<table>
<thead>
<tr>
<th>Title</th>
<th>The Reachability and Related Decision Problems for Semi-Constructor TRSs (Theoretical Computer Science and its Applications)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Mitsuhashi, Ichiro; Oyamaguchi, Michio; Yamada, Toshiyuki</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (2005), 1426: 101-105</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2005-04</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/47264</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
The Reachability and Related Decision Problems for Semi-Constructor TRSs

Ichiro Mitsuhashi, Michio Oyamaguchi, Toshiyuki Yamada
(Faculty of Engineering, Mie University)
三橋一郎, 大山口通夫, 山田俊行 (三重大学工学部)

Abstract
This paper shows that reachability is undecidable for confluent monadic and semi-constructor TRSs, and joinability and confluence are undecidable for monadic and semi-constructor TRSs. Here, a TRS is monadic if the height of the right-hand side of each rewrite rule is at most 1, and semi-constructor if all defined symbols appearing in the right-hand side of each rewrite rule occur only in its ground subterms.

1 Introduction
In this paper, we consider the reachability problem for confluent monadic and semi-constructor TRSs posed by our previous paper [4]. Here, a TRS is monadic if the height of the right-hand side of each rewrite rule is at most 1, and semi-constructor if all defined symbols appearing in the right-hand side of each rewrite rule occur only in its ground subterms. We give a negative answer to this problem. This undecidability result is compared with the decidability results of joinability and unification for the same class [4, 3].

Moreover, we show that joinability and confluence are undecidable for monadic and semi-constructor TRSs.

2 Preliminaries
We assume that the reader is familiar with standard definitions of rewrite systems [1] and we just recall here the main notations used in this paper.
Let F be a finite set of operation symbols graded by an arity function $\ar: F \to \mathbb{N} = \{0, 1, 2, \ldots\}$, $F_n = \{ f \in F \mid \ar(f) = n \}$. We use x, y as variables, f as an operation symbol, r, s, t as terms. Let $V(s)$ be the set of variables occurring in s. The height of a term is defined as follows: $\text{height}(a) = 0$ if a is a variable or a constant and $\text{height}(f(t_1, \ldots, t_n)) = 1 + \max\{\text{height}(t_1), \ldots, \text{height}(t_n)\}$ if $n > 0$. The root symbol of a term is defined as $\text{root}(a) = a$ if a is a variable and $\text{root}(f(t_1, \ldots, t_n)) = f$.

A position in a term is expressed by a sequence of positive integers, and positions are partially ordered by the prefix ordering \preceq. Let $O(s)$ be the set of positions of s. For a set of positions W, let $\operatorname{Min}(W)$ be the set of its minimal positions (w.r.t. \leq).

Let $s[p]$ be the subterm of s at position p. For a sequence (p_1, \ldots, p_n) of pairwise parallel positions and terms t_1, \ldots, t_n, we use $s[t_1, \ldots, t_n][p_1, \ldots, p_n]$ to denote the term obtained from s by replacing each subterm $s[p_i]$ by t_i ($1 \leq i \leq n$). For a set of function symbols F, let $O_F(s) = \{ p \in O(s) \mid \text{root}(s[p]) \in F \}$. For a string of unary function symbols $u = a_1a_2\cdots a_k$ and a term t, let $u(t)$ be an abbreviation for $a_1(a_2(\cdots a_k(t)))$.

A rewrite rule $\alpha \rightarrow \beta$ is a directed equation over terms. A TRS R is a set of rewrite rules. Let \rightarrow be the inverse of \rightarrow, $\leftrightarrow = \rightarrow \cup \leftarrow$, and $\downarrow = \rightarrow \cdot \leftarrow$. t is reachable from s if $s \rightarrow^* t$. R is confluent on TRS R if for every $s \rightarrow_R^* t, s \rightarrow_R^* t$ and $t \downarrow t$. A TRS R is confluent if every r is confluent on R. Let $\gamma: s_1 \leftarrow^{p\text{-inv}} s_n$. Let $|\gamma|$ be the number of steps of γ. γ is called p-invariant if $q > p$ for any redex position q of γ, and we write $\gamma: s_1 \leftarrow^{p\text{-inv}} s_n$.

The set D_R of defined symbols for a TRS R is defined as $D_R = \{ \text{root}(\alpha) \mid \alpha \rightarrow \beta \in R \}$. A term s is semi-constructor if for every subterm t of s, t has no variable or root(t) is not a defined symbol.

