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ABSTRACT
In this report, we have attempted to reveal some relationships between a bounded
linear operator T' acting on a Hilbert space and its generalized Aluthge transfor-
mation T'(s,t) in terms of their numerical ranges and norms.

1. INTRODUCTION

Let B(H) denote the Banach algebra of all bounded linear operators on a complex
Hilbert space H. By the polar decomposition of T € B(H), we mean the expression
T = U|T|, where U is a partial isometry and |T| is the positive square root of T*T" such
that ker U = ker [T'|. In [1], Aluthge introduced the class of p-hyponormal operators that
generalizes the widely studied class of hyponormal operators. In order to reveal some
important features of p-hyponormal operators, he exploited the operator T which is now
popularly known as the Aluthge Transformation and which is defined as

T =|T)RU|T}.
Motivated by this article [1], several authors explored and studied new classes of oper-
ators closely connected to p-hyponormal operators with the help of the Aluthge trans-
formation and its generalization, known as the generalized Aluthge transformation. By

the generalized Aluthge transformation of T € B(H), we mean the bounded operator
T(s,t) on H for which

T(s,t) = |TI°U|T|*, wheres>0andt>0,
Especially, T'(1,0) = |TIU|T|® = |T|UU*U = |T|U and T(0,1) = |T|°U|T|* = U*UUITY.
- In recent years, one can find number of articles in which various relations among 7', T and
T(s, t) are obtained. It is obvious that ||T|| < [|7']|. Okubo [8] gave a non-obvious exten-
sion of this inequality by deriving || f (T)H < ||F(T)]| for any polynomial f(t) by proving
more general result. As corollary to this inequality, he showed that W(f (T)) C W({F (D)),
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extending some results known to be true [6] or in case either f(t) = ¢ [7, 9, 11]. Our
main object of the present report is to compare the numerical range of 7' with that of
T'(s,t) for some restricted values of s and ¢.

In section 2, some results are given that will be of use in the succeeding sections.
Section 3 is devoted to establishing inclusion relations among the numerical ranges of
rational functions of operators 7'(0,1), T(1, 0) and T. The inequality that says || f(T)| <
[If(T)]| for every polynomial f is extended further in section 4 by proving LF(T(s, D] <
If(T)|| with s -+t = 1 for every rational function f for which f (T) exists. Finally,
in section 5, we introduce a numerical range value function on [0,1] and obtain an
improvement over a characterization of convexoid matrices due to Ando [2].

In what follows, we assume, unless it is stated otherwise, that f will be a rational
function with poles off o(T').

2. FUNDAMENTAL PROPERTIES

Lemma 2.1. Let T = U|T| be the polar decomposition of T. Then dimkerT <
dimker T if and only if there ezists an isometry V such that V|T|=U|T|.

Although our first lemma is well known [5, p. 75}, {10, p. 4], we would like to present
it with a proof.

Proof. Let H = R(|T|) ® R(T)* = R(T) & R(T)*. Then U is an isometry from R(|T7)
to R(T). On the other hand, there exists an isometry U; : R(|T|)* — R(T)* if and
only if dim(R(|T|)*) < dim(R(T)*). By R(|T|)* = ker |T| = ker T and R(T)* = ker T*,
it is equivalent to dimker 7 < dimker 7*. So the underlying kernel condition ensures
the existence of an isometry U, : R(|T|)t — R(T)*. Let

V=UUU+ULI-UU)=U+U(I-U).
The facts that I — U*U is the projection onto kerU = ker T = ker IT| = R(T))* =
(ker Up)*, UpUiz = = on R(|T|)* and R(U;) C R(T)* = ker T* = ker U* will give
VYV = {U+ U (I - U O)W{U + U, - U*T)}

=UU+ (I -UU)0U+ U (I - UU) + (I - U DUV - U*)

