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1 Introduction

Let $\Omega\subset 1\mathrm{R}^{N}$ be an open, connected and possibly unbounded subset of $\mathrm{R}^{N}$ , and let $u(x)$ be a
bounded ffom above and upper semicontinuous function on the closure of 0, in symbols

$\sup u$ く十 $\infty$ , $u\in USC(\overline{\Omega})$ ,
$\ovalbox{\tt\small REJECT}$

satisfying in the viscosity sense a second order fully nonlinear differential inequality of the form

$F$($x,u$ , Du, $D^{2}u$ ) $\geq 0$ in O. (1)

In the recent paper [5], we gave an answer to the following question:
when the Maimum Principle -MP in short - holds for inequality (1), that is what assumptions
on the domain $\Omega and/or$ on the operator $F$ can ensure the validity of the implication

$u\leq 0$ on an $=$, $u\leq 0$ in 1?

When looking at previous results about MP for unbounded domains, one can distinguish
basically two kinds of results

4 general comparison principles, which include MP as a special case, between viscosity
subsolutions and supersolutions of fully nonlinear equations. Within this approach, the
operator $F(x, u,p, X)$ : $\Omega$ xlRx $1\mathrm{R}^{N}\mathrm{x}S^{N}arrow$ IR is assumed to satisfy, besides the degenerate
ellipticity inequality, some structural growth conditions and the strict monotonicity with
respect to the $u$ variable. On the other hand, no assumptions on the domain $\Omega$ are required,
and even the case $\Omega=1\mathrm{R}^{N}$ is allowed
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4 for strong solutions of linear uniformly elliptic second order differential inequalities with
bounded coefficients, that is for functions $u$ satisfying

$\{$

$\mathrm{t}\mathrm{r}(A(x)D^{2}u)+\mathrm{b}(\mathrm{x})$ . $Du+c(x)u\geq 0$ $\mathrm{a}.\mathrm{e}$. in $\Omega$ ,
$u\in W_{10\acute{\mathrm{c}}}^{2N}(\Omega)$ , $\sup_{\Omega}u<+\infty$

,

MP has been obtained as a consequence of the (improved) Alexandrov-Bakelman-Pucci
(ABP in short) estimate. In this case, a large monotonicity in the zero order term is
allowed, namely the requirement $c(x)\leq 0$ holds, but some geometric restrictions on the
domain 0 are assumed.

For the former approach, we refer to the results obtained by R. Jensen, $\mathrm{P}.\mathrm{L}$ . Lions & $\mathrm{P}.\mathrm{L}$ .
Souganidis [9] and by H. Ishii [8], and included in the celebrated “User’s guide” of M. Crandall,

H. Ishii &P.L. Lions [6]. In the latter case, we refer to the results of H. Berestycki, L. Nirenberg
& S.R.S. Varadhan [1] and of X. Cabr6 [2], as well as to the further extensions by V. Cafagna
& A. Vitolo [3] and by A. Vitolo [12].

Let us observe that, in general, MP does not hold for even linear uniformly elliptic in-
equality not strictly monotone with respect to the $u$ variable. As a simple example, $u(x)=$

$1-1/|x|^{N-2}$ , with $N\geq 3$ , is a bounded subharmonic (actually, harmonic) function in the exte
rior domain $\Omega=1\mathrm{R}^{N}$ ( $\overline{B}_{1}(0)$ and constantly equals zero on the boundary, while being strictly

positive inside $\Omega$ . Thus, widely speaking, some extra assumptions are needed in order to obtain
MP .

In this notes, after recalling the method pursued for linear operators, we present the results
obtained in [5], which extend it to viscosity solutions of fully nonlinear inequalities.

