{R}$

$u(x, t; \epsilon)=a0(x, t)+\sum_{n=1}^{\infty}K_{01}^{n}e^{-nf1(x,t)/\epsilon}a_{0}^{(n,1\}}(x, t)+O(\epsilon)$ , (3.21)

as $\epsilonarrow 0+$ . Exponentially small terms are included before the 0 $(\epsilon)$ in (3.21) because we are
now in a region where $fi(x, t)$ may decrease to zero. There is thus the possibility that these
exponentially small terms can interfere with the $O(1)$ terms.

We combine (3.5), (3.6) and (3.10) and are able to deduce for $n=2,3,4,$ $\cdots$ , that

$a_{0}^{(n,1)}=(a_{0}^{(1,1)})^{n}(-2 \frac{\partial f_{1}}{\partial x})^{1-n}$ (3.22)

This simple relationship allows us to sum the n-sum in the transseries (3.21) and obtain

$u(x, t;\epsilon)=a0_{\backslash }^{(_{X}},$ $t)+ \frac{2K_{01}a_{0}^{(1,1)}(x,t)^{\partial}\neq_{x}^{1}e^{-f_{1}/\epsilon}}{2\frac{\partial f_{1}}{\partial x}+K_{01}a_{0}^{(1,1)}(x,t)e^{-f\iota/\epsilon}}+O(\epsilon)$, (3.23)

as $\epsilonarrow \mathrm{O}+$ . This result is valid everywhere in the region where $\Re f_{1}>0$ and may be analytically
continued to the region where $\Re f_{1}\leq 0$ .

If we continue along the iine $S_{0>1}$ , in the negative $x$-direction the singularities $nf_{1}$ all move
towards $f_{0}$ in the Borel plane, see $x_{H}$ . At the point $(x_{S}, t)$ the $nf_{1}$ appear to coalesce with $f_{0}$ .
This is the point at which an exchange of dominance in the asymptotic expansion stakes piace.
Classically, this is the position of the smoothed shock, where the solution changes abruptly ffom
one value to the next.

Due to the coalescence of the exponents, from a naive point of view, this point is apparently
a caustic/turning point of the asymptotics. If this were a true turning point the derivatives
in individual terms in the asym ptotics would diverge at $x_{S}$ . An examination of the coefficients
$a_{r}(x, t)$ (Howls et $al$ 2005) shows that this is not the case. The reason for this is that, as suggested
above, atl the singularities $nf_{1}$ and 0 indeed do lie on mutttally different Riemann sheets: this is
only an apparent coalescence. This is a virtual turning point.

We may now conclude with the following key observations (further discussion may be found in
Howls $al$ 2005).

The terms themselves in the transseries do not diverge at the position of the smoothed shock
$xs$ . This is because $xs$ is only a virtual turning point, since all the Borel singularities are on
mutualiy different Riemann sheets, Hence the Borel singularities have accumulated to create a
smooth shock rather than a caustic.
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The reason that the Borel singularities are on mutually different sheets is the presence of the
higher order Stokes curve. Without the higher order Stokes curve the Riemann sheet structure
of the Borel plane would not change and the coalescence of Borel singularities at the shock point
would have resulted in divergence of individual terms in the asymptotics. Put simpty, if it were
not for the higher order Stokes phenomenon, the shock would be a caustic. In fact the position
of the shock is a moving virtual caustic (or virtual turning point).

Hence, when viewed from the standpoint of exponential asym ptotics, the higher order Stokes
phenomenon is an essential part of the mechanism for forming the smoothed (propagating)
shock.

The resummed transeries solution (3.23) is valid for values of $\<xs$ . It is thus a way of con-
tinuing the solution through the nonlinear anti-Stokes line that passes locally vertically through
the virtual turning point.

Although this is only one specific smoothed shock problem, we believe the mechanism explained
above is more general. Clearly a smoothed shock is a change of dominance between contributions
in an expansion. If these take the form of exponentially prefactored series, then a Borel plane
structure similar to that described above will exist. If the boundary data is such that (infinitely)
many singularities are contributing to the asymptotics near to the smoothed shock, and if the
asym ptotics does not diverge at that shock, then the Borel singularities must lie on mutually
different sheets. This may well have arisen because of the crossing of a higher order Stokes
curve.

4 Conclusion

In this paper we have concluded the discussion of the higher order Stokes phenomenon by
showing its relevance to the large time asymptotics of linear PDE problems and smoothed shock
formation in a nonlinear PDE.

The relevance of the higher order Stokes phenomenon to a problem will be determined both by
the problem and the boundary data associated with it. The difficulty in practically exam ining
its effects in ODEs or PDEs should not be underestimated. Nevertheless in canonical problems,
some progress can be made and extra insight can be obtained into the underlying analytic
structure of the asymptotics.
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