=UU+{U'UL(I-UU»+UU,I-UU)+I-UU

=UU+1-UU |

=1.
Thus V is an isometry. Moreover,

VIT| = {U+U,(I - U"U)}|T| = UT).
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Lemma 2.2. Let A € B(#H). Then the following assertions hold:
(i) If P is a projection with PAP = AP, then
f(AP) = Pf{A)P + f(O)(I — P).
(i) IfV is an isometry, then
FVAV?) =V F(AV* + FO)T - V™).
Proof. (i). Let # = (ker P)* @ ker P. Then by the assumption PAP = AP, A can be

expressed as follows:

A= (‘)0{ g) on H = (ker P)* & ker P.

sar =15 =" ;o)
On the other hand,

=15 7= jz):
Hence we have

prap+10u-r= (190 0+ (3 0.) = 1P

Hence

(1i). For an isometry V, note that (‘(; I _V‘:V ) is unitary. Then we have

(f(VglV*) f((o))f) =f((w(1)v* 3))

N ) (e 8

(V FAV* + f(')(O)(I ~-VV*) 0 )

01

Hence
F(VAV*) = Vf(A)V’k + F(O)T - VV™).

Thé following result is a modification of [6, Proposition 4.5].
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Proposition 2.3. Let A, B € B(H). Then the following assertions are mutually equiv-
alent:
() WFCAY) € WF(B) for all f.
(i) w(f(A)) < w(f(B)) for all f.
(i) (I < (B for all f.

The proof is almost identical to the one given for Proposition 4.5 of [6].

3. NUMERICAL RANGES OF T'(0,1) AND T'(1,0)

The primary object of the present section is to establish the connection among the
numerical ranges of T', 7(0,1) and T'(1,0).
Theorem 3.1. Let T € B(H). Then the following assertions hold:
(1) W(F(T(0,1))) € W(f(T)).
(i) W(£(I(1,0))) € W(f(T)).
Proof. (i). Let T = U|T| be the polar decomposition of T, and H = (ker T)* & ker T'.
Then
T(0,1) =U*UU|T| = U*UT = U*UTU*U.
Since U*U is a projection, (i) of Lemma 2.2 yields
(3.1) f(T0,1))=UUf(TYU*U + f(0O)(I — U*V).
In case ker 7' = {0}. In this case U must be isometry. Then by (3.1), f(7(0,1)) =
f(T), and hence

W(f(T(0,1))) = W((T)).
In case ker T # {0}. By (3.1), we obtain
W(f(T(0,1))) € conv {W(£(T)) U {f(0)}}.
Here by ker T' # {0}, we have f(0) € W(f(T)), and

W(f(T(0,1))) € conv {W(£(T)) U {f(0)}} = W(f(T)).

(i). Step 1. We shall show the following equality:

(32) F(TQ,0)=Uf(T)U + FO)(I - U*D).

We shall establish this equality separately for each of the cases when dimkerT <
dimker 7% and dimker 7' > dimker T*. |

(2) The case dimkerT < dimkerT*. By the Lemma 2.1, there is an isometry V
satisfying U|T| = V|T'|. Note that in the proof of Lemma 2.1,

(3.3) V =U+U(I - U*U), where U; is isometry with R(U;) C ker T*.
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Then by (3.3), we have
UU*TUU* = TUU* = U|T|UU* = V|T|UV*.
Hence by (ii) Lemma 2.2, we obtain
fTUUT) = fVITIUV®) = V F(ITIU)V* + F0)(I - VV™).
Moreover since V is isometry, we have
F(TID) = V- FTUUHV.
Therefore
HT0) =v*f(TUU )V
=V{UU* f(TYUU* + f(0)(I — UU*)}V by (i) of Lemma 2.2
=U*f(T)U + f(0)(I - U*U) by (3.3).
On the other hand, by (3.3),
U|T*| = UU*UU|T|U* = VU*UTV*.
Then by Lemma 2.2, we obtain
FUT) = fFVUUTV®)
=V U UTV*+ f(0)(I—VV*) by (ii) of Lemma 2.2
(3.4) =V{U'Uf(T)U*U + f(O)(I = U*U)}V* + F(O)(I — VV*)
by (i) of Lemma 2.2
=Uf(TYU* + f(0)(I —UU*) by (3.3).
(b) The case dimker T > dimker 7*. Replacing 7 by 7™ in (3.4), we have
FUAT)) =U*f{TU + FO)I - U*U)
= f(IT\U) = U f(T)U + F(0)(I - U"V).
Step 2. In case ker T = {0}. In this case U must be isometry. Then by (3.2), F(T(1,0)) =
F(TWU) =U*f(T)U, and hence
W(f(T(1,0))) SW(f(T)).
In case ker 7" # {0}. By (3.2), we obtain '
W(f(T(1,0))) = W(f(IT|U)) € conv {W(f(T)) U {f(0)}}.
Here by ker T' # {0}, we have f(0) € W(f(T)), and
W(f(T(1,0))) € conv {W(f(T)) U {f(0)}} = W(f(T)).