2 ABP estimate in the linear case.
Let $u$ be a bounded from above strong solution of the following linear differential inequality

$\{$

$\mathrm{t}\mathrm{r}(A(x)D^{2}u)+\underline{b}(x)$ . $Du+c(x)u\geq f(x)$ $\mathrm{a}.\mathrm{e}$. in $\Omega$ ,
$u\in W_{1\mathrm{o}\mathrm{c}}^{2,N}(\Omega)$ , $\sup_{\Omega}u<+\infty$

,

with bounded coefficients satisfying

$\lambda I_{N}\leq A(x)\leq$ A $I_{N}$ , $\mathrm{c}(\mathrm{x})\leq 0$ for $\mathrm{a}.\mathrm{e}$. $x\in\Omega$ ,

and source term such that
$f\in L^{N}(\Omega)$ .

The ABP estimate assumes different forms according to the boundedness properties of the

domain $\Omega$ .

2,1 ABP for bounded domains.

In the standard case of a bounded domain, the ABP estimate states that (see $\mathrm{e}$. $\mathrm{g}$ . [7])

$\sup_{\Omega}u\leq\lim_{xarrow}\sup_{\partial\Omega}u+C$
diam(0) $||f^{-}||\iota^{N}(\Omega)$ ’

where $f^{-}$ is the negative part of the function $f$ and $C>0$ is a constant depending on $N$ , on
the ellipticity constants A and $\Lambda$ , and on the product diam(0) $||\underline{b}||_{L}\infty(\Omega)$ .
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2.2 ABP for domains having finite measure.
In this case, by assuming further that $f\in \mathrm{R}(\mathrm{Q})$ , H. Berestiycki, L. Nirenberg & S.R.S.
Varadhan [1] proved that

$\sup_{\Omega}u\leq\lim_{xarrow}\sup_{\partial\Omega}$ ti $+C$ meas (O) $\frac{2}{N}||f^{-}||_{L}\infty\langle\Omega)$ ,

with $C>0$ depending on $N$ , $\lambda$ , $\Lambda$ , and on the product meas(F2) $\frac{1}{N}||\underline{b}||_{L}\infty(\Omega)$ .

2.3 ABP for certain unbounded domains.

The general case of an unbounded domain has been considered by X. Cabre [2], under the
following geometric condition that will be referred to as condition (G) :

there exist constants $\sigma,\tau\in(0,1)$ and $R(\Omega)>0$ such that, for all $y\in\Omega$ , there is a ball $B_{R_{y}}$ ,
containing $y$ and having radius $R_{y}\leq R(\Omega)$ , which satisfies

meas $(B_{R_{y}}\backslash \Omega_{y,\tau})\geq\sigma$ meas $(BR_{y})$ ,

where $\Omega_{y,\tau}$ is the connected component of $\Omega\cap B_{R_{\mathrm{W}}/\tau}$ containing $y$ .
Roughly speaking, the requirement $R_{y}\leq R(\Omega)$ for all $y\in\Omega$ imposes in a measure theoretic
sense that there is “enough boundary” uniformly near to every point of 0. The positive constant
$R(\Omega)$ plays the role of the diameter for un unbounded domain. Examples of domains satisfying
condition (G) include all the domain having finite measure, in which case we have $R(\Omega)=$

$(2\mathrm{m}\mathrm{e}\mathrm{a}\mathrm{s}(\Omega)/\mathrm{m}\mathrm{e}\mathrm{a}\mathrm{s}(B_{1}))^{1/N}$ , and all the cylinders, for which $\mathrm{R}(\mathrm{Q})$ equals the diameter of their
bounded projections.
If $\Omega$ satisfies (G) , the improved ABP estimate obtained in [2] states that

$\sup_{\Omega}u\leq\lim_{x-}\sup_{\partial\Omega}$ ti $+CR(\Omega)||f^{-}||_{L^{N}(\Omega)}$ ,

with $C>0$ depending on $N$ , $\lambda$ , $\Lambda$ , and on the product $R(\Omega)||\underline{b}||_{L(\Omega)}\infty$ .

