WKB ANALYSIS TO NORMAL FORM THEORY OF VECTOR FIELDS (Microlocal Analysis and Related Topics)

Author(s)
Yoshino, Masafumi

Citation
数理解析研究所講究録 (2005), 1431: 187-194

Issue Date
2005-05

URL
http://hdl.handle.net/2433/47374

Type
Departmental Bulletin Paper

Textversion
publisher

Kyoto University
WKB ANALYSIS TO NORMAL FORM THEORY OF VECTOR FIELDS

Masafumi Yoshino
Graduate School of Sciences
Hiroshima University

1. INTRODUCTION

In this note we shall study the relations between the exact asymptotic analysis of a so-called homology equation and the normal form theory of a singular vector field. A homology equation is a system of partial differential equations which appear in linearizing a singular vector field by the change of independent variables. We shall introduce a WKB solution of a homology equation which is a natural extension of the one introduced by Aoki-Kawai-Takei for the Painlevé equation. We then give a new unexpected connection between Poincaré series and the WKB solution via resummation procedure.

2. HOMOLOGY EQUATION

Let $x = (x_1, \ldots, x_n) \in \mathbb{C}^n$, $n \geq 2$ be the variable in \mathbb{C}^n. We consider a singular vector field near the origin of \mathbb{C}^n

$$\mathcal{X} = \sum_{j=1}^{n} a_j(x) \frac{\partial}{\partial x_j}, \quad a_j(0) = 0, \quad j = 1, \ldots, n,$$

where $a_j(x)$ ($j = 1, 2, \ldots, n$) are holomorphic in some neighborhood of the origin. We set

$$X(x) = (a_1(x), \ldots, a_n(x)), \quad \frac{\partial}{\partial x} = (\frac{\partial}{\partial x_1}, \ldots, \frac{\partial}{\partial x_n}),$$

and write

$$\mathcal{X} = X(x) \cdot \frac{\partial}{\partial x}, \quad X(x) = \Lambda x + R(x),$$

$$R(x) = (R_1(x), \ldots, R_n(x)), \quad R(x) = O(|x|^2),$$

where Λ is an n-square constant matrix.
We want to linearize \mathcal{X} by the change of variables,
\[(T), \quad x = u(y), \quad u = (u_1, \ldots, u_n), \]

namely,
\[
X(u(y)) \frac{\partial y}{\partial x} \frac{\partial}{\partial y} = X(u(y)) \left(\frac{\partial x}{\partial y} \right)^{-1} \frac{\partial}{\partial y} = \Lambda y \frac{\partial}{\partial y}.
\]

It follows that u satisfies the equation
\[
X(u(y)) \left(\frac{\partial u}{\partial y} \right)^{-1} = \Lambda y,
\]
that is
\[
\Lambda u + R(u) = \Lambda y \frac{\partial u}{\partial y}.
\]

Hence, the vector field \mathcal{X} is linearized by (T) iff u satisfies the following homology equation
\[
\mathcal{L}u \equiv \Lambda y \frac{\partial u}{\partial y} = \Lambda u + R(u).
\]

For simplicity, we rewrite the variable y as x, and we assume that Λ is a diagonal matrix with diagonal components given by $\lambda_i, i = 1, \ldots, n$ in the following. Then \mathcal{L} is given by
\[
\mathcal{L} = \sum_{i=1}^{n} \lambda_i x_i \frac{\partial}{\partial x_i}.
\]

Hence the homology equation is written in the following form
\[
\mathcal{L}u_j = \lambda_j u_j + R_j(u), \quad j = 1, \ldots, n.
\]

3. WKB solution of a homology equation

Introduction of a large parameter

The natural way of introducing a large parameter in the symmetric form of a Painlevé equation is the following
\[
\eta^{-1} U'_1 = \lambda_1 + U_1(U_2 - U_3) \\
\eta^{-1} U'_2 = \lambda_2 + U_2(U_3 - U_1) \\
\eta^{-1} U'_3 = \lambda_3 + U_3(U_1 - U_2).
\]

This is identical with the one introduced by Aoki-Kawai-Takei from the viewpoint of a monodromy preserving deformation apart from some minor constant. In view of the similarity of the homology equation to
the symmetric form of a Painlevé equation, we introduce the large parameter in the homology equation in the following way

\[\eta^{-1} \mathcal{L} U_j = \eta^{-1} \mathcal{L}(\log u_j) = \lambda_j + \frac{R_j(u)}{u_j}, \quad j = 1, \ldots, n, \]

where \(U_j = \log u_j \).

A WKB solution (0 - instanton solution)

For the sake of simplicity we set \