Definition 1 A rule $\alpha \rightarrow \beta$ is monadic if $\text{height}(\beta) \leq 1$, semi-constructor if β is semi-constructor. A TRS R is monadic if every rule in R is monadic, semi-constructor if every rule in R is semi-constructor.
3 Undecidability of joinability for monadic and semi-constructor TRSs

We have shown that joinability is undecidable for linear semi-constructor TRSs [4]. In this section, we show that joinability for monadic and semi-constructor TRSs is undecidable by a reduction from the Post's Correspondence Problem (PCP). Let $P = \{(u_i, v_i) \in \Sigma^* \times \Sigma^* | 1 \leq i \leq n\}$ be an instance of the PCP. The corresponding TRS R_P is constructed as follows. Let $F = F_0 \cup F_1 \cup F_2$ where $F_0 = \{0, c, d, \}$, $F_1 = \{a_i | 1 \leq i \leq n\} (= E) \cup \Sigma$, $F_2 = \{f, g\}$.

$$R_P = \{0 \rightarrow a_i(0) \mid 1 \leq i \leq n\} \cup \{0 \rightarrow f(c, d)\} \cup \{b \rightarrow a(b), b \rightarrow a(\$) \mid b \in \{c, d\}, a \in \Sigma\} \cup \{f(x, x) \rightarrow g(x, x)\} \cup \{e_i(g(u_i(x), v_i(y))) \rightarrow g(x, y) \mid 1 \leq i \leq n\}$$

R_P is monadic. Here, $D_{R_P} = \{0, c, d, f\} \cup E$, so R_P is semi-constructor.

Lemma 2 $0 \rightarrow^{*}_{R_P} g(\$,)$ iff PCP P has a solution.

Proof. $0 \rightarrow^{*}_{R_P} g(\$,)$ iff there exists $i_1: \cdots: i_m \in \{1, \ldots, n\}^*$ such that $0 \rightarrow^{m+1} e_{i_1} \cdots e_{i_m} (f(c, d)) \rightarrow^+ e_{i_m} \cdots e_{i_1} (f(u_{i_1} \cdots u_{i_m}(\$), u_{i_1} \cdots u_{i_m}(\$))) \rightarrow e_{i_m} \cdots e_{i_1} (g(u_{i_1} \cdots u_{i_m}(\$), u_{i_1} \cdots u_{i_m}(\$))) \rightarrow^{m} g(\$,).$ Since $g(\$,)$ is a normal form, the following theorem holds.

Theorem 3 Both joinability and reachability for monadic and semi-constructor TRSs are undecidable.

4 Undecidability of reachability for confluent monadic and semi-constructor TRSs

We give a stronger result for reachability, that is, reachability for confluent monadic and semi-constructor TRSs is undecidable. Note that joinability is decidable for the same class [4, 3]. Let $P = F \cup \{1\}$.

$$R_P = R_P \cup \{\$ \rightarrow 1\} \cup \{a(1) \rightarrow 1 \mid a \in \Sigma\} \cup \{e_i(g(1, x)) \rightarrow g(1, y), e_i(g(u_i(x), l)) \rightarrow g(x, 1), e_i(g(1, l)) \rightarrow g(1, 1) \mid 1 \leq i \leq n\}$$

R_P is monadic. Here, $D_{R_P} = D_{R_P} \cup \{\$\} \cup \Sigma$, so R_P is semi-constructor. First, we show the confluence of R_P.

4.1 Confluence of R_P

To show the confluence of R_P, we need some definitions and lemmata.

Definition 4 The set of Σ-strings is defined as follows.

- $1, c, d$ and $\$ are Σ-strings.
- $a(t)$ is a Σ-string if t is a Σ-string and $a \in \Sigma$.

Lemma 5 For any Σ-string s, the following properties hold.

1. For any $\gamma: s \leftrightarrow t$, t is a Σ-string.
2. $s \rightarrow^*$.

Proof.

1. By induction on $|\gamma|$.
2. By induction on the structure of s. □

Corollary 6 Every Σ-string is confluent.

Lemma 7 Let $\gamma: s \rightarrow^* t$ where $u \in \Sigma^+$. Then, if $\operatorname{root}(s) \notin \{1, c, d, \$\} \cup \Sigma$ and $u(s)_{t_1} = s$ then γ is p-invariant.

Proof. By induction on $|\gamma|$. □

Definition 8 The set of E-strings is defined as follows.

- $0, f(t_1, t_2)$ and $g(t_1, t_2)$ are E-strings if t_1, t_2 are Σ-strings.
- $e_i(t)$ is an E-string if t is an E-string and $i \in \{1, \ldots, n\}$.