3 ABP and MP in the fully nonlinear case.
Let $u$ be a bounded from above viscosity solution of the following fully nonlinear differential
inequality

$\{$

$F$ ($x,u$ , Du, $D^{2}u$) $\geq f(x)$ in $\Omega$ ,
$u\in USC(\overline{\Omega})$ ,

$\mathrm{s}_{\frac{\mathrm{u}}{\Omega}}\mathrm{p}u<+\infty$

. (P)

Here we assume that $f$ $\in$ CIF2) $\cap L^{\infty}(\Omega)$ . Furthermore, the continuous real valued function
$F$ : $\Omega \mathrm{x}$ IR $\mathrm{x}\mathrm{R}^{N}\mathrm{x}S^{N}arrow \mathrm{R}$ (with $S^{N}$ being the set of $N\mathrm{x}N$ real symmetric matrices) is
assum ed to satisfy, besides the degenerate ellipticity inequality

$F(x,t,p,X)\geq F(x, t,p,Y)$ $(\mathrm{F}_{1})$

for all $x\in\Omega$ , $t\in \mathrm{R}$ , $p\in \mathrm{R}^{N}$ and $X$ , $Y\in \mathrm{S}^{N}$ with $X-\mathrm{Y}\geq \mathrm{O}$ , the following bound from above

$F(x, t,p,X)\leq P_{\lambda,\Lambda}^{+}(X)+b(x)|p|$ $(\mathrm{F}_{2})$
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for all $x\in\Omega$ , $p\in 1\mathrm{R}^{N}$ , $X\in \mathrm{S}^{N}$ and $t\geq 0$ . We assume that $b\in C(\Omega)\cap L^{\infty}(\Omega)$ is a nonnegative
function and we denote by $\mathcal{P}_{\lambda,\Lambda}^{+}$ the Pucci maximal operator, defined as {see $[4, 6])$

$P_{\lambda,\Lambda}^{+}(X).= \sup_{A\in A}$ Tr $(AX)=\Lambda \mathrm{B}(X^{+})-\lambda \mathrm{R}$ $(X^{-})$ ,

where $A$ $=A$ $(\lambda, \Lambda)=\{A\in \mathrm{S}^{N} : \lambda I\leq A\leq\Lambda I\}$ , and $X^{+}$ and $X^{-}$ are nonnegative definite
matrices such that $X=X^{+}-$ $X^{-}$ and $X^{+}X^{-}=O$ .
Let us point out that assumptions $(\mathrm{F}_{1})$ , (F2) are satisfied by any uniformly elliptic proper
operator $F$ having linear growth with respect to first order terms. Furthermore, if $F$ satisfies
$(\mathrm{F}_{1})$ and its principal part $F(x, 0,0, X)$ is linear with respect to $X$ , then condition (F2) implies

the uniform ellipticity of $F(x, 0,0, X)$ . Indeed, by using (F2) with $X=\pm Q$ and $Q\geq O$ , it

follows that

$F(x, 0, 0, Q)\leq \mathcal{P}_{\lambda,\Lambda}^{+}(Q)=$ A $\mathrm{T}\mathrm{r}(Q)$ , $F(x, 0,0, -Q)\leq \mathcal{P}_{\lambda,\Lambda}^{+}(-Q)=-\lambda \mathrm{b}$ $(Q)$ ,

and then, by linearity,

ATr $(Q)\leq F(x, 0,0, Q)\leq\Lambda \mathrm{T}\mathrm{r}$ $(Q)$ , $\forall Q\geq O$ .

