A Hierarchy of Tree Edit Distance Measures

Tetsuji Kuboyama 2kilho.shin@mece.ri.c.u-tokyo.ac.jp
Kilho Shin kilho.shin@mece.ri.c.u-tokyo.ac.jp
Tetsuhiro Miyahara tetsuhiro@mece.ri.c.u-tokyo.ac.jp

1. Introduction

The tree edit distance was introduced in [1, 2] as a natural generalization of string edit distance [3, 4]. The methods of comparing and matching tree structures, using tree edit distance, enjoy a wide range of applications in computational biology [5, 6, 7], image analysis [8], pattern recognition [9], natural language processing [10], information extraction from Web pages [11], and many others.

The tree edit distance between two trees is defined as the minimum cost of edit operations to transform one tree into the other. The standard set of operations includes: (1) relabeling a node \(v \); (2) deleting a node \(v \) (and contracting the edge between \(v \) and its parent); (3) inserting a new node \(u \) under a node \(w \) (and moving a consecutive \(w \)'s children and all their descendants under \(u \)).

Edit distance measures for trees have, in general, two aspects in giving the definitions: a sequence of operations, and an edit mapping. An edit mapping is a collection of node-to-node correspondences between two trees. The conditions of edit mappings specify the matching semantics in finding the similarities between two trees, and give declarative definitions of edit distance measures. In prior work, a hierarchy among the classes of edit mappings is established [12, 13]. However, a few conditions of edit mappings were misstated, and not well-defined.

In this paper, we give a new mathematical formulation for tree edit distance to elucidate the relationships among tree edit distance measures. By the formulation, we focus on the definitions of edit mappings, and rectify existing misstatements and redundancies with respect to tree edit distance. Moreover, we prove the equivalence between alignment of trees [14] and less-constrained edit distance [15].

The rest of this paper is organized as follows: the next section describes tree edit distance in an operational way, followed by our new formulation of tree edit distance to give a declarative semantic in Section 3. In Section 4, we formulate five types of tree edit distance measures based on our formulation. In Section 5, we establish a new hierarchical view of tree edit distance measures, which includes our main theorem, the equivalence between alignment of trees and less-constrained edit distance.

2. Tree Edit Distance

Unless otherwise stated, all trees we consider in this paper are rooted, labeled, and unordered trees.

2.1 Operational Definition

The tree edit distance between two trees is defined as the minimum cost of elementary edit operations to transform one tree into the other. In transforming one tree to the other, some elementary edit operations are introduced [1, 2].

Let \(\alpha \) be a labeling function which assigns a label from a set \(\Sigma = \{a, b, c, \ldots \} \) to each node. Let \(\lambda \) denote the unique null symbol not in \(\Sigma \).

Definition 1. An edit operation on a tree \(T \) is any of the following three operations:

- deletion of a non-root node \(v \in V \) from \(T \), moving all children of \(v \) right under the parent of \(v \); denoted by \(\alpha(v) \rightarrow \lambda \),
- insertion of a new node \(w \in V \) as a child of a node \(v \); moving a consecutive subsequence of \(w \)'s children (and their descendants) right under the new node \(v \); note that this operation is the reverse of deletion; denoted by \(\lambda \rightarrow \alpha(v) \),
- relabeling of the label of a node \(v \in V \) with the label of a new node \(w \); denoted by \(\alpha(v) \rightarrow \alpha(w) \).
These operations are used to transform a tree T_1 to a tree T_2. Note that all the operations are applied to only T_1. Let S be a sequence of edit operations to transform T_1 to T_2. Let γ be a cost function of edit operations. γ is defined to be a distance metric as follows: for $a,b,c \in \Sigma \cup \{\lambda\}$, (i) $\gamma(a \rightarrow b) \geq 0$; (ii) $\gamma(a \rightarrow b) = \gamma(b \rightarrow c)$; and (iii) $\gamma(a \rightarrow c) \leq \gamma(a \rightarrow b) + \gamma(b \rightarrow c)$. The cost function γ for edit operations is generalized for sequences S of edit operations by letting $\gamma(S) = \Sigma_{s \in S} \gamma(s)$.

