<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>プリクラントフォーティンの機能とその実現方法について。</td>
</tr>
<tr>
<td>Author(s)</td>
<td>本田, 透; 藤巻, 元</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録, 2005, 1427: 137-142</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2005-04</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/47306</td>
</tr>
<tr>
<td>Right</td>
<td>電子版</td>
</tr>
<tr>
<td>Type</td>
<td>科学技術研究所講究録</td>
</tr>
<tr>
<td>Textversion</td>
<td>出版社</td>
</tr>
</tbody>
</table>

京都大学学術情報リポジトリ

Kyoto University Research Information Repository
Principal functions of operators

Department of Mathematics, Kanagawa University
Faculty of Education and Human Sciences, Niigata University

Let \mathcal{H} be a complex separable Hilbert space and $B(\mathcal{H})$ be the set of all bounded linear operators on \mathcal{H}. About the trace formula, we have the following:

Theorem 1 (M. Krein, 1953). Let A be a self-adjoint operator on \mathcal{H} and K be a trace class self-adjoint operator on \mathcal{H}. Then there exists a unique function $\delta(t)$ such that

$$
\text{Tr} \left(p(A + K) - p(A) \right) = \int p'(t)\delta(t)dt,
$$

where p is a polynomial.

Theorem 2 (Carey-Pincus [5], Helton-Howe [11]). Let $T = X + iY$ be an operator on \mathcal{H} with trace class self-commutator $([T^*, T] \in \mathcal{C}_1)$. Then there exists a function $g(x, y)$ such that

$$
\text{Tr} \left([p(X, Y), q(X, Y)] \right) = \frac{1}{2\pi i} \int \int J(p, q)(x, y)g(x, y)dx dy,
$$

where p and q are polynomials of two variables.

Functions $\delta(t)$ and $g(x, y)$ in Theorems 1 and 2 are called the phase shift of the perturbation problem $A \rightarrow A + K$, and the (Cartesian) principal function of T, respectively. Let T be hyponormal and satisfy $[T^*, T] \in \mathcal{C}_1$. For operators A and K of Theorem 1, let $A = TT^*$ and $K = T^*T - TT^*$. Then

$$
\delta(t) = \frac{1}{2\pi} \int_0^{2\pi} g(\sqrt{t}\cos\theta, \sqrt{t}\sin\theta)d\theta \quad \text{a.e. } t > 0.
$$

For the polar decomposition $T = U|T|$, we have the following:

Theorem 3 ([5],[8],[17]). Let $T = U|T|$ be semi-hyponormal operator satisfying $[|T|, U] \in \mathcal{C}_1$ with unitary U. Then there exists a function g_T such that, for $\mathcal{P}, \mathcal{Q} \in \mathcal{A}$,

$$
\text{Tr}([\mathcal{P}(|T|, U), \mathcal{Q}(|T|, U)]) = \frac{1}{2\pi} \int \int J(\mathcal{P}, \mathcal{Q})(r, e^{i\theta})e^{i\theta}g_T(e^{i\theta}, r)drd\theta.
$$

Let \mathcal{C}_1 be the trace class and \mathcal{A} be Laurent polynomials; $\mathcal{P}(r, z) = \sum_{k=-N}^N p_k(r)z^k$. Let $J(\mathcal{P}, \mathcal{Q})$ be the Jacobian of \mathcal{P}, \mathcal{Q}.
Functions g and g_T of Theorems 2 and 3 are called the principal functions of T related to the Cartesian decomposition $T = X + iY$ and the polar decomposition $T = U|T|$, respectively. We have two ways of the principal functions of T: One is by the Cartesian decomposition $T = X + iY$. In the case of a hyponormal operator T, by the mosaic $0 \leq B(x, y) \leq I$ we define

$$g(x, y) = \text{Tr}(B(x, y)).$$

Others is by the determining function:

$$\det \left((X - z)(Y - w)(X - z)^{-1}(Y - w)^{-1} \right) = \exp \left(\frac{1}{2\pi i} \int \int g(x, y) \frac{dx}{x - z} \frac{dy}{y - w} \right).$$

Principal function gives many information of T.

If T is hyponormal, then $g \geq 0$ and for sufficiently high n the operator T^n has a non-trivial invariant subspace (Berger [3], Martin-Putinar [14]). Other properties are

1. $z \not\in \sigma_e(T) \implies g(x, y) = -\text{ind}(T - z)$ ($z = x + iy$).

2. If T has a cyclic vector, then $g \leq 1$.

3. If T has a finite rational cyclic multiplicity m, then $g \leq m$.

Carey-Pincus [5, Th.7.1] showed a relation between $g(x, y)$ and $g_T(e^{i\theta}, r)$ as follows: For $x + iy = re^{i\theta}$,

$$g(x, y) = g_T(e^{i\theta}, r^2).$$

Definition 1. T is p-hyponormal if $(T^*T)^p \geq (TT^*)^p$. Especially, T is called hyponormal and semi-hyponormal if $p = 1$ and $p = 1/2$, respectively. Since

$$\text{hyponormal} \implies \text{semi-hyponormal} \implies p\text{-hyponormal},$$

if we have the principal functions of p-hyponormal operators and more weak operators, then we can study similar properties.

