ooooooooon 14270 20050 114-127

114

Logarithmic trace inequalities

Takayuki Furuta (Tokyo University of Science)
HEHEHRFEEY HHEZ

Abstract We shall extend logarithmic trace inequalities shown by Bebiano, Lemos and
Providencia and also by Hiai and Petz, by applying log majorization equivalent to an order
preserving operator inequality. We shall consider the convergence of certain logarithmic
trace inequalities, as some extensions of Bebiano, Lemos and Providencia and Hiai-Petz.
As an appendix, we state the following result. Let A and B be strictly positive definite
matrices such that M > A > mI > 0 and Mol > B > mol > 0. Puth = %—i?ﬁ% > 1.

Then the following inequalities hold: ‘
log S(1)Tr[4] + S(4, B) > —Tr[S(A|B)] > S(A, B).

1
where S(A, B) = Tr[A(log A — log B)), $(A|B) = Ai(log A% BA% )Az and 5(1) = —lfl—"-i:j
elog h#-T
(h > 1). The first inequality is the reverse one of the well known second one.

§1. Introduction

In this paper a capital letter means n x n matrix. Following Ando and Hiai [1], let us

define the log majorization for positive semidefinite matrices A, B > 0, denoted by A (1>) B
og
if

k k
1@ =[x, k=1,2,.,n—1,
i=1

i=1
and

[ =] x(B), ie, det A=det B,
i=1 1=1

where Ai{A) > X(A) > ... > A(A) and A\(B) > A2(B) > ... > A\, (B) are the eigenvalues
of A and B, respectively, arranged in decreasing order. When 0 < o < 1, the a-power

mean of positive invertible matrices A, B > 0 is defined by
A#.B = AS (AT BAT )" A3,
Further, A#,B for A, B > 0 is defined by A#.,B = hf[r,l(A + el )#4(B +€l).

For the sake of convenience for symbolic expression, we define A B, for any real number
s> 0and for A > 0 and B > 0, by the following

Ab,B = Ai(AT BAT * A3,

A by B in the case 0 < a < 1 just coincides with the usual a-power mean.
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The following excellent and useful log majorization is shown in Ando and Hiai [1, The-

orem 2.1].

Theorem A. For every A, B>0and 0 <a <1,
(1.1) (A#,B)" (ltg) AT #,B" forr > 1.
Also, (1.1) can be transformed into the following matrix inequality (1.2) of Theorem B in
Ando and Hiai [1, Theorem 3.5]:

Theorem B. If A> B > 0 with A > 0, then
(1.2) A" > {A§(A121‘BPA:2_1)TA%}% forr,p > 1.

We obtained the following extension of Theorem A in Furuta [11, Therorem 2.1] applying
the method in Ando and Hiai [1] to Theorem G (see §3).

Theorem C. For every A>0,B>0, 0<a <1 and for each t € [0,1],

(A#.B)" - )Al*tw#ﬁ (A" ,B)

a(l —t+r) and b — (1—t+7)s

(1—ot)s+ar (1~ at)s+ar
Next, we state the following result which is shown in Hiai and Petz [13, Theorem 3.5]

holds for s > 1, andr >t >0, where § =

and, recently, a new proof is given in Bebiano, Lemos and Providencia [2, Theorem 2.2].

Theorem D. If A, B > 0, then for everyp > 0
1 .
(1.3) Z—)Tr{A log(A%BPA%)] > Tr[A(log A %+ log B)]

holds and the left hand side of (1.3) converges the right hand side as p | 0.
Theorem E. If A >0, B>0,0<a<1andp >0, then
(14) %Tr[A log( A?#, BP)] + %Tr[A log(A% B~ A%)] > Tr[Alog A
holds and the left hand side of (1.4) converges the the right hand side as p 10
The inequality (1.4) is shown in Ando and Hiai [1, Theorem .5.3], and the convergence

of (1.4) is shown in Bebiano, Lemos and Providencia [2, Corollary 2.2].

We shall extend Theorem D and Theorem E by applying the trace inequality derived
from log majorization equivalent to an order preserving inequality, and also by applying
the generalized Lie-Trotter formulae of Lemma 6.1 in §6 and Lemma 7.1 in §7.

§2. Log majorization equivalent to an order preserving operator inequality

We shall show a log majorization equivalent to an order preserving operator inequality.

Theorem 2.1. The following (i) and (ii) hold and are equivalent:
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(i) If A, B > 0, then for each t € [0,1] and r > ¢
(o— q) strq (p— tq)6+fq

AS(AT BPAT )vAz(>— A {BY(B3ATB8)*1B%}w A

holds for any s > 1 and p > q > 0.

