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セルオートマトンの近傍系の代数的構造
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1 Introduction
A cellular automaton (CA for short) is a uniformly structured information processing system
consisting of many identical finite state machines (cells) which are located at points of a discrete
regular space. The essence of CA is that the global behavior of the whole system is determined
locally : the state transition of every cell depends only on the states of its neighboring cells.
The rule to specify the neighboring cells is called the neighborhood (index) of CA and common
to every cell. The most famous neighborhood is von Neumann of size 5 defined for the 2-
dimensional rectangular grid $\mathbb{Z}^{2}$ . To investigate the nature of neighborhoods generally, we
began an algebraic theory of neighborhoods [5] $[6][7]$ . In this paper, after giving preliminaries
and results obtained thus far, we report recent progress of our research especially for the space
$\mathbb{Z}^{2}$ or $\mathbb{Z}^{d}$ , including decidability results and problems for future research.

2 Preliminaries
A CA is defined by a4 tuple $(5, N, Q, f)$ , where $S$ is the cellular space, at each point of which
the same cell is located. The structue of a cellular space is uniform and typically represented
by a Cayley graph of a finitely generated group as discussed below.

N is the neighborhood (index) which consists of a finite number of neighborhood indices. The
same neighborhood is applied to every point of S.
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The set of states Q is a finite set of symbols. The local map f : $Q^{N}arrow Q$ gives a local state
transition function, which is common to every cell

The global dynamics of CA is defined as the global map F:C $arrow C$ , where elements of C $=Q^{S}$

are called global configurations. F is uniquely induced from f by

$F\langle c$) $(x)=f(c(xn_{1}),c(xn_{2})$ , \cdots , $c(xn_{s}))$ ,

for any c $\in C$ and x $\in S$ . When starting kom a configuration c, the behavior (trajectory) is
given by $F^{t+1}(c)=F(F^{t}(c))$ , for any c $\in C$ and t $\geq 0$ , where $F^{0}(c)=c$.

2.1 Cellular space S and neighbors relative to $S$

2.1.1 Space

The cellular space $S$ is assumed to be represented by a Cayley graph such that $S=(G|R\rangle$ ,
where $G=\{g1, g2, \ldots, g_{\mathrm{r}}\}$ is a finite set of generators (symbols) and $R$ is a finite set of relations
(equalities) of words over $G$ and $G^{-1}$ , where $G^{-1}=\{g^{-1}|g\in G\}$ , $g\cdot$ $g^{-1}=1$ and 1 is the
empty word or the identity if $S$ happens to be a (semi)group.

R $=\{w_{i}=w_{\mathrm{t}}’|w_{t\gamma}w_{\dot{l}}’\in(G\cup G^{-1})^{*},\mathrm{i}=1,$
\ldots , n} (1)

Every element (point) of $S$ is represented as a word $x\in(G\cup G^{-1})^{*}$ . For $x,y\in S$ , if $y=xg$ ,
where $g\in G\cup G^{-1}$ , then an edge labelled by $g$ is drawn from point $x$ to point $y$ (definition
of a Cayley graph). For a point $x$ of $S$ , there can be more than one words which represent $x$ ,
but such a set of words constitutes an equivalence class closed under the group operation and
therefore we are allowed to take any word as its representative. Particularly, in this paper we
assume an uncancellable word, where no occurrences of subwords of the form $gg^{-1}$ appear, see
[1].

2.1.2 Neighborhood and neighbors

Let a space S $=\langle G$ |R) be given. A neighborhood (index) for S is expressed by

N $=\{n_{1},n_{2},$
\ldots ,

$n_{\mathit{8}}\}\subset(G\cup G^{-1})^{*}$ (2)

Now we recursively define the neighbors of CA as follows.

(1) Let p $\in S$ , then the 1-neighbors of P, denoted as $pN^{1}$ , is the set

$pN^{1}=\{pn_{1},pn_{2},$
\ldots ,

$pn_{S}\}$ . (3)

(2) The $(m+1)$ -neighbors of p, denoted as $pN^{m+1}$ , are given as

$pN^{m+1}=pN^{m}$ . N, m $\geq 0$ , (4)

where $pN^{0}=\{p\}$ .

Note that the computation of pn: has to comply with the relations R defining S $=\langle G|R\rangle$ .