Lemma 9 For any E-string s, the following properties hold.

1. For any $\gamma: s \leftrightarrow t$, t is an E-string.
2. $s \rightarrow^* g(1, 1)$.

Proof.

1. By induction on $|\gamma|$.
2. By induction on the structure of s. Basis: For any E-strings s_1, s_2, $f(s_1, s_2) \rightarrow^* f(1, 1) \rightarrow g(1, 1)$ and $g(s_1, s_2) \rightarrow^* g(1, 1)$ by Lemma 5(2), and $0 \rightarrow f(c, d) \rightarrow^* g(1, 1)$. Thus, $s \rightarrow^* g(1, 1)$ if $s = f(s_1, s_2)$, $g(s_1, s_2) \in 0$. Induction step: Let $s = e_i(s')$ for some $i \in \{1, \ldots, n\}$. By the induction hypothesis, $s' \rightarrow^* g(1, 1)$. Thus, $e_i(s') \rightarrow^* g(1, 1)$. □

Corollary 10 Every E-string is confluent.
The following lemma is used as a component of the proof of Lemma 12.

Lemma 11 For any \(i \in \{1, \ldots, n\} \) and terms \(r_1, r_2 \), the following properties hold.

1. If \(s \cong e_i(g(r_1, r_2)) \rightarrow^{*} t \) then there exist terms \(t_1, t_2 \) such that \(t \rightarrow^{*} g(t_1, t_2) \).
2. If \(g(s_1, s_2) \cong e_i(g(r_1, r_2)) \rightarrow^{*} g(t_1, t_2) \) and \(g(r_1, r_2) \) is confluent then \(g(s_1, s_2) \downarrow g(t_1, t_2) \).

Proof.

(1) Let \(t = e_i(g(t_1', t_2')) \). If \(r_1 \) is a \(\Sigma \)-string then \(t_1' \rightarrow^{*} 1 \) by Lemma 5. Otherwise, \(r_1 \neq 1 \). Thus, \(r_1 = u_i(r_1') \) for some term \(r_1' \) by \(e_i(g(r_1, r_2)) \rightarrow s \). By Lemma 7, \(t_1' = u_i(t_1') \), where \(r_1' \rightarrow^{*} t_1' \). Similarly, \(t_2' \rightarrow^{*} 1 \) or \(t_2' = u_i(t_2') \) for some term \(t_2' \). Thus, \(t \rightarrow^{*} g(t_1, t_2) \), where \(t_1 \in \{1, t_1'\} \) and \(t_2 \in \{1, t_2'\} \).

(2) By the definition of \(R_P \), \(e_i(g(r_1, r_2)) \rightarrow^{*} e_i(g(s_1', s_2')) \rightarrow^{*} g(s_1', s_2') \) and \(e_i(g(r_1, r_2)) \rightarrow^{*} e_i(g(t_1', t_2')) \rightarrow^{*} g(t_1', t_2') \). Thus, \(s_1' \rightarrow^{*} r_1 \rightarrow^{*} t_1', s_2' \rightarrow^{*} t_2', s_1 = 1 \).

Case of \(s_1' = t_1' = 1 \) : Obviously, \(s_1'' = s_1 = s_2 = 1. \)

Case of \(s_1' = 1 \) and \(t_1' = u_i(t_1') \) : Obviously, \(s_1'' = s_1 = 1. \)

Case of \(s_1' = u_i(s_1') \) and \(t_1' = 1 \) : Similar to the previous one.

Case of \(s_1' = u_i(s_1') \) and \(t_1' = u_i(t_1') \) : By confluence of \(g(r_1, r_2), r_1 \) is confluent. Thus, \(u_i(s_1) \downarrow u_i(t_1) \). If \(s_1 \) is a \(\Sigma \)-string then \(s_1 \downarrow t_1 \) by Corollary 6. Otherwise, \(s_1 \downarrow t_1 \) by Lemma 7.

Similarly, \(s_2 \downarrow t_2 \). Thus, \(g(s_1, s_2) \downarrow g(t_1, t_2) \). \(\square \)

Now, we show the confluence of \(R_P \).

Lemma 12 \(R_P \) is confluent.

Proof. We show that for any \(\gamma : s \rightarrow^{*} r \rightarrow^{*} t \), \(s \downarrow t \) by induction on \(\text{height}(r) \).