The edit distance between T_1 and T_2 is defined [1] as

$$D(T_1, T_2) = \min_{S} \{ \gamma(S) \}.$$

2.2 Edit Mappings

The effect of a sequence of edit operations is reduced to a structure called edit mapping [1], which is comparable to trace [3] in string edit distance. An edit mapping depicts node-to-node correspondences between two trees according to the structural similarity, or shows how nodes in one tree are preserved after transformed to the other.

Definition 2. An edit mapping from a tree T_1 to a tree T_2 is a set $M \subseteq V(T_1) \times V(T_2)$ such that, for all $(x_1, x_2), (y_1, y_2) \in M$, $x_1 = y_1 \Leftrightarrow x_2 = y_2$.

Note that this definition does not require M to preserve ancestor-descendant relation. For simplicity, we refer to the edit mapping as the mapping. The edit mapping provides a qualitative view of edit distance. Let M be a base mapping. The mapping cost of M is defined as

$$\gamma(M) = \sum_{(v_1, v_2) \in M} \gamma(\alpha(v_1) \rightarrow \alpha(v_2)) + \sum_{v_1 \in V(T_1)} \gamma(\alpha(v) \rightarrow \lambda) + \sum_{v_2 \in V(T_2)} \gamma(\lambda \rightarrow \alpha(v_2)).$$

The following theorem is due to Tai [1].

Theorem 1 ([1]). Let S be a sequence of edit operations to transform T_1 to T_2, and M a mapping from T_1 to T_2.

$$D(T_1, T_2) = \min_{S} \{ \gamma(S) \} = \min_{M} \{ \gamma(M) \}.$$

This theorem plays the role of a bridge between an operational definition and a declarative definition for the edit distance. For example, Fig. 1 shows an edit mapping.

The rest of this subsection we show a number of existing tree edit distance measures by their mapping conditions.

2.2.1 Standard Mapping: S

This mapping characterizes the standard edit distance by Zhang et al. [16].

Definition 3. A mapping M is standard if the following condition holds:

$$(S) \forall(x_1, x_2), (y_1, y_2) \in M \exists(x_1 < x_2 \Leftrightarrow y_1 < y_2).$$

Computing the edit distance based on the genealogical mapping is known to be NP-complete [16], even for binary trees having a label alphabet of size two.

2.2.2 Top-Down Mapping: TD

This mapping characterizes the edit distance in which insertion and deletion operations are applied only to leaves. The top-down mapping originated in Sekow [17], and Yang [18] gave an algorithm of computing an edit distance based on the top-down mapping for ordered trees. Our definition is slightly different from the definition in [12] since it is not well-defined.

Definition 4. A mapping $M = M(T_1, T_2)$ is top-down if the following condition holds:

$$(TD) M \neq \emptyset \Rightarrow \exists(r(T_1), r(T_2)) \in M \wedge ((x_1, x_2) \in M \wedge x_1 \neq r(T_1) \wedge x_2 \neq r(T_2) \Rightarrow (p(x_1), p(x_2)) \in M]).$$

2.2.3 Constrained Mapping: C

The constrained mapping was introduced by Zhang et al. to circumvent the negative results that computing the edit distance for unordered labeled trees is NP-complete [16] (in fact MAX SNP-hard [19]).

Definition 5 (Zhang [20]). A mapping M is constrained if the following condition holds:

$$(C) \forall(x_1, x_2), (y_1, y_2), (z_1, z_2) \in M \Rightarrow [x_1 < x_1 \vdash y_1 \Rightarrow z_1 < z_2 \vdash y_2].$$

2.2.4 Structure-Respecting Mapping: SR

This mapping was introduced by Richter [21] to deal with syntactic trees.

Definition 6 (Richter [21]). A mapping M is structure-respecting if the following condition holds:

$$(SR) \forall(x_1, x_2), (y_1, y_2), (z_1, z_2) \in M, \exists a \in V(T_2) \text{ any of } x_1, y_1, z_1 \text{ is not an ancestor of any of the others,}$$

$$[x_1 \vdash y_1 = x_2 \vdash y_2 = z_2 \vdash z_2].$$

The following proposition asserts that M being constrained is equivalent with M being structure-respecting, which was stated in Lu et. al [15] without proof.

Proposition 2. For a mapping M, the following are equivalent:

1. M is standard and satisfies the following: (SR') $\forall(x_1, x_2), (y_1, y_2), (z_1, z_2) \in M \Rightarrow [\text{any of } x_1, y_1, z_1 \text{ is not an ancestor of any of the others,}$$}
$x_1 \sim y_1 < x_1 \sim z_1 \Leftrightarrow$
any of x_2, y_2, z_2 is not an ancestor of any of the others,
$x_2 \sim y_2 < x_3 \sim z_2$.