We may say that the information contained in the cells of $pN^{m}$ reaches the cell $p$ after $m$

time steps. In the sequel, without loss of generality, we principally treat the m-neighbors $1N^{m}$

( $N^{m}$ in short) of the origin 1 of $S$ . The cardinality of $N^{m}$ , denoted as $\# N^{m}$ , is called the
neighborhood size.
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(3) $\infty$ -neighbors of p, denoted as $pN^{\infty}$ , is defined by

$pN^{\infty}=\cup m=0\infty pN^{n}$ . (5)

(4) $\infty$-neighbors of 1, denoted as $N^{\infty}$ , is called neighbors (of CA).

Then we have an algebraic result, which is proved by the fact that the procedure to generate a
subsemigroup and the above mentioned recursive definition of $N^{\infty}$ are the same. For a recursive
procedure to generate subalgebras, we refer to page 33 of [3].

Proposition 2.1
$N^{\infty}=(N$ | $R)_{sg\prime}$ (6)

where (N| $R\rangle_{sg}$ means the semigroup generated by N with relation R.

Remarks: A subalgebra $\langle$ $A\}$ generated by a set $A$ is the smallest subalgebra that contains A. $A$

is called a set of generators. For a subalgebra there can be more than one set of generators. To
avoid confusion, the group ($\mathrm{r}\mathrm{e}\mathrm{s}$ . subgroup) generated by $G(\mathrm{r}\mathrm{e}\mathrm{s}. G’)$ is denoted by $\{G|R\rangle_{g}(\mathrm{r}\mathrm{e}\mathrm{s}$.
$\langle G’|R\rangle_{sg}$ $)$ . When the defining relations are understood, we simply write as $\langle G\rangle_{g}(\mathrm{r}\mathrm{e}\mathrm{s}.\langle G’\rangle_{\epsilon g})$ .
We also use the terms of $g$ generate and $sg$-generate. A semigroup is an associative system. In
addition we assume here that the cancellation rule holds.

In the sequel, for a group $S=\langle G|R\rangle_{g}$ , a semigroup $\langle N|R\rangle_{sg}$ which is generated by words on $R$

and complies with the same defining relations $R$ is called a semigroup relative to $S$ . Obviously, it
is a subsemigroup of $S$ . In the $sg$-generation, the trivial defining relations $\{g_{i}g_{i}^{-1}=1, 1\leq \mathrm{i}\leq \mathrm{r}\}$

have been assumed though not explicitly indicated.

Here we note the following lemma, which is easily proved.

Lemma 2.1
$\langle g_{1}, g_{2}, \ldots,g_{r}|R\rangle_{g}=\langle g_{1},g_{2}, \ldots, g_{r},g_{1}^{-1}, g_{2}^{-1}, \ldots, g_{r}^{-1}|R\rangle_{sg}$ . (7)

Example:

$\mathbb{Z}^{2}=\langle a,$b| ab$=ba\rangle_{g}=\langle a, a^{-1},$b,$b^{-1}|$ab$=ba, aa^{-1}=1, bb^{-1}=1\rangle_{sg}$ (8)

2.1.3 Set of neighborhoods

For a fixed space S, we consider the set of all finite neighborhoods relative to S and denote it
as $N^{S}$ . If N $\subset N’$ , where N and $N’\in\Lambda^{\prime S}$ , N is called a subneiborhood of $N’$ .

In $N^{S}$ , we define several special subclasses of neighborhoods which will be studied later.

Definition 2.1 (Symmetric) ij N $=N^{-1}$ , then N is called a symmetric neighborhood.

Von Neumann and Moore neighborhoods are symmetric.

Definition 2.2 (One-way) ij $(N\cap N^{-1})\backslash \{1\}=\emptyset$ , then N is called a one-rnay neighborhood.

Remarks on the definition of one-way :The notion of one-way communication is clear
for l-dimensional $\mathrm{C}\mathrm{A}$, but not for higher dimensional CAs, Theorem 3.1 below shows that
in case of the one-way neighborhood $NsH$ (3-horse), any pair of cells in $\mathbb{Z}^{2}$ can communicate
with each other (the time is generally different depending on the direction). It is not true in
the case of the ordinary definition of one-way, including that of Roka [8] and Terrier [9]. The
neighborhood of a 3-horse could be said to be locally one-way but globally not. The plausibility
of this definition of one-way is left for future discussion
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Definition 2.3 (Radius r) When a metric 7 happens to be defined on S, a neighborhood
$N^{(r)}=\{n_{1}, n_{2},$

\ldots ,
$n_{s}|\gamma(1, n_{i})\leq r, 1\leq \mathrm{i}\leq s\}$ is called radius r.