(ii) If A > B > 0 with A > 0, then for each t € [0,1] and 7 >t

ATEE S (A5 (AT BYAT ) AR) s

holds for any s > 1 and p > q > 0.

Corollary 2.2. The following (i) and (ii) hold and are equivalent:
(i) If A,B >0, then for eachr >0

A3(A5BPAR)S Al o A30+59 pag3(i+50).
holds for any p > ¢ > 0.
(ii) If A > B > 0, then for eachr > 0
AR > (ASBTAR)E

holds for any p > q > O.

Corollary 2.3. The following (i) and (ii) hold and are equivalent:

(i) If A, B > 0, then for eachr > 1

A3 (A% BA—“)‘IA2 o A3{BY(BIATB3)-1B3}T A3

holds for any 1 > q > 0.

(ii) If A> B > 0 with A > 0, then for eachr > 1
A> {A3(AFBrAT)r A5},
holds for any 1 > g > 0.
§3. Results needed to give proofs of the results in §2

Throughout this section, a capital letter means a bounded linear operator on a complex
Hilbert space H. An operator T is said to be positive (denoted by T" > 0) if (T'z,z) for
all z € H. Also, an operator T is strictly positive {denoted by T > 0) if 1" is positive and

invertible. We state the following celebrated Lowner-Heinz inequality in operator theory.

Theorem L-H (Lowner-Heinz inequality).
If A> B >0, then A*> > B® for any « € [0, 1].

Lemma A. [11, Lemma 1]. Let A > 0 and also let B be an invertible operator. Then

(BAB*)* = BAZ(AiB*BA:)»1A3B*
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holds for any real number A.

Theorem F (Furuta inequality).
If A> B >0, then for each r > 0,
()  (BEAPBY) > (BiBPBi):
and

()  (AFAPA3)T > (ARBPAS):

hold forp>0 and ¢ > 1 with (1 +r)g>p+r. (0,~1)

FiGcure 1

It is shown in Tanahashi [16], that the domain drawn for p,¢ and r in Figure 1 is the
best possible one for Theorem F. Theorem F yields Lowner-Heinz inequality asserting that
A > B> 0 ensures A* > B® for any o € [0, 1], when we put r = 0 in (i) or (ii) of Theorem
F. The original proof is in Furuta [9], alternative proofs can be found in Fujii [4], Kamei
(14] and one page proof in Furuta [10].

As an extension of Theorem F, we obtain the following Theorem G which interpolates
Theorem F and Theorem B. Theorem G is used to prove Theorem C.

Theorem G. If A> B > 0 with A > 0, then for each t € [0,1] and p > 1
AT = {AS(AT APAT ) AR )T
> [AF(AF BPAT ) AR oooeie
forany s > 1 andr > t.

The original proof of Theorem G is in Furuta [11, Theorem 1.1], alternative proofs can
be found in Fujii and Kamei [5] and one page proof in Furuta [12]. The original proof
11
17t HT ) Theorem G is obtained in Tanahashi [17],
(p—t)s+r
and alternative proofs can be found in M.Fujii, Matsumoto and Nakamoto [6], and also in
Yamazaki [19].

of the best possible exponent

§4 Proofs of the results in §2

Applying Theorem G and [Theorem 2.1, Ando-Hiai [1]], we can give a proof of Theorem
2.1 and we omit it. Corollary 2.2 and Corollary 2.3 are immediate consequence of Theorem
2.1.
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§5. Logarithmic trace inequalities as an application of Theorem 2.1
For 4, B > 0, the relative operator entropy 5’(A[B) is defined by
S(A|B) = A log(A7T BAT ) A
in J.I.Fujii and Kamei [3], and S(A|I) = —Alog A is the usual operator entropy, (see [15]).
The Umegaki operator entropy S(A, B) is defined by
S(A, B) = Tr[A(log A — log B)]
(see Umegaki [18]). For A, B > 0, let A(A|B) are defined by
A(A|B) = —Tr[S(A|B)] — S(4A, B).

We shall discuss the lower bound of A(A|B) in terms of the trace of A and B and a
parameter, and this result implies the well known inequality A(A|B) > 0 (for example,

[13],[2])-
Theorem 5.1. If A, B > 0, then, for everyt € [0,1] andp >0,
(5.1) Tr[Alog(AF BPAT )
> (r — ts)Tx[Alog A] + Tr[Alog{ B3 (B% A" B%)*-1B%}]

holds for anyr >t and s > 1.