Hence the proof is complete. O
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Corollary 3.2. Let T =U|T|. Then
(i) W(T(1,0)) = W(T) ifker T* C kerT.
(i) W(T(0,1)) = W(T) ifker T C ker T*.
(iii) W(T(0,1)) € W(T(1,0)) if ker T* C ker T'.
(iv) W(T'(1,0)) CW(T(0,1)) if ker T C ker T*.

Proof. (i). In view of Theorem 3.1, only we have to prove W(T) C W(T(1,0)).
IfkerT* CkerT, then T = U|T| = U|T|\UU* = UT(1,0)U*, and we have
W(T) C conv{W(T'(1,0)) U {0}}.
If ker T # {0}, then 0 € W(T'(1,0)) and we have
W(T) C conv{W(T'(1,0)) U {0}} = W(T(1,0)).

If kerT' = {0}, then {0} = kerT D kerT™, and U* must be an isometry. Hence we
have W(T) C W(T(1,0)).

(ii). If ker T C ker T*, then U*UU = U holds. Hence T(0,1) = U*UU|T| = U|T| = T,
and W(T(0,1)) = W(T).

(iif). If ker T* C ker T, then by (i) and Theorem 3.1, we have
W(T(0,1)) CW(T) =W (T(1,0)).
(iv). If ker T' C ker T*, then by (ii) and Theorem 3.1, we have
W(T(1,0)) C W(T) = W(T(0,1)).
O

Remark 3.3. If we drop the kernel condition from the statements of Corollary 3.2, then
we may not get the same conclusions as following indicate.

Example 3.4. Let T = (8 é) Then |T| = (8 (1)) and U =T. Clearly W(T(1,0)) =
{0} # W(T).

Example 3.5. For o > 0, let

0 a 00

0 000

T—IOOO

00 00

Then

0 a 00 0100
10 0 00 ) 10000
7(0,1) = 00 0 0 and T(1,0) = 0000
0000 0000
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Also W(I'(0,1)) ={2€C: |2| < §} and W(T(1,0)) = {2z € C: |2| < i}. Then
(i) for a € (0,1), W(T(0,1)) & W(T(1,0)),
(ii) for a > 1, W(T(1,0)) C W(T(0, 1).

4. NORM INEQUALITY INVOLVING A RATIONAL FUNCTION OF T AND T(s,t).

Theorem 4.1. Let T € B(H). Then

I (T (s, N < 1A
holds for s,t > 0 withs+t=1.
Proof. Let T = U|T| be the polar decomposition of T'. Let |T.| = |T'| + & > 0. Note
that
. -1 T -1 —_ *
tm [T T = Jim (71 + DT = U°0.

We prepare the important inequality due to [4]. For X € B(#) and positive operators
A and B, '

(41) |A°X Bl < |AXB"|IX |
holds for s € [0, 1]. Then we have
1T (s, NI = (T PUITF)

= AP | TP UIT AT T )
= Tl (Tl I TPUIT TP ITe
S WTFTl = TPUIT TN T PN (T I TIU T T by (42)
= ([ F(Tel = ITPUITEI TP DI (T | T UIT T
— [HTWT O f T UUITHI ase—+0
= AT, DIIF(T O I
< NI by Theorem 3.1 and Proposition 2.3.