Basis: If \(r \in \{c, d\} \) then \(s \downarrow t \) by Corollary 6, else if \(r = 0 \) then \(s \downarrow t \) by Corollary 10. Otherwise, \(s = r = t \) since \(r \) is a normal form.

Induction step: If \(\gamma \) is \(\varepsilon \)-invariant then \(s \downarrow t \) by the induction hypothesis. So, we consider that \(\gamma \) has an \(\varepsilon \)-reduction. Let \(\gamma_1 : r \rightarrow^{*} s \) and \(\gamma_2 : r \rightarrow^{*} t \). Without lost of generality, we assume that \(\gamma_1 \) has an \(\varepsilon \)-reduction and \(\text{root}(r) \in \Sigma \cup \{f\} \cup E \).

Case of root\((r) \in \Sigma \): \(\gamma_2 : r = a(r_1) \rightarrow^{*} a(1) \rightarrow 1 = s \) holds for some \(a \in \Sigma \) and \(r_1 \). By Lemma 5, \(t \rightarrow^{*} 1 \).

Case of root\((r) \in \Sigma \): \(\gamma_2 : r = f(r_1, r_2) \rightarrow^{*} g(s_1, s_2) \rightarrow^{*} s \) holds for some terms \(r_1, r_2, s_1, s_2 \). If \(\gamma \) is \(\varepsilon \)-invariant then \(t = f(t_1, t_2) \) where \(r_1 \rightarrow^{*} t_1 \) and \(r_2 \rightarrow^{*} t_2 \). In this case, \(s \rightarrow^{*} g(r_0, r_0) \rightarrow^{*} t \) for some \(r_0 \) by Figure 1(i). If \(\gamma \) has an \(\varepsilon \)-reduction then \(\gamma_2 : r = f(r_1, r_2) \rightarrow^{*} f(r''_1, r''_2) \rightarrow^{*} g(r''_1, r''_2) \rightarrow^{*} t_1, t_2 = t \) holds for some terms \(r''_1, r''_2 \). In this case, \(s \rightarrow^{*} g(r_0, r_0) \rightarrow^{*} t \) for some \(r_0 \) by Figure 1(ii).

Case of root\((r) \in E \): \(\gamma_2 : r = e_i(r_1) \rightarrow^{*} e_i(g(s_1', s_2')) \rightarrow^{*} g(s_1', s_2') \rightarrow^{*} s \) holds for some terms \(r_1, s_1', s_2', s_1, s_2 \) and \(i \in \{1, \ldots, n\} \). If \(\gamma \) is \(\varepsilon \)-invariant then \(t = e_i(t_1) \) where \(r_1 \rightarrow^{*} t_1 \). By the induction hypothesis, there exists a term \(t' \) such that \(e_i(g(s_1', s_2')) \rightarrow^{*} t' \rightarrow^{*} t \). By Lemma 11(i), \(t' \rightarrow^{*} g(t_1', t_2') \) for some \(t_1', t_2' \). Here, \(g(s_1', s_2') \) is confluent by the induction hypothesis and \(r_1 \rightarrow^{*} g(s_1', s_2') \). Thus, \(s \downarrow g(t_1', t_2') \) by Lemma 11(2). (See Figure 1(iii).) If \(\gamma_2 \) has an \(\varepsilon \)-reduction then \(\gamma_2 : r = e_i(r_1) \rightarrow^{*} e_i(g(t_1', t_2')) \rightarrow^{*} g(t_1', t_2') \rightarrow^{*} g(t_1, t_2) \rightarrow^{*} t \) holds for some terms \(t_1', t_2', t_1, t_2, t_1', t_2 \). There exists a term \(s' \) such that \(s \rightarrow^{*} s' \rightarrow^{*} e_i(g(t_1', t_2')) \) as shown in Figure 1(iii).

Here, root\((s') = g \) by root\((s) = g \). By the induction hypothesis and \(r_1 \rightarrow^{*} g(t_1', t_2'), g(t_1', t_2') \) is confluent. Thus, \(s' \downarrow t \) by Lemma 11(ii). (See Figure 1(iv).) \(\square \)

4.2 Reachability for confluent monadic and semi-constructor TRSs

Lemma 13 For any \(\gamma : s \rightarrow^{*} R_P t \), if \(s \) has 1 as its subterm then so does \(t \).

Proof. Since for any \(\alpha \rightarrow \beta \in R_P \), \(V(\alpha) = V(\beta) \) and if \(\alpha \) has 1 as its subterm then so does \(\beta \). \(\square \)

Lemma 14 \(0 \rightarrow^{*} R_P g(s, s) \) iff \(0 \rightarrow^{*} R_P g(s, s) \).