For an operator $T = U|T|$ let $T_t = |T|^tU|T|^{1-t} (0 < t < 1)$ be the Aluthge transformation of T. Let g_T and g_{T_t} be the principal functions of T and $T_t = |T|^tU|T|^{1-t} (0 < t < 1)$, respectively. Then we have following problems:

1. $g_T = g_{T_t}$

2. If T is hyponormal, then $g(x, y) = g_T(e^{i\theta}, r) = g_T(e^{i\theta}, r) = g_T(x + iy = re^{i\theta})$.

In this talk, we study relations above.
2. Relations with principal functions associated with polar decompositions

Definition 2. Let $T = U|T|$ be a p-hyponormal operator with unitary U such that $[|T|^{2p}, U] \in \mathcal{C}_1$. Put $S = U|T|^{2p}$. Then S is semi-hyponormal. By Theorem 3, there exists the principal function g_S of S and we define the principal function g_T of T by

$$g_T(e^{i\theta}, r) = g_S(e^{i\theta}, r^{\frac{1}{2p}})$$

(see [8, Definition 3]).

We prepare some lemmas.

Lemma 4. If operators A, B, C satisfy $[A, C], [B, C] \in \mathcal{C}_1$, then we have $[AB, C] \in \mathcal{C}_1$.

Let $||A||_1 = \text{Tr}(|A|)$ for $A \in \mathcal{C}_1$, that is, $||A||_1$ is the trace norm of A.

Lemma 5. If a positive invertible operator A and an operator D satisfy $[A, D] \in \mathcal{C}_1$, then, for any real number α, we have $[A^\alpha, D] \in \mathcal{C}_1$.

Lemma 6. Let $T = U|T|$ be an invertible operator. Put $T_t = |T|^{t}U|T|^{1-t}$. If $[|T|, U] \in \mathcal{C}_1$, then $[T_t^*, T_t] \in \mathcal{C}_1$.

Lemma 7. Let $T = U|T|$ be an invertible operator and $T_t = |T|^{t}U|T|^{1-t}$. For the polar decomposition $T_t = V|T_t|$ of T_t, if $[|T|, U] \in \mathcal{C}_1$, then, for every real number α,

$$[|T_t|^\alpha, V] \in \mathcal{C}_1.$$

Lemma 8. Let $T = U|T|$ be an invertible operator and $T_t = |T|^{t}U|T|^{1-t}$. For the polar decomposition $T_t = V|T_t|$ of T_t, if $[|T|, U] \in \mathcal{C}_1$, then, for a positive integer n, it holds that

$$\text{Tr}([U^n|T|^n, |T|^2]) = \text{Tr}([V^n|T_t|^n, |T_t|^2]),$$

$$\text{Tr}([U^{-n}|T|^n, |T|^2]) = \text{Tr}([V^{-n}|T_t|^n, |T_t|^2])$$

and

$$\text{Tr}([U^*|T|, U|T|]) = \text{Tr}([V^*|T_t|, V|T_t|]).$$

Therefore, we have the following.

Theorem 9. Let $T = U|T|$ be an invertible semi-hyponormal operator such that $[|T|, U] \in \mathcal{C}_1$. For $T_t = |T|^{t}U|T|^{1-t}$, let g_T and g_{T_t} be the principal functions of T and T_t, respectively. Then we have

$$g_T = g_{T_t}$$

almost everywhere on \mathbb{C}.

Next we recall the principal functions for log-hyponormal operators.
Definition 3. Let $T = U|T|$ be log-hyponormal with $\log |T| \geq 0$ such that $[\log |T|, U] \in \mathcal{C}_1$. Put $S = U \log |T|$. Then S is semi-hyponormal with unitary U. Hence there exists the principal function g_S of S and we define the principal function g_T of T by

$$g_T(e^{i\theta}, r) = g_S(e^{i\theta}, \log r)$$

(see [6, Definition 4]).

It is known that, if $T = U|T|$ is log-hyponormal, then the Aluthge transformation $T_{1/2} = |T|^{1/2}U|T|^{1/2}$ is semi-hyponormal (see [16]). Hence there exists the principal function $g_{T_{1/2}}$ of $T_{1/2}$.

Then we have the following.

Theorem 10. Let $T = U|T|$ be a log-hyponormal operator such that $\log |T| \geq 0$ and $[\log |T|, U] \in \mathcal{C}_1$. For $T_{1/2} = |T|^{1/2}U|T|^{1/2} = V|T_{1/2}|$, let g_T and $g_{T_{1/2}}$ be the principal functions of T and $T_{1/2}$, respectively. Then we have

$$g_T = g_{T_{1/2}}$$

almost everywhere on \mathbb{C}.

Now we generalize Theorem 9 as follows.