Corollary 5.2. If A, B > 0, then, for everyp >0 andr > 0,
(5.2) Tr[Alog(A5 BPA5 )] > Tr[Alog A7] + Tr[Alog{B% (B A"B%)*' Bi}]

holds for any s > 1. In particular,

(5.3) Tr[Alog(AEBPA5)] > Tr[Alog A" + Alog BY)
and
(5.4) Tr[Alog(A2BPA%)?] > Tr[Alog A7} + Tr[Alog(B? A" BP)].

The inequality (5.3) of Corollary 5.2 may be considered as the two variable version of
(1.3) in Theorem D. In fact, (5.3) of Corollary 5.2 is equivalent to (1.3) in Theorem D (see
Remark 5.1).

Corollary 5.3. If A, B > 0, then

(5.5) Tr[Alog(A* BA™#)"] > Tr[Alog{B?(B: A" B3) "' B3}]
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holds for every real number r > 1. In particular,
(5.6) Tr[Alog(A7 BA?)?] > Tr[Alog(BA®B)).

Corollary 5.4. If A, B > 0, then

2(s—1)

(57)  A(A|B) > Tr[Alog B] - Tr[Alog A + éTr[A log{A (AB-1A)* A7 )]

holds for every real number s > 1. In particular, A(A|B) > 0 holds.

We remark that the right hand side of (5.7) is zero when s = 1, or when A commutes with
B.

Proof of Theorem 5.1 is obtained by Theorem 2.1 and we omit it and Corollaries in this

section are shown by Theorem 5.1.
$6 Generalized Lie-Trotter formulae, I

We adopt the usual convention X? = I for X > 0. We obtain a convenient generalization

of the Lie-Trotter formulae to prove the results in §8. The famous Lie-Trotter formula states

. pA pA 1 .
eAtB — h{gl(e 5 ePPe )z for any Hermitian A and B.
?

The following lemma is an -mean variant of the Lie-Trotter formula.
Lemma H [13, Lemma 3.3]. If A and B are Hermitian and o € [0,1], then

1
e{l—a)A+aB — hg)l(epA ﬁaepB)E )
P

We remark that the Lie-Trotter formula and the a-mean variant of the Lie-Trotter for-

mula are both quite useful in operator theory.

By retracing the proof of Lemma H, we shall obtain the following lemma.
Lemma 6.1. If A, B,C and D are Hermitian, then, for any positive numbers « and 8
o 1
(6.1) gAtaB+ap(C+D) Iim{epzﬁ (e% (ep'zq epDeng)ﬁep?E) e } i
pl0 '
in particular,

(6.2) AHalBO) _ Jim [ (e 0T )T }7.
pl0
To prove the results in §8, we rewrite Lemma 6.1 in the following convenient form.

Lemma 6.1°. If A, B,C and D are positive, then, for any positive numbers o and 3,
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3 i

(6.1) log A+ alog B+ ap(logC +log D) = lim 1og{A’% (B‘E(C%Dpo%)ﬁB%)“A%} .
In particular,
(6.2") log A+ a(log B +1logC) = 11%1 1og{A§(B§CpB§)”‘A§}%.
Following analogous steps to those in the proof of Lemma 6.1, we can easily prove (6.7).
§7 Generalized Lie-Trotter formula, 11
In this section, we present generalizations of the Lie-Trotter formulae different from those
in Lemma 6.1 in §6 in order to prove the results in §8.

Lemma 7.1. If A, B and C are Hermitian, then, for any o € [0,1] and r > 0,

1
(7.1) ¢r(1ma)A+raBHC 1%(@%‘2 (1 - a)e* + aePB)’”ePzE) ?
¥4

In particular,

1
(7.2) gli-oatas 1i§)1((1 — a)ePA + aefB)r.
P

Lemma 7.1 can be rewritten as follows.

Lemma 7.1°. If A, B and C are positive definite, then, for any a € [0,1] and r > 0,

1
(71$) er(l—a) log A+ralog B+logC llfg (C‘g ((1 _ a)Ap + OABP)TC%) p‘
P
In particular,
(7.2 gll-allogAtalog B li{(r)x((l —a)AP + aBp)%.
y4

Next, we shall state an application of Lemma 7.1°. M.Fujii and R.Nakamoto [7] defined
the chaotically a-geometric mean A{,B which is different from the usual a-geometric
mean Af,B:

AQoB = ell-a)logAtalog B for A B > 0 and a € [0, 1].
Among others, M.Fujii and R.Nakamoto [7] proved the following result.