Proof. Only if part: Let \(\gamma : 0 \rightarrow^{*} R_P g(s, s) \). We assume to the contrary that \(\gamma \) must have \(R_P \) \(R_P \) reduction, i.e., \(\gamma : 0 \rightarrow^{*} R_P g(s, s) \) for some \(s, t \). By the definition of \(R_P \), \(t \) has 1 as its subterm. By Lemma 13, \(g(s, s) \) has 1 as its subterm, a contradiction. If part: By \(R_P \subseteq R_P \).

By Lemmata 2, 12, and 14, the following theorem holds.

Theorem 15 Reachability for confluent monadic and semi-constructor TRSs is undecidable.
5 Undecidability of confluence of monadic and semi-constructor TRSs

We show that confluence of monadic and semi-constructor TRSs is undecidable.

Let $F' = F_0' \cup F_1'$ where $F_0' = \{2\}$, $F_1' = \{h\}$.

$$R = \{h(a) \rightarrow h(0), h(g(s, s)) \rightarrow 2\}$$

$\hat{R}_P \cup R$ is monadic. Here, $D_R = \{h\}$, so $\hat{R}_P \cup R$ is semi-constructor.

Lemma 16 For any s with root(s) $\in F'$, the following properties hold.

1. If $s \rightarrow^{*}_{\hat{R}_P \cup R} t$ then root(t) $\in F'$.
2. If $0 \rightarrow^{*}_{\hat{R}_P} g(s, s)$ then $s \rightarrow^{*}_{\hat{R}_P \cup R} 2$.

The proof is straightforward, so omitted.

Lemma 17 Let $s \rightarrow^{*}_{\hat{R}_P \cup R} t$, $\text{Min}(O_F(s)) = \{p_1, \ldots, p_m\}$, and $\text{Min}(O_F(t)) = \{q_1, \ldots, q_n\}$. Then, $s[2, \ldots, 2]_{\{p_1, \ldots, p_m\}} \rightarrow^{*}_{\hat{R}_P} t[2, \ldots, 2]_{\{q_1, \ldots, q_n\}}$ or $s[2, \ldots, 2]_{\{p_1, \ldots, p_m\}} = t[2, \ldots, 2]_{\{q_1, \ldots, q_n\}}$.

Proof. Let $s \rightarrow^{*}_{\hat{R}_P \cup R} t$. If there exists $i \in \{1, \ldots, m\}$ such that $p_i \leq p$ then $s[2, \ldots, 2]_{\{p_1, \ldots, p_m\}} = t[2, \ldots, 2]_{\{q_1, \ldots, q_n\}}$ by Lemma 16(1).

By contradiction, otherwise, obviously $s \rightarrow^{*}_{\hat{R}_P} t$. Since every function symbol in F' does not occur in \hat{R}_P, $s[2, \ldots, 2]_{\{p_1, \ldots, p_m\}} \rightarrow^{*}_{\hat{R}_P} t[2, \ldots, 2]_{\{q_1, \ldots, q_n\}}$. \square

Lemma 18 $\hat{R}_P \cup R$ is confluent iff $0 \rightarrow^{*}_{\hat{R}_P} g(s, s)$.

Proof. Only if part: By $\text{h(0)} \rightarrow^{*}_{\hat{R}_P} \text{h(g(s, s))} \rightarrow^{*}_{\hat{R}_P} 2$, confluence ensures that $\text{h(0)} \rightarrow^{*}_{\hat{R}_P \cup R} 2$. Since 2 is a normal form, $\text{h(0)} \rightarrow^{*}_{\hat{R}_P \cup R} 2$. Thus, there exists a shortest sequence γ that satisfies $\gamma : \text{h(0)} \rightarrow^{*}_{\hat{R}_P \cup R} \text{h(g(s, s))} \rightarrow^{*}_{\hat{R}_P} 2$. Since γ is shortest, $\text{h(0)} \rightarrow^{*}_{\hat{R}_P \cup R} \text{h(g(s, s))}$. Thus, there exists $\gamma' : 0 \rightarrow^{*}_{\hat{R}_P \cup R} \text{g(s, s)}$. Obviously, every function symbol occurring in γ' belongs to \hat{P}. Thus, $0 \rightarrow^{*}_{\hat{R}_P} \text{g(s, s)}$.