2. M is structure-respecting, and

3. M is constrained.

Proof. (1)⇒(2): We prove the contraposition of (SR). If $x_2 \sim y_2 \neq x_2 \sim z_2$, we may assume $x_2 \sim y_2 < x_2 \sim z_2$ since $x_2 \sim y_2$ and $x_2 \sim z_2$ are comparable. $x_1 \sim y_1 < x_1 \sim z_1$ immediately follows by (SR'). (2)⇒(3): Assume that $z_1 < x_1 \sim y_1$. If x_2 and $x_2 \sim y_2$ are comparable, $z_2 < x_2 \sim y_2$ holds by (S) (if $x_2 \geq x_2 \sim y_2$, then $z_1 \geq y_1$ and $z_1 \geq y_2$ by (S), which contradicts the assumption $z_1 < x_1 \sim y_1$). (i) If any two of x_1, y_1, z_1 are comparable, i.e. z_1 is comparable with x_1 or y_1 (if $x_1 \leq y_1$, then $z_1 < x_1 \sim y_1 = y_1$), x_2 and $x_2 \sim y_2$ are comparable by (S). (ii) Suppose that any of x_1, y_1, z_1 is not an ancestor of any of the others. Since we may assume that $x_1 \sim y_1 = x_1 \sim z_1$ without loss of generality, $x_2 \sim z_2 = x_2 \sim y_2$ holds by (SR). Therefore, x_2 and $x_2 \sim y_2$ are comparable, too. (3)⇒(1): Assume that $x_1 \sim y_1 < x_1 \sim z_1$ and any of x_1, y_1, z_1 is not an ancestor of any of the others. By (S), we have any of x_2, y_2, z_2 is not an ancestor of any of the others. We have $x_2 \geq x_2 \sim y_2$, since $x_1 \leq z_1$ follows $x_2 = x_2 \sim y_2$ by (S) and $z_1 < x_1 \sim y_1$ does $z_2 < x_2 \sim y_2$ by (C). Therefore, $x_2 \sim y_2 < x_2 \sim z_2$ holds.

3. Theoretical Foundation for Tree Edit Distance

In this section, we give a new formulation of tree edit distance.

3.1 Rooted Trees

Definition 7. A rooted tree $T = (V, \leq)$ is a nonempty, finite, and partially ordered set with the maximum element $r(T) \in V$ called the root, and such that $\{w \in V | w \leq w\}$ is a totally ordered subset of V for every $v \in V$.

We call the elements of V the nodes of T, and denote the set of all nodes in T by $V(T)$. We let $E(T) = \{(x, y) \in V(T) \times V(T) | x < y \}$ and $E^* \in E(T)|x < y \}$. The element of $E(T)$ is called an edge of T. A node y such that $x \leq y$ is an ancestor of x. If $x \leq y$ and $x \neq y$, then y is a proper ancestor of x, denoted by $x < y$. The parent of node x is the minimum node of proper ancestors of x, denoted by $p(\{x\})$. A leaf of a tree T is a minimal node in T. The size of a tree T is the number of nodes in T, denoted by $|T|$.

Definition 8. For an arbitrary rooted tree $T = (V, \leq)$, a common ancestor of $U \subseteq V$ is an element $x \in V$, if exists, such that for all $y \in U, y \leq x$. A common ancestor x of U is the least common ancestor of U if, for any common ancestor y of $U, x \leq y$ holds. We denote the least common ancestor of U by lca U, and lca $\{x, y\}$ by $x \sim y$.

Lemma 3. The following properties hold in terms of the least common ancestor:

1. $x \sim y = x$,
2. $x \sim y = y \sim z$,
3. $(x \sim y) \sim z = x \sim (y \sim z)$,
4. $x \leq y \Rightarrow x \sim y = y$,
5. $x \sim y < x \sim z \Rightarrow y \sim z = x \sim z$, and
6. $x \sim y = x \sim z \Rightarrow y \sim z \leq x \sim y$.