On the other hand, assumptions $(\mathrm{F}_{1})$ , (F2) include also nonlinear, possibly degenerate, elliptic

operators, such as the following one

$F(x, t,p, X)= \Lambda(\sum_{i=1}^{N}\varphi(\mu_{i}^{+}))$ $-$ A $( \sum_{i=1}^{N}\psi(\mu_{i}^{-}))$ 十 $H(x, t,p)$ ,

where $\mu_{i}$ , $\mathrm{i}=1$ , $\ldots$
$N$, are the eigenvalues of the matrix $X\in \mathrm{S}^{N}$ , $\varphi$ , $\psi$ : $[0, +\infty)arrow[0, +\infty)$

are continuous and nondecreasing functions such that $\varphi(s)\leq s$ and $\psi(s)\geq s$ for all $s\geq 0$ , and

$H(x,t,p)$ is a continuous function such that $H(x, t,p)\leq b(x)|p|$ for all $x\in\Omega$ , $t\geq 0$ and $p\in \mathrm{R}^{N}$ .

3.1 ABP for bounded domains.

When the domain $\Omega$ is bounded, the ABP estimate has also in the fully nonlinear case the form

$\sup_{\Omega}u\leq\sup_{x\in\partial\Omega}u^{+}+C$ diam$(\Omega)||f^{-}||_{L^{N}(\Omega)}$ ,

where $C>0$ is a constant depending on $N$ , on the ellipticity constants A and $\Lambda$ , and on the

product diam(H) $||b||_{L^{\infty}(\Omega)}$ . This has been proved by L. Caffarelli &X. Cabre [4] if the operator
$F$ does not depend on the gradient variable, and then extended by A. Persello [11] to complete

fully nonlinear operators satisfying $(\mathrm{F}_{1})-(\mathrm{F}_{2})$ , and by S. Koike &T. Takahashi [10] to operators

having superlinear growth with respect to the gradient.

3.2 ABP and MP for certain unbounded domains

Here and henceforth we assume that the domain 0 satisfies the following condition, which will

be referred to a $(\mathrm{w}\mathrm{G})$

there exist constants $\sigma$, $\tau\in(0,1)$ such that, for all $y\in\Omega$ , there is a ball $B_{R_{y}}$ containing $y$ which

satisfies
meas $(B_{B_{l}}\backslash \Omega_{y,\tau})\geq\sigma$ meas (B&),
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where $\Omega_{y,\tau}$ is the connected component of $\Omega\cap B_{R_{y}/\tau}$ containing $y$ .
Note that condition $(\mathrm{w}\mathrm{G})$ is exactly the same as (G) but not requiring any uniform bound on
the radii $R_{y}’ \mathrm{s}$ . Typical examples of domains satisfying $(\mathrm{w}\mathrm{G})$ (and failing (G) ) are cones, for
which $R_{y}=O(|y|)$ as $|y|arrow\infty$ .
Under assumption $(\mathrm{w}\mathrm{G})$ we have thhe following localized version of ABP estimate.

Theorem 1 (see [5]) Let $u$ be a solution of (P), with $F$ and $\Omega$ satisfying respectively $assumprightarrow$

tions (F2) $-(\mathrm{F}_{2})$ and $(\mathrm{w}\mathrm{G})$ . Then, for every $y\in\Omega$ , there exists a costant $\theta_{y}\in(0,1)$ , depending
on $N_{7}\lambda$ , $\Lambda$ , $\sigma$ , $\tau$ and on $y$ through the quantity $R_{y}||b||_{L}\infty(\Omega_{y,\tau})$ ’ such that

$w^{+}(y) \leq(1-\theta_{y})\sup_{\Omega}w^{+}+\theta_{y}\sup_{\partial\Omega}w^{+}+R_{y}||f^{-}||_{L^{N}(\Omega_{y,\tau})}$ . (2)

If either the operator $F$ does not depend on the gradient or the domain $\Omega$ satisfies condition
(G) , then the costant $\theta_{y}$ appearing in (2) is independent of $y$ . In this case, from (2) with $f\equiv 0$

we immediately obtain the following

Corollary 2 Assume that F satisfies $(\mathrm{F}_{1})-(\mathrm{F}_{2})$ and that (wG) holds true for $\Omega$ . ij either (F2)
is satisfied with b $\equiv 0$ or 0 satisfies (G), then MP holds for the operator F in the domain 0.