By Lemma 14, $0 \rightarrow^{*}_{\hat{R}_P} \text{g(s, s)}$ and $\text{h(0)} \rightarrow^{*}_{\hat{R}_P \cup R} 2$. By Lemma 17, $s[2, \ldots, 2]_{\{p_1, \ldots, p_m\}} \rightarrow^{*}_{\hat{R}_P} t[2, \ldots, 2]_{\{q_1, \ldots, q_n\}}$, where $\text{Min}(O_F(r)) = \{o_1, \ldots, o_i\}$, $\text{Min}(O_F(s)) = \{p_1, \ldots, p_m\}$, and $\text{Min}(O_F(t)) = \{q_1, \ldots, q_n\}$. Since $\hat{R}_P \cup R$ is confluent by Lemma 12, $s[2, \ldots, 2]_{\{p_1, \ldots, p_m\}} \rightarrow^{*}_{\hat{R}_P} t[2, \ldots, 2]_{\{q_1, \ldots, q_n\}}$. By $0 \rightarrow^{*}_{\hat{R}_P} \text{g(s, s)}$ and Lemma 16(2), $s \rightarrow^{*}_{\hat{R}_P \cup R} s[2, \ldots, 2]_{\{p_1, \ldots, p_m\}}$ and $t \rightarrow^{*}_{\hat{R}_P \cup R} t[2, \ldots, 2]_{\{q_1, \ldots, q_n\}}$. Thus, $s \rightarrow^{*}_{\hat{R}_P \cup R} t$. \square

By Lemmata 2 and 18, the following theorem holds.

Theorem 19 Confluence of monadic and semi-constructor TRSs is undecidable.

6 Confluence of flat TRSs

In [2], the undecidability of confluence of flat TRSs has been claimed, but we found that the proof is incorrect. In this section, we explain its flaw.

Definition 20 [2] A rule $\alpha \rightarrow \beta$ is flat if height(α) ≤ 1 and height(β) ≤ 1.

In [2], first the undecidability of reachability has been obtained by showing that $0 \rightarrow^{*}_{R_r} 1$ iff there
exists a solution for PCP for the following TRS \(R_1 \).

\[R_1 = R_0 \cup \{ 0 \to f(q_1^{(2)}, q_1^{(4)}, q_3^{(13)}, q_3^{(14)}, q_3^{(14)}, q_3^{(15)}) \} \]

Here, \(R_0 \) has many rules, so omitted (see [2], p.267).

Next, the undecidability of confluence has been obtained by showing the claim that \(R_1 \cup R_0 \) is confluent iff \(0 \to \overline{1} \) for the following TRS \(R_2 \).

\[R_2 = \{ 2 \to 0, 2 \to 1 \} \cup \{ c \to 0 \mid c \in \Xi_0 \setminus \{0,1\} \} \]

\[\cup \{ d(x) \to 0, d(1) \to 1 \mid d \in \Xi_1 \} \]

\[\cup \{ f(z_1, \cdots, z_8) \to 1, g(z_1, \cdots, z_8) \to 1 \mid \]

one of the \(z_i \) is 1,

the others are distinct variables\}

Here, \(\Xi = \Xi_0 \cup \Xi_1 \cup \{f, g\} \), which is a set of function symbols occurring in \(R_1 \). \(\Xi_0, \Xi_1 \) have many symbols, so omitted (see [2], p.267). Note that \(\Xi_0 \) has \(q_1^{(3)}, q_1^{(4)}, q_1^{(5)}, q_1^{(6)}, q_1^{(13)}, q_1^{(14)}, q_1^{(15)}, q_1^{(16)} \).

However, the proof of the only-if part of the claim is incorrect. The proof claims that if \(0 \to \overline{1} \) does not hold then \(R_1 \cup R_2 \) is not confluent because of the peak \(0 \leftarrow R_3 1 \) \(2 \to R_3 1 \). But, the claim overlooks that \(0 \to R_3 \)

\[f(q_1^{(3)}, q_1^{(4)}, q_1^{(5)}, q_1^{(6)}, q_1^{(13)}, q_1^{(14)}, q_1^{(15)}, q_1^{(16)}) \to R_3 \]

\[f(0,0,0,0,0,0,0,0) \to R_3 g(0,0,0,0,0,0,0,0) \to R_3 1 \]

Thus, the undecidability of confluence of flat TRSs has not been shown. Now, Jacquemard claims that the proof can be corrected.

Acknowledgements

This work was supported in part by Grant-in-Aid for Scientific Research 1550009 from Japan Society for the Promotion of Science.

References