Theorem 1. If A and B are strictly positive operators on a Hilbert space and « € [0,1],
then (APVQBP)%,(A%QBP)% and (Ap!aBp)% strongly converge to the chaotically c-geometric
mean A{oB asp | 0, where SV, T = (1 —a)S + aT and S1,T = (1 —a)S™! +aT 1)1
for strictly positive operators S and T.
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Two proofs to Theorem I are given in (Theorem 4, [7]) and (84, [8]). We shall extend
Theorem I as an application of Lemma 7.1, that is, we shall show that:

The chaotically a— geometric mean A{qB is the uniform limit of (APVQBP)%‘

Proposition 7.2. If A and B are Hermitian and € [0, 1], then (epAVaepB)%,(epAﬁaepB)%

and (ePA!aePB)% uniformly converge to e2{qe® asp | 0.
Proposition 7.2 can be rewritten as follows.

Proposition 7.2°. If A and B are positive definite and o € [0,1], then (APVQBP)% ,(ApﬁaBp)%

and (APIQBP)';? uniformly converge to the chaotically a-geometric mean AGaB asp | 0.

We remark that Proposition 7.2’ remains valid for Hilbert space operators because
Lemma 6.1 still remains valid for operators, so that Proposition 7.2’ may be considered to

be a strong version of Theorem 1.

§8. Convergence of logarithmic trace inequalities via generalized Lie-Trotter

formulae

In this section, We shall discuss the convergence of the logarithmic trace inequalities
obtained in §5 by applying generalized Lie-Trotter formulae of Lemma 6.1’ in §6 and the
Lemma 7.17 in §7.

Theorem 8.1. If A, B > 0, then, for every p > 0, |
(8.1) %mA log(A%BPA)] —%Tr[Alog{B%(BgApBg)s“lBg}]
> Tr[Alog Al

holds for any p > 0 and s > 1, and the left hand side converges to the right hand side as
pl 0.

Theorem 8.1 yields the following Corollary 8.2.
Corollary 8.2.
(i) If A, B > 0, then, for everyp =0,
(8.2) %Tr[/—l log(A%BPA%)] > Tr[Alog A + Alog B]
holds and the left hand side converges to the right hand side as p | 0.
(ii) If A, B > 0, then, for everyp > 0,

(8.3) %’H[A log(A8 B?AB)] %’I‘r[A log(BP A" BP)]
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> Tr[Alog A]
holds and the left hand side converges to the right hand side as p | 0.
We remark that (i) of Corollary 8.2 is Theorem D.
Theorem 8.3. If A > 0 and B > 0, then, for every positive number (3,
(8.4) T A log(A4%5sB7)] — TrlA log{ AT (4457 AT}
> Tr[Alog A]
holds for any p > 0, s > 1, and the left hand side converges to the right hand side as p L 0.
Theorem 8.3 implies the following Corollary 8.4.
Corollary 8.4..
(i) If A, B > 0, then, for every positive number /3,
(8.5) %}Tr[A log( APl BP)] +gTr[A log(A B~ A%)]
> Tr[Alog A
holds for any p > 0, and the left hand side converges to the right hand side as p | 0.
(ii) If A, B > 0, then, for every positive number [,
(8.6) Z%Tr[A log(A?h5B7)] — %Tr[A log(AF BP AR AP (AT BPAF)P)
> Tr[A log A]
holds for any p > 0 and the left hand side converges to the right hand side as p | 0.

We remark that, when A4 > 0, B > 0 and 8 € [0, 1], (i) of Corollary 8.4 becomes Theorem
E.

Theorem 8.5. If A > 0 and B > 0, then for every « € [0, 1]

(8.7) 5 TY[ A log(APV o B7)] —%Tr[A log{ AT (AV,B?)P AT )]

=3

> Tr[Alog A

holds for any p > 0, s > 1, and the left hand side converges to the right hand side as p | 0.

Theorem 8.5 implies the following Corollary 8.6.

Corollary 8.6. If A> 0 and B > 0, then
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(8.3) %mA log((1 — @) A? + aB?)| _%mA log{(1 — a)I + AFBPAT)]
> Tr[Alog A]

holds for any p > 0, a € [0,1], and the left hand side converges to the right hand side as
p | 0. Moreover,

AP+ BP. 1 AP 4+ BP

5 ] —Z;Tr[A log{A7 ( ) AT}

(8.9) %TY[A log
> Tr[A log Al

holds for any p > 0, s > 1, and the left hand side converges to the right hand side as p | 0.