In order to obtain a global ABP estimate for fully nonlinear inequalities in unbounded
domains we need to assume, besides condition $\langle$ $\mathrm{w}\mathrm{G})$ on 0 and assumptions $(\mathrm{F}_{1})-(\mathrm{F}_{2})$ on $F$ ,
a further requirement coupling the geometry of the domain with the growth of the first order
coefficients. Precisely, we have the following result.

Theorem 3 (see [5]) Let $\Omega$ , F and u be as in Theorem 1. If further
$\sup R_{y}||b||_{L(\Omega_{y,\tau})}\infty<$ oo , $(*)$

$y\in\Omega$

where $R_{y}$ and $\Omega_{y,\tau}$ are as in $(\mathrm{w}\mathrm{G})$ and $b$ is as in (F2), then

$\sup_{\Omega}w\leq\sup_{\theta\Omega}w^{+}+C\sup_{y\in\Omega}R_{y}||f^{-}||_{L^{N}(\Omega_{y,\tau})}$

for some positive constant $C$ depending on $N$, $\lambda$ , $\Lambda$ , $\sigma$ , $\tau$ and
$\sup_{y\in\Omega}R_{y}||b||_{L\infty(\Omega_{\mathrm{y},\tau}\cdot)}$

.

For f $\geq 0$ , Theorem 3 immediately yields the following

Corollary 4 Under the same assumptions of Theorem 3, the Maimum Principle holds for the
operator F in the domain 0.

4 Examples and further extensions.
4.1 On the necessity of condition $(*)$ for MP .
For a complete second order operator condition $(\mathrm{w}\mathrm{G})$ alone is in general not enough for MP to
hold. A counterexample (see [12]) is given by the functio

$u(x)$ $=u(x_{1}$ , $2 $)$ $=(1-\mathrm{e}^{1-x_{1}^{\alpha}})(1-\mathrm{e}^{1-x_{2}^{\alpha}})$ ,
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with $0<\alpha<1$ . Indeed, $u$ is bounded and strictly positive in the plane cone

$\Omega=\{x=(x_{1},x_{2})\in \mathrm{I}\mathrm{R}^{2} : x_{1}>1, x2>1\}$ ,

and it satisfies
$u\equiv 0$ on an, Au $\mathrm{b}\{\mathrm{x}$). $Du=0$ in $\Omega$ ,

where the vector-field $\underline{b}$ is given by

$\underline{b}(x)=\underline{b}(x_{1},x_{2})=(\frac{\alpha}{x_{1}^{1-a}}+\frac{1-\alpha}{x_{1}},$ $\frac{\alpha}{x_{2}^{1-\alpha}}+\frac{1-\alpha}{x_{2}})$ .

Notice that $\Omega$ satisfies $(\mathrm{w}\mathrm{G})$ with $R_{y}=O(|y|)$ as $|y|arrow\infty$ and, on the other hand, condition
$(\mathrm{F}_{2})$ holds with $b(x)=|\underline{b}(x)|$ . Since for every $y\in\Omega$ and for any choice of $B_{R_{y}}$ we have
$||b||_{L^{\mathrm{m}}(\Omega_{y,\tau})}\geq 1$ and $\sup_{y\in\Omega}R_{y}=+\infty$ , condition $(*)$ clearly fails in this example.

4.2 An application.

Let us look at some special non trivial cases in which condition $(*)$ is fulfilled.

(a) Consider the half cylinder $\Omega=\{(x’,x_{N})\in \mathrm{R}^{N-1}\mathrm{x}\mathrm{R} : |x’|<1, x_{N}>0\}$ . Since 4) satis-
fies condition (G) , then $(*)$ is satisfied if $b$ in assumption (F2) is any nonnegative bounded
and continuous function.

(b) $\Omega$ is a convex set with “parabolic” boundary, i.e.