Corollary 4. For any three nodes x, y, z, either of the following properties holds:

1. $x \sim y < x \sim z$ and $x \sim y = y \sim z$,
2. $x \sim y = x \sim z$ and $y \sim z \leq x \sim z$,
3. $x \sim y > x \sim z$ and $x \sim y = y \sim z$.

Proof. It follows straightforwardly from Lemma 3-(5), and (6).

3.2 Tree Homomorphism and Isomorphism

Definition 9. Let T_1 and T_2 be two trees. A homomorphism from T_1 to T_2 is a mapping ϕ from $V(T_1)$ to $V(T_2)$ such that

1. $\phi(r(T_1)) = r(T_2)$, and
2. $x < y \Rightarrow \phi(x) \leq \phi(y)$.

We refer to $\phi : V(T_1) \rightarrow V(T_2)$ as $\phi : T_1 \rightarrow T_2$ if there is no confusing.

Proposition 5. The composition of homomorphisms is a homomorphism.

Definition 10. Let T_1 and T_2 be two trees. An isomorphism from T_1 to T_2 is a bijection ϕ from $V(T_1)$ to $V(T_2)$ such that

$(x, y) \in E(T_1) \Leftrightarrow (\phi(x), \phi(y)) \in E(T_2)$.

Proposition 6. Every isomorphism is also a homomorphism.

Proposition 7. Let T_1 and T_2 be two trees. Suppose that ϕ is a bijection from T_1 to T_2, then the following conditions are equivalent:

1. ϕ is an isomorphism, and
2. $\phi(x) < \phi(y) \Rightarrow x < y$.

Proposition 8. A mapping ϕ from a tree T to T is an isomorphism if and only if ϕ is an identity mapping on $V(T_1)$.

3.3 Embedding and Insertion

We first define an embedding, which is regarded as consecutive insertions of nodes into a tree.

3.3.1 Embedding

Definition 11. Let T_1 and T_2 be two trees. An embedding ϕ from T_1 to T_2 is an injection from $V(T_1)$ to $V(T_2)$ such that

1. ϕ is a homomorphism, and
2. $\phi(x) < \phi(y) \Rightarrow x < y$.

We define $\text{red}(\phi) = |V(T_2) \setminus \phi(V(T_1))|$ as the redundancy of the embedding ϕ from T_1 to T_2.
Proposition 9. Suppose that \(\phi \) is a mapping from a tree \(T_1 \) to a tree \(T_2 \), and \(\psi \) be an embedding from \(T_3 \) to a tree \(T_3 \), then the following conditions hold:

1. if \(\phi \) is an embedding, \(\psi \circ \phi \) is also an embedding, and
2. if \(\psi \circ \phi \) is an embedding, \(\phi \) is also an embedding.

In both cases, \(\text{red}(\psi \circ \phi) = \text{red}(\phi) + \text{red}(\psi) \).

3.3.2 Insertion

Now, we are ready to give a declarative definition of the insertion operation.

Definition 12. Let \(T_1 \) and \(T_2 \) be two trees, and \(v \) a node in \(T_2 \). An embedding \(\phi \) from \(T_1 \) to \(T_2 \) is an insertion of \(v \) into \(T_1 \) if \(\phi(V(T_1)) = V(T_2) \setminus \{v\} \).

Proposition 10. Let \(\phi \) be an embedding from a tree \(T_1 \) to a tree \(T_2 \), and \(\phi \) also an insertion of a node \(v \) into \(T_1 \). If \(v \) be a node in \(T_3 \) such that \(v \neq r(T_2) \), then there exists an insertion of \(v \) to \(T_1 \).

Any insertion of \(v \) is uniquely determined except that the insertion is an isomorphism. Hence, by \(\psi_{v} \), we denote the insertion of \(v \).

The following theorem proves that Definition 12 of the insertion is equivalent to the operational definition of the insertion.

Theorem 11. Let \(\phi \) be an embedding from \(T_1 \) to \(T_2 \) with \(V(T_1) \setminus \phi(V(T_1)) = \{v_1, \ldots, v_n\} \). There exist a sequence of trees \(S_0, S_1, \ldots, S_n \), and insertions \(\phi_i : S_i \rightarrow S_i - 1 \) \((i \in \{1, \ldots, n\})\) such that

1. \(S_0 = T_1 \),
2. \(S_n = T_2 \),
3. \(\phi_1 \circ \cdots \circ \phi_n(V(S_i)) = V(T_2) \setminus \{v_1, \ldots, v_i\} \), and
4. \(\phi = \phi_n \circ \cdots \circ \phi_1 \).

\[S_n \xrightarrow{\phi_n} S_{n-1} \xrightarrow{\phi_{n-1}} \cdots \xrightarrow{\phi_2} S_1 \xrightarrow{\phi_1} S_0 \]

\[T_1 \xrightarrow{\phi} T_2 \]

3.4 Degeneration and Deletion

We define a degeneration, which is regarded as consecutive deletions of nodes from a tree.