Theorem 11. Let $T = U|T|$ be an invertible p-hyponormal operator such that $[|T|, U] \in \mathcal{C}_1$. For $T_t = |T|^tU|T|^{1-t}$, let g_T and g_{T_t} be the principal functions of T and T_t, respectively. Then we have $g_T = g_{T_t}$ almost everywhere on \mathbb{C}.

3. Relation with principal functions associated with two decompositions

Next, we show the following theorem (cf. [5, Theorem 7.1]).

Theorem 12. Let $T = X + iY = U|T|$ be hyponormal with unitary U. Suppose that $[|T|, U] \in \mathcal{C}_1$. Let g and g_T be the principal functions corresponding to the Cartesian and the polar decompositions of T, respectively. For $x + iy = re^{i\theta}$, let $g_T(x, y) = g_T(e^{i\theta}, r)$. Then $g = g_T$ almost everywhere on \mathbb{C}.

Though the results above can be generalized to operators with trace-class self-commutator, we confine ourselves to deal only with the p-hyponormal case (cf. [5]).

4. Application: Berger’s Theorem and index

In this section, we apply previous results to Berger’s Theorem [3] and an index property [11]. First we show the following:

Lemma 13. Let operators $S = V|S|$ and $T = U|T|$ be invertible. Assume that $|S| - |S^*|$, $|T| - |T^*| \in \mathcal{C}_1$ and there exists a trace class operator A such that $SA = AT$ and $\ker(A) = \ker(A^*) = \{0\}$. Then, for $S_{1/2} = |S|^{1/2}V|S|^{1/2}$ and $T_{1/2} = |T|^{1/2}U|T|^{1/2}$, there exists $B \in \mathcal{C}_1$ such that $S_{1/2}B = BT_{1/2}$ and $\ker(B) = \ker(B^*) = \{0\}$.
Lemma 14. Let S and T be invertible semi-hyponormal operators. Assume that $|S| - |S^*|, |T| - |T^*| \in \mathcal{C}_1$ and there exists a trace class operator A such that $SA = AT$ and $\ker(A) = \ker(A^*) = \{0\}$. Then $g_S \leq g_T$ almost everywhere on \mathbb{C}.

Corollary 15. Let S and T be invertible p-hyponormal or log-hyponormal operators. Assume that $|S| - |S^*|, |T| - |T^*| \in \mathcal{C}_1$ and there exists a trace class operator A such that $SA = AT$ and $\ker(A) = \ker(A^*) = \{0\}$. Then $g_S \leq g_T$ almost everywhere on \mathbb{C}.

Theorem 16. Let $T = U|T|$ be an invertible cyclic p-hyponormal operator. Assume $|[T], U| \in \mathcal{C}_1$. Then $g_T \leq 1$ almost everywhere on \mathbb{C}.

Let $\text{Rat}(\sigma)$ be the set of all rational functions with poles off σ.

Definition 4. The rational multiplicity of $T \in \mathcal{B}(\mathcal{H})$ is the smallest cardinal number m with the property which there exists a set $\{x_n\}_{n=1}^m$ of m-vectors in \mathcal{H} such that
$$\bigvee\{f(T)x_i : f \in \text{Rat}(\sigma(T)), 1 \leq i \leq m\} = \mathcal{H}.$$

Also, we have

Theorem 17. Let $T = U|T|$ be an invertible cyclic p-hyponormal operator with finite rational cyclic multiplicity m. Assume $|[T], U| \in \mathcal{C}_1$. Then $g_T \leq m$ almost everywhere on \mathbb{C}.

Finally, we show index properties. Let $\sigma_e(T)$ be the essential spectrum of T and $\text{ind}(T)$ the index of T; i.e.,
$$\text{ind}(T) = \dim \ker(T) - \dim \ker(T^*).$$

Then it is known the following result. Let T be a pure hyponormal operator and $g(z)$ be the principal function of T. Then it holds that, for $z \notin \sigma_e(T)$,
$$g(z) = -\text{ind}(T - z)$$
[11, Theorem] (see also [4, Theorem 4]).

An operator T is called pure if it has no nontrivial reducing subspace on which it is normal. Then we need the following

Lemma 18 (Lemma 4 of [7]). For an operator $T = U|T|$, let $T_{1/2} = |T|^{1/2}U|T|^{1/2}$. Assume that T is an invertible p-hyponormal operator. If T is pure, then $T_{1/2}$ is also pure.

Finally, we have the following.
Theorem 19. Let $T = U|T|$ be a pure invertible p-hyponormal operator. If $0 \neq z \notin \sigma_e(T)$, then $g_T(e^{i\theta}, r) = -\text{ind}(T - z)$, where $z = re^{i\theta}$.

REFERENCES

Muneo Chô
Department of Mathematics
Kanagawa University
Yokohama 221-8686, JAPAN
E-mail: chiyom01@kanagawa-u.ac.jp

Tadasi HURUYA
Faculty of Education and Human Sciences
Niigata University
Niigata 950-2181, JAPAN
E-mail: huruya@ed.niigata-u.ac.jp