Remarks on the metric :For a given 8, there are several ways to define a metric. Firstly
we can define a metric $\gamma$ by the length of words, see [4] : for any $x\in S$ , define a norm $|x|$ as
the minimal length of the word representing $x$ . By definition the length of the identity element
1 is 0. It is seen that $|x|=|x^{-1}|$ and $|xy|\leq|x|+|y|$ for any $x,y\in S$ . Then the metric by word
length is defined as $\gamma(x, y)=|xy^{-1}|$ . When using the metric by word length, von Neumann
neighborhood is radius 1 and Moore is radius 2.

For $\mathbb{Z}^{2}$ another metric $\gamma E$ called Euclidean can be defined :because of the commutativity
between generators $a$ and $b$ , any point $x$ is represented by a (shortest) unique word $x=a^{i}b^{g}$

where $\mathrm{i},j$ $\in$ Z. Then we have $\gamma_{E}(x, 1)=\sqrt{i^{2}+j^{2}}$ . In the Euclidean metric, von Neumann
neighborhood is radius 1 and Moore is radius $\sqrt{2}$ . The Euclidean metric is defined similarly for
$\mathbb{Z}^{d}$ , $d>2$ .

2.1.4 Intrinsic neighbors

Define the intrinsic $m$-neighbors, denoted as $[N^{m}]$ , as those cells that can reach the origin in
exactly $m$ steps. That is,

$[N^{m}]=N^{m}\backslash N^{m-1}$ , (9)

where $[N^{0}]=\{1\}$ . Evidently we see,

$N^{\infty}=\cup[N^{m}]m=0\infty$ . (10)

2.2 Examples of spaces and neighborhoods. Set of integers $\mathbb{Z}=$ (a $|\emptyset\rangle$ . Elementary CA has the neighborhood $\{a^{-1},1,$a}.. 2-dimensional rectangular grid: $\mathbb{Z}^{2}=\langle a,$b| ab $=ba\rangle$ .

(1) Von Neumann neighborhood $Nv=\{1, a,a^{-1}, b, b^{-1})\}$ .
(2) Moore neighborhood $N_{M}=$ { 1, $a$ , $a^{-1}$ , $b$ , $b^{-1}$ , ab, $(ab)^{-1}$ , $ba$ , $(ba\rangle^{-1}$ }.
(3) Horses (in additive group notation of $\mathbb{Z}^{2}$ )
(3-1) Horse $N_{H}=\{(\pm 2, \pm 1),$ {\"al, $\pm 2)$ } $=$

$\{(2,1), (2, -1), (-2, -1), (-2,1), (1, 2), (1, -2), (-1, -2\rangle, (-1,2)\}$ .

(3-2) 3-horse $N_{3H}=\{(2,1), (-2,1), (1, -2)\}\subset N_{H}$ .
(3-3) Keima $N_{K}=\{(1,$ 2), (-1, $2)\}\subset N_{H}$ .

. Torus $\mathbb{Z}_{m}$ x $\mathbb{Z}_{n}=\langle a,$b| ab $=ba, a^{m}=1, b^{n}=1\rangle$ with m,n $\in \mathrm{N}$ the set of nonnegative
integers.

. Hexagonal grid \langle a, b, c $|a^{2}=1, b^{2}=1, c^{2}=1_{\mathrm{t}}(abc)^{2}=1\rangle$ .
Note that ab $\neq ba$ , ac $\neq ca$ , bc $\neq c6$ . Since a $=a^{-1}$ , any neighborhood is symmetric.. Triangular grid {a, b, c|abc $=1$ , acb $=1\rangle$ .
The commutativity ab $=ba$ , ab $=ba$, bc $=cb$ is derived from the relations
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3 Horse power problem
The problem of limited communication of CA is an interesting one and the one-way neighbor-
hood is the most typical restriction as was discussed in Section 2. We observed various one-way
neighborhoods for the space $\mathbb{Z}^{2}$ , which do not $\mathrm{s}\mathrm{g}$-generate the whole space $\mathbb{Z}^{2}$ . In this section,
we present conditions for a neighborhood to fill the space.