3.4.1 Degeneration

Definition 13. Let \(T_1 \) and \(T_2 \) be two trees. A degeneration \(\phi \) from \(T_1 \) to \(T_2 \) is a surjection from \(V(T_1) \) to \(V(T_2) \) such that

1. \(\phi(x) = \phi(y) \Rightarrow \phi(x - y) = \phi(x) = \phi(y) \), and
2. \(\phi(x) < \phi(y) \Rightarrow \exists y'[\phi(x) = \phi(y') \wedge x < y'] \).

We define \(\text{Dup}(\phi) = \{x \in V(T_1)|\phi(x) = \phi(p(x))\} \) as the duplication of the degeneration \(\phi \) from \(T_1 \) to \(T_2 \).

Proposition 12. Let \(T_1 \) and \(T_2 \) be two trees, and \(\phi \) be a degeneration from \(T_1 \) to \(T_2 \). There exists a unique embedding \(\psi \) from \(T_2 \) to \(T_1 \) such that \(\phi \circ \psi \) is the identity mapping on \(V(T_1) \), and \(\psi \circ \phi \) is the identity mapping on \(V(T_2) \) \(\cup \text{Dup}(\phi) \).

We denote the degeneration corresponding to an embedding \(\phi \) denoted by \(\phi \).

3.4.2 Deletion

Definition 14. Let \(T_1 \) and \(T_2 \) be two trees, and \(v \) a node in \(T_2 \). A degeneration \(\phi \) from \(T_1 \) to \(T_2 \) is a deletion of \(v \) from \(T_1 \) if \(\text{Dup}(\phi) = \{v\} \).

Theorem 13. Let \(\phi \) be a degeneration from \(T_1 \) to \(T_2 \) with \(\text{Dup}(\phi) = \{v_1, \ldots, v_n\} \). There exist a sequence of trees \(S_0, S_1, \ldots, S_n \), and deletions \(\phi_i : S_i \rightarrow S_i - 1 \) \((i \in \{1, \ldots, n\})\) such that

1. \(S_0 = T_1 \),
2. \(S_n = T_2 \),
3. \(\text{Dup}([v_1, \ldots, v_i]) \), and
4. \(\phi = \phi_n \circ \cdots \circ \phi_1 \).

\[S_0 \xrightarrow{\text{Del}_0} S_1 \xrightarrow{\text{Del}_1} \cdots \xrightarrow{\text{Del}_{n-2}} S_{n-1} \xrightarrow{\text{Del}_{n-1}} S_n \]

\[T_1 \xrightarrow{\phi} T_2 \]

4. Characterization of Edit Distance Measures

In this section, we consider the edit mapping conditions for unordered trees, and introduce a few of new edit mapping conditions to investigate the relationship among known classes of edit mappings. Due to space limitation, most of the proofs are omitted.

For an edit mapping \(M \) from \(T_1 \) to \(T_2 \), we define:

\[V_M(T_1) = \{x \in V(T_1)|x \notin V(T_2) \text{ s.t. } (x, y) \in M\} \]

\[V_M(T_2) = \{y \in V(T_2)|y \notin V(T_1) \text{ s.t. } (x, y) \in M\} \]

\[V_M(T_1) = V(T_1) \setminus V_M(T_1) \]

\[V_M(T_2) = V(T_2) \setminus V_M(T_2) \]

4.1 Alignable Mapping: \(\mathcal{A} \)

The alignment of trees was introduced by Jiang et al. [14], and efficient algorithm for similar trees were proposed for ordered trees [22] and unordered trees [23]. The definition of the alignment has been given in an operational way [14, 12, 13].

We give a new definition of alignment of trees.