$\Omega=$ { $(x’,x_{N})\in \mathrm{R}^{N-1}\mathrm{x}$ IR : Xy $>|x^{l}|^{q}$ }

with $q>1$ . Then, $\Omega$ satisfies assumption $(\mathrm{w}\mathrm{G})$ with radii $R_{y}=O(|y|^{1/q})$ as $|y|arrow\infty$ . In

this case, requirement $(*)$ imposes to the function $b$ a rate of decay $b(y)=O(1/|y|^{1/q})$ as
$|y|arrow\infty$ . If so, the balls $B_{R_{t}}$ in $(\mathrm{w}\mathrm{G})$ can be chosen in such a way that $||b||L\infty(\Omega_{y,\tau})=$

$O(1/|y|^{1/q})$ as $|y|arrow$ oo and $(*)$ is fulfilled.

(c) $\Omega$ is the strictly convex cone $\{x\in \mathrm{I}\mathrm{R}^{N}\backslash \{0\} : x/|x|\in\Gamma\}$ where $\Gamma$ is a proper subset of

the unit half-sphere $S_{+}^{N-1}=$ { $x=(x’,x_{N})\in \mathrm{R}^{N-1}\mathrm{x}$ IR : $|x|=1$ , xy $>0$ }. In tlns case,

condition $(\mathrm{w}\mathrm{G})$ is satisfied with $R_{y}=O(|y|)$ for $|y|arrow\infty$ and condition $(*)$ requires on
the coefficient $b$ the rate of decay $b(y)=O(1/|y|)$ as $|y|arrow\infty$ .

Note that cases (a) and (c) can be seen as limiting cases of situation (b) when, respectively,
$qarrow+\infty$ and $q=1$ .

4.3 MP for domains not satisfying (wG).

The validity of MP can be extended to even more general domains, not satisfying $(\mathrm{w}\mathrm{G})$ , by

repeatedly applying the argument of Corollary 4.
More precisely, let $F$ be a second order operator satisfying $(\mathrm{F}_{1})-$(F2) and assume that there

exists a closed set $H\subset\Omega$ with the following properties

(i) MP holds for $F$ in each connected component of $\Omega\backslash H$ ;
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(ii) $(\mathrm{w}\mathrm{G})$ holds for all points of $H$ , i.e. there exist constants $\sigma$, $\tau\in(0,1)$ such that for all
$y\in H$ there is a ball $B_{R_{y}}$ of radius $R_{y}$ containing $y$ such that

$|B_{R_{y}}\backslash \Omega_{y,\tau}|\geq\sigma|B_{R_{y}}|$ ,

where $\Omega_{y,\tau}$ is the connected component of $\Omega\cap$
$B_{R_{y}/\tau}$ containing $y$ ;

(iii)
$\sup_{y\in H}R_{y}||b||_{L(\Omega_{y,\tau}\rangle}\infty<$

oo ,

where $R_{y}$ and $\Omega_{y,\tau}$ are as in (ii) and $b$ is as in (Fg),

In this situation we have the following

Theorem 5 (see [3, 5, 12]) Assume that F satisfies conditions $(\mathrm{F}_{1})-(\mathrm{F}_{2})$ and that assumptions
(i), (ii) and (iii) above hold for $\Omega$ . Then, MP holds for operator F in $\Omega$ .

As a consequence of the above result, MP can be obtained in non-convex, perhaps degen-
erate cones. For instance, if $F$ satisfies (F2) with a coefficient $b(x)$ such that $b(x)=O(1/|x|)$ as
$|x|arrow\infty$ , then MP holds for $F$ in the cat plane $\Omega=\mathrm{R}^{2}\backslash \{(x_{1},0)\in \mathrm{R}^{2} : x_{1}\leq 0\}$ , as it follows
from Theorem 5 with e.g. $H=\{(x_{1}, -x_{1})\in 1\mathrm{R}^{2} : x_{1}<0\}$ .
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