Definition 3,1 A neighborhood $N$ is said to fill $S$ if and only if $N^{\infty}=S$ .

Then, by Proposition 2.1, we have

Proposition 3.1 $N$ fills $S$ if and only if $\langle N\}_{sg}=s$ .

As for a typical non-standard neighborhood, we studied the horse power problem and showed
the following results $[5][6]$ . When we treat the horse power problem, we use the notation of
an additive group $\backslash$’vector space over $\mathbb{Z}$). That is, $\mathbb{Z}^{2}=\{(\mathrm{i},j)|\mathrm{i},j\in \mathbb{Z}\}$ and the identity of the
group is denoted as 0.

Theorem 3.1 A $S$ horse $N_{3H}=\{(2,1), (-2,1), (1, -2)\}$ fills $\mathbb{Z}^{2}$ .

Note that $N_{3H}$ is not symmetric and one-w $ay$.
Theorem 3.2 The generalized 3-horse $H_{G3H}=\{(\mathrm{a},$b), (-a, b), (b,$-a)\}$ fills $\mathbb{Z}^{2}$ , if and only if
the following conditions hold.

condition 1: $gcd(a, b)=1$ .
condition 2: $a+b=1$ mod 2 where a $>b>0$ .
We have generalized the problem to $d$-dimensional space and proved the following theorem
using the theory of integral matrices.

Theorem 3.3 Let $x_{1}$ , ..., $x_{s}\in \mathbb{Z}^{d}$ , where s $\geq d+1$ . Then the neighborhood $\{x_{1},$
\ldots ,

$x_{s}\}$ fills the
space or $\langle x_{1},$

\ldots ,
$x_{s}\rangle_{sg}=\mathbb{Z}^{d}$, if and only if the following two conditions hold.

condition 1: $\mathrm{g}\mathrm{c}\mathrm{d}(\{det([x:_{1}, \ldots, x_{i_{d}}])|\mathrm{i}_{1}, \ldots, \mathrm{i}_{d}\in\{1, \ldots, s\}\})=1$ .
condition 2: $0\in \mathrm{i}nt(conv(\{x_{1}$ , ..., $x_{s}\})$ . ( The zero of $\mathrm{R}^{d}$ should be in the interior of the convex
hull of $\{x_{1}, \ldots, x_{\epsilon}\}.)$

Remarks: About the inequality $s\geq d+1$ in Theorem 3.3, it is clear that any smaller neigh-
borhood than $d+1$ does not fill $\mathbb{Z}^{d}$ . There is a neighborhood of size $d+1$ which fills $\mathbb{Z}^{d}$ , that
is, the inequality is tight.

Proposition 3.2
$\langle\overline{-1}, e_{1},$

\ldots ,
$e_{d}\rangle_{sg}=\mathbb{Z}^{d}$ , (11)

where $e_{i}$ is the i-th unit vector and $\overline{-1}=$ (-1, -1, \ldots , -1).

The theory of integer matrices also allows to state necessary and sufficient conditions for a horse
to fill the torus.

Theorem 3.4 If the horse moves on a $d$ -dimensional torus $T=\mathbb{Z}_{m_{\mathrm{I}}}\mathrm{x}$ ... $\mathrm{x}$ $\mathbb{Z}_{m_{d}}$ , with $m_{i}\in \mathrm{N}$

and if the horse $\prime s$ move are $x_{1}$ , ..., $x_{s}\in \mathbb{Z}^{d}$ , then the horse fills the torus $T$ if and only if
$\mathrm{g}\mathrm{c}\mathrm{d}(\{det([y_{1}, \ldots, y_{d}])|y_{i}\in\{x_{1}, \ldots, x_{\theta}, m_{1}e_{1}, \ldots, m_{d}e_{d}\})=1$ ,

where $e_{\mathrm{a}}$ is the i-th unit vector
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4 Decidability results
In [5], we discussed some decision problems concerning the neighborhood, where some are
decidable while others are not. Particularly we posed the problem whether a neighborhood fills
$S$ or not. Before entering our topics, we notice here the fundamental theorem that the word
problem for semigroups is undecidable, which was posed in 1914 by Thue and proved in 1947
independently by Markov and Post, see [1]. We can show, however, some decidability results,
if we assume a specific case of $S=\mathbb{Z}^{2}$ (or $\mathrm{Z}^{d}$ ).