Definition 15. A mapping \(M \) from \(T_1 \) to \(T_2 \) is \textit{alignable} if and only if there exists a triplet \((U, \psi, \phi)\) such as

1. \(\phi : T_1 \rightarrow U \) is an embedding,
2. \(\psi : T_2 \rightarrow U \) is an embedding, and
3. \(\forall \langle x, y \rangle \in M(\phi(x) = \psi(y)) \).

Figure 2 illustrates an example of an alignable mapping.

Lemma 14. Suppose that \(T_1 \) and \(T_2 \) are two trees, and \(M \subseteq V(T_1) \times V(T_2) \) is an alignable mapping \((U, \psi, \phi)\), then the following condition holds:

\[M = \{(x, \psi(\phi(x)))|x \in V_M(T_1)\} \]
4.4 Triangular Mapping: T

We introduce the triangular mapping as follows.

Definition 18. A mapping M is triangular if the following condition holds:

(T) $\forall(x_1, x_2), (y_1, y_2), (z_1, z_2) \in M$
$$[x_1 \sim y_1 \equiv x_2 \sim y_2 \equiv x_2 \sim z_2].$$

4.5 Quasi-Triangular Mapping: QT

This mapping is obtained by relaxing the condition of the triangular mapping.

Definition 19. A mapping M is quasi-triangular if the following condition holds:

(QT1) $\forall(x_1, x_2), (y_1, y_2), (z_1, z_2) \in M$
$$[x_1 \sim y_1 < x_2 \sim z_1 \Rightarrow x_2 \sim y_2 = x_2 \sim z_2],$$

(QT2) $\forall(x_1, x_2), (y_1, y_2), (z_1, z_2) \in M$
$$[x_2 \sim y_2 < x_2 \sim z_2 \Rightarrow x_1 \sim y_1 = x_1 \sim z_1].$$

5. Hierarchy of the Mapping Classes

Proposition 18. If the condition of the triangular mapping holds, then that of the constrained mapping also holds, and not vice versa.

Proof. From the premise $z_1 < x_1 \sim y_1$, we may assume, without loss of generality, $x_1 \sim x_2 = x_1 \sim z_1$. Hence, we have $z_1 < x_2 \sim z_2$. By $x_1 \sim y_1$ and the condition (T), we have $z_2 < x_2 \sim x_2 \sim z_2$. It follows that $z_2 < x_2 \sim z_2$. Moreover, by the condition (S), which is equivalent to the condition (T), we have $x_2 \sim z_2 = x_2 \sim y_2$. Therefore, $z_2 < x_2 \sim y_2$. □

Lemma 19. The constrained mapping implies the ancestor-descendant relation.

Proof. According to the condition (C), for all $(x_1, x_2), (y_1, y_2) \in M$, $x_1 < y_1 \sim y_1 \equiv x_2 < y_2 \sim y_2$. Hence, we immediately have $x_1 < y_1 \equiv x_2 < y_2$. □

Proposition 20. A mapping M is confucianistic if and only if M is genealogical and quasi-triangular, and the following conditions hold:

1. $\forall(x_1, x_2), (y_1, y_2), (z_1, z_2) \in M$
 $$[x_1 \sim y_1 = y_1 \sim z_1 \sim x_1 \not\in \{x_1, y_1, z_1\} \Rightarrow x_2 \sim y_2 = y_2 \sim z_2 = z_2 \sim x_2].$$

2. $\forall(x_1, x_2), (y_1, y_2), (z_1, z_2) \in M$
 $$[x_2 \sim y_2 = y_2 \sim z_2 = z_2 \sim x_2 \not\in \{x_2, y_2, z_2\} \Rightarrow x_1 \sim y_1 = y_1 \sim z_1 = z_1 \sim x_1].$$

Theorem 21. The condition of the alignable mapping is equivalent to that of the less-constrained mapping.

The following hierarchy of the mapping classes is established.

Theorem 22.

1. $TD \subset T \subset SR = C \subset A = L = (QT \cap S) \subset S$

2. $CF \subset A$

Figure 3 shows that the hierarchy of tree edit distance measures.
6. Conclusion

In this paper, we introduced a new theoretical formulation of tree edit distance, and investigated the relationship among the classes of tree edit distance. We then rectified some misattribution and redundancies in prior work, and established a new hierarchy among the edit mapping conditions. Moreover, we showed that the mapping condition for alignment of trees is identical to that for a variant of edit distance, called less-constrained edit distance.

References