§9 Proofs of the results in §8

The results in §8 are shown by Theorem 5.1 and Lemma 6.1’ and Lemma 7.1" and we

omit them.
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§10 Appendix.

Inequalities associated with Umegaki relative entropy S(A, B) = Tr[Alog A ~ Alog B]
and the relative operator entropy S(A|B) = Al(log AT BA7)A? by J.LFujii and
E.Kamei

On December 2, 2004 I have spoken this appendix in my talk at the Mathematics Re-

search Insitute of Kyoto University.

A capital letter means n x n complex matrix and Tr[X] means the trace on the matrix
X. A matrix X is said to be strictly positive definite if X is positive definite and invertible
(denoted by X > 0). Let A and B be strictly positive definite matrices. Umegaki relative
entropy S(A, B) in [8] is defined by

(1.1) S(A, B) = Tr[A(log A — log B)]

and the relative operator entropy S(A|B) in [3] is defined by

(1.2) S(A|B) = A*(log A7 BA% ) Az
as an extension of [7]. Let A > 1. S(p) is defined by
(13) 5ty = 2
' Pr= e log hiPT
1
for any real number p. In particular S(1) = -—Ihh—hl_: is said to be the Specht ratio and
elog hF-1

S(1) > 1 is well known. We shall show the following inequalities associated with S(A, B)
and —Tr[S(4|B)].

Theorem 1. Let A and B be strictly positive definite matrices such that Myl = A>
myl >0 and MpI > B > mpl > 0. Put h = %ﬁnﬁ’% > 1. Then the following inequalities
hold:

(1.4) log S(1)Tx[A] +S(A, B)
> log S(1)Tr[A] + Tr[A(log Tr[A] — log Tr[B])]
> —Tr[3(4|B)]
> S(A, B)
wn particular,
(1.5) log S(1)Tx[A] + S(A, B) = —Tx[S(A|B)] > S(4, B).
The first inequality of (1.5) is the reverse one of the second inequality which is well known
in [5),[6] and [1]. We prepare the following results to prove Theorem 1.
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Proposition 2. Let A and B be strictly positive definite matrices such that Myl > A >
mil > 0 and Mol > B > mpl > 0. Puth = A—Trﬁ% > 1. Let ¢ be a normalized positive
linear functional on M,(C). Then
(1.6) log S(1)p(A) + ¢(S(A|B)) > w(A)(logp(B) — log p(4)) = ¢(S(A|B)).

Proof. Let A and B be two matrices satisfying the hypotheses in Proposition 2. By (iii)
of of [Theorem 2.1, [4]], if @ is a normalized positive linear map from M, (C) into itself,

then
(1.7) log S(1)®(A) + B(S(A|B)) > §(8(A)|®(B)) > B(S(A]B))
and (1.6) follows from (1.7) since ¢ be a normalized positive linear functional on M, (C)

and

S(p(A)lw(B)) = p(A)(log p(B) — log p(A4)).00
Proposition 3 (Peierls-Bogoliubov inequality). The following (i) and (ii) hold and are

equivalent;

TreAB
(i) TreAt8 > TI‘EAEXP( ,;;A ) for Hermitian A and B
and

(ii) S(A, B) > Tr[A(log Tr[A] — log T¥[B])] for A> 0 and B > 0.

Peierls-Bogoliubov inequality is well known in statistic dynamics and the equivalence
relation between (i) and (ii) is stated in ([6] and [2]).

Proposition 4 ([5],[6] and [1]) The following inequality holds:

(1.8) —Tr[5(A|B)} > S(A,B) for A>0 and B > 0.

Proof of Theorem 1. Let A and B be two matrices satisfying the hypotheses in
Theorem 1 and recall that these hypotheses are the same as ones in Proposition 2. Put
o(X) = %’I‘r[X ] in Proposition 2. Then the first inequality of (1.6) implies
(1.9) log S(1)Tr[A] + Tr[A(log Tr[A] — log Tr[B])] > —Tr[S(4|B)).

Therefore we have

(1.4) log S(1)Tr[A] +S(A4, B)
> log S(1)Tr[A] + Tr[A(log Tr[A] —log Tr[B])] by (ii) of Proposition 3
> ~Te[S(4[B)] by (1.9)
> S(A,B) by (1.8) of Proposition 4

so the proof is complete since (1.5) is an immediate consequence of (1.4). O
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Fuarther extension of this appendix will appear in the following:

T.Furuta, Reverse inequalities involving two relative operator entropies and two relative

entropies, to appear in LAA.