Hence the proof is complete. 0

Remark 4.2. Above theorem is not true if s +t # 1 as can be illustrated with thg
following Ezample 4.3.

0 0\ 1 /00 _
Example 4.3. Let T = (1 1) onH = C: ThenU = 7 (1 1) and |T| =
1 (11 11 ' —
7 - = [0,2]. More-
7 (1 1) . Also T(2,1) (1 1). It easy to find that W(T(2,1)) = [0,2] ore

over W(T) is a closed elliptic disc with foci at 0 and 1, and the major azis V2 and the
minor azis 1. This fact shows that W(T) excludes 2 and therefore W(T'(2,1)) is not a
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subset of W(T'). If the theorem were true for s+t # 1, then we would have in particular,
|T(s,t) = 2I|| < ||T — 2I| for all z. Then W(T(s,t)) C W(T), which is not correct.

As simple consequence of Proposition 2.3 and Theorem 4.1, we obtain the following
corollary.

Corollary 4.4. Let T € B(H). Then

W(f(T(s,t))) C W(f(T))
holds for s,t > 0 with s+t =1.

5. WHEN F(z) = W(f(T(z,1 - 1))).
Theorem 5.1. For an operator T and z € [0, 1], let
F(z) = W(f(T(z,1 - z))).

Then
(5.1) Flaz+ (1 - a)y) C aF(z) + (1 — a)F(y)
holds for all z,y € [0,1] and o € [0,1].
As a consequence of Theorem 5.1, the function ®(z) = w(T'(z,1— z)) turns out to be
a convex function on [0, 1].

Proof. Let T = U|T| be the polar decomposition. Firstly, we shall prove

(52) F(55Y) € 5F@ + Fu)

Note that for a positive invertible operator S and 4 € B(H),
1
Al < ElfSAS“I + S™TAS].

n (3]. Let & > 0 and |T.| = |T| + &l > 0. By the above inequality, we obtain
i (- L))

2
= |lF(IT/F UjT 5|

2+y z+y T—y

< ST ST UL + 105 f(T 5 O -5 )
= SUFULIS TP U015 + £ 1T - )|

—+hMMTWﬂPﬂ+ﬂﬁWWﬂkmlww~+m

= SIS, 1~ 2) + T 1 - )l
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Hence for any complex number A,

2 2
Since

WT)=({z€C: lz— A < |T - A|j},

AeC

P(5) - (5-5Y))
(f(T(w,l —x));f(T(y,l —y)))

W (T(e,1 - 2) + W(H(T(y, 1 - v)))}

{F(z) + F(y)}-

we have

N
S

N

l

NI b= DO =

Next, we will extend (5.2) to (5.1) From (5.2), one can easily derive

Ty A+ Ton 1
F(zl T2 on 2 ) Q 27{F($1)+F($2)++F($2n)}
for all z; € [0,1] (¢ =1,2,---). Hence for any rational number a € [0, 1], we have (5.1).

Since F' is continuous, we have (5.1) for any real number «a € [0, 1].

This completes the proof. d
Remark 5.2. The conclusion of Theorem 5.1 cannot be strengthened further to
Floz + (1 - a)y) = aF(z) + (1 - a)F(y)

as Ezample 5.8 will show. However, whether the range of F' is conver remains as an

open problem.

Example 5.3. For a > 0, let

016 0 0
00 00
=1y 0 00
00 00
Then
0 168 0 0
0 0 00
Tst)=1g o o 0
0 0 00
Then F(z) =W (T(z,1~2z)) ={2: |2| <"} Letz =1,y =2 anda =1 Then

(1) F(3) =Flaz+ (1-a)y)={z: |2/ <2}
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(i) F(z) ={z: |2| < 4}.
(iti) Fly) ={z: [s| <1}.
Hence

F(;—) =F(az+(1-a)y)={z: |z <2}
C {20 |21 < 2} = aF(@) + (1- o) F(y)

Corollary 5.4. Let T' be an operator. Then

WIE) = F (3) €3 76+ Fa- o)}
C 5 AF () + F(L- 1)) ST

holds for all 3 <s<t<1.