4.1 Word problem

Assume S $=\mathbb{Z}^{2}=\langle a, b|ab=ba\rangle_{g}$ and a subset N $\subset \mathrm{S}$ . The word problem for N relative to $S$

is to decide, for any two words x, y $\in\langle N|ab=ba\rangle_{sg}$ , whether or not x $=y$ in S.
$\cdot$

Then we have,

Theorem 4.1 For any neighborhood N $\subset S$, the word problem for N relative to S is decidable.

Proof: Let $N=\{n_{1},n_{2}, ..,n_{s}\}$ , where $n:\in$ $\{\mathrm{a}\mathrm{b} \mathrm{c}, a^{-1},b^{-1}\}^{*}$ , $1\leq \mathrm{i}\leq s$ . Since $x$ and $y$ are
concatenations of words from $N$ , we can uniquely obtain their minimal presentations $[x]$ and
$[y]$ by rewriting words (reducing the lengths of words) using the commutative relation $ab=ba$

and the trivial defining relations $aa^{-1}=1$ and $bb^{-1}$ so that $[x]=a.\cdot U$ and $[y]=a^{\dot{\iota}’}b^{I^{l}}$ , where
$i,\mathrm{i}’,j,j’\in$ Z. Since $x=y$ in $S$ , if and only if $i=\mathrm{i}’$ and $j=j’$ , which are trivially decidable,
we have proved the theorem, $\square$

We have a corollary concerning the intrinsic neighbors.

Corollary 4.1 For any word $x\in\langle N\rangle$ and $m$ , it is decidable if $x\in[N^{m}]$ or not.

Proof: Since $[N^{m}]$ is a finite set of effectively constructed words, there is a finite (effective)
procedure to test if x is an element of $[N^{m}]$ or not. $\square$

4.2 Decidability of infinity
In case of S $=\mathbb{Z}^{2}$ , any nontrivial neighborhood generates an infinite neighbors(subsemigroup).
That is,

Theorem 4.2 For $S=\mathbb{Z}^{2}$ and a neighborhood $N\in N^{S}$ $such$ that $N\neq\{1\}$ , $\#\langle N\rangle_{sg}=\infty$ .

Proof: If N $\ni x\neq 1$ , then for i $\neq j\in \mathrm{N}$ , $x^{i}\neq x^{j}$ .

For the case of the hexagonal grid, however, there is a nontrivial neighborhood which generates
a finite subsemigroup. For exam ple, take N $=\{\mathrm{a}6\mathrm{c}\}$ , then we see $\langle N\rangle_{\epsilon g}=\{abc, (abc)^{2}=1\}$ .

It is an algebraic problem to decide for an arbitrary space $S$ and neighborhood $N$ whether $N$

generates an infinite neighbors (subsemigroup) or not. Even when a neighborhood generates
an infinite subsemigrouP, it does not necessarily generate (fill) the space. For example, in $\mathbb{Z}^{2}$ ,
$N=\{1,a\}$ generates the infinite subspace $\{a^{:}|i\in \mathbb{Z}\}$ .

4.3 Decidability of horse power problem

We show here decidability results (computational complexity) concerning the filling problem.
As discussed earlier [6], we have a decidability result, which is proved using a result from the
universal algebra [2].

Theorem 4.3 The decision problem whether a neighborhood fills the space is P-complete
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5 Problems for future research
As defined in Section 2,1.3, considering various neighborhoods for a space $S$ will lead to a new
interesting theory of CAs. For instance, assume a fixed space $S$ and fix a local function $f_{\epsilon}$ with
$s$ arguments, then observe what happens if the neighborhood is changed in $N_{\epsilon}$ , the set of all
neighborhoods consisting of $s$ elements. Which neighborhood from $N_{s}$ is the best one for $f_{s}$

? For a fixed local function, is its injectivity $\mathrm{a}\mathrm{n}\mathrm{d}/\mathrm{o}\mathrm{r}$ subjectivity neighborhood-sensitive ? It
is also interesting to investigate m–neighbors (informational distance) with respect to a duly
defined metric 7 (physical distance) as was discussed in Subsection 2.1.3.
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