Proof. Since } = #£=% and F(z) = W(f(T(z,1 - z))) C W(F(T)) for z € [0,1], we
have '

W((T) =F (%) c -;—{F(s) + F(1-s)} by Theorem 5.1

CW(f(T)) by Corollary 4.4.

Next, let 3’ < s <t < 1. Then we have [1 — 5,s] C [l —t,¢]. Then there exist
a1, 0y € [0,1] such that

s=oait+(1-a)(1-t) and 1-s=apt+(1—a)(l—1).
By an easy calculation, we have a; + a = 1, and by Theorem 5.1, we have

-;—{F(s) +F(L=5)} € Pt (= a) F(L ~ 1) + 0P () + (1 - ag) F(1 — 1)}

- %—{F(t) +F(1-1)}.
0

As a simple consequence of Corollary 4.4, one can see that if T is covexoid then so
is T(s,t) with W(T'(s,t)) = W(T). The converse is obvious. However, if we do not
assume W(T'(s,t)) = W(T), then mere convexoidity of T'(s,t) does not guarantee that
T is convexoid even if # is finite dimensional. To see this, we refer to Example 4.3.

=~ 1
That convexoidity of T = = (i D is clear from the fact that it is selfadjoint. On

2
the other hand as conv o(T) = [0,1] # W(T), T is not convexoid. However, if H is

finite-dimensional, then our next result will show that the condition W (T(s, 1)) = W(T)
is just equivalent to the convexoidity of 7. In case H is infinite dimensional, we do not
know the validity of this result.
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Corollary 5.5. For a n x n matriz T, the following assertions are mutually equivalent:
(i) T is convezoid.
(i) W(T) = W(T).
(iil) W(T'(so,1 — s9)) = W(T') for a fized s € (0,1).
(iv) W(T'(s,1 — s)) = W(T) for all s € [0,1].

In order to prove Corollary ‘5.5, we shall need the following theorem, a remarkable
result due to Ando [2].

Theorem A ([2]). Let T be a n x n matriz. Then T is convezoid if and only if W(T) =
w(T).

Proof. (i) <=> (ii) has been shown in Theorem A. (iv) == (ii), (iii) are obvious. So only
we have to show (ii) = (iv) and (iii) = (ii).
Proof of (ii) == (iv). Since W(T'(s,1 —s)) C W(T') and W(T'(1 — s,5)) C W(T) for
all s € [0,1] hold and Corollary 5.4, we have
~ 1
W(T) =W(T) C {W(T(s,1~5)) + W(T(1 ~5,5))}

c %{W(T(s, 1 8))+ W(T)} CW(T).
Then we have
(5.3) %{W(T(s, 1—38))+W(T)} = W(T).

For any 6 € [0,2~), let A be an extreme point of Re €W (T'). Then by (5.3), there exist
A € Re e®W(T) and p; € Re e®W(T'(s,1 — s)) such that
— AL+

2
Since Re ¢®W (T is a line segment, and ) is a extreme point of Re e W (T’), it must be
M= X = y; € Re e?W(T(s,1 - s)), ie., Re ?W(T) C Re ®W(T(s,1 — s)) for any
6 € [0,2m). Since W(T') is convex, and W(T'(s,1 — s)) C W(T') always holds, we have
W(T) =W(T(s,1—s)) for all s € [0, 1].

A

Proof of (iii) = (ii). We may assume so > i. For each s, € (3,1), there exists

a/€ (0,1) such that

1
50—_—0{—2—+(1—a)'1.
Then by Theorem 5.1,

| W(T) = W(T(s0,1 - o)) € aW(T) + (1 — a)W(T(1,0)) € W(T).

By the same argument of the above one, we have W (T) = W(T). O




42

Remark 5.6. In (iii) of Corollary 5.5, s, must not be 0 or 1, because of T is invertible,
then U is unitary and W(T) = W(T(0,1)) = W(T(1,0)). But in general, W(T) #
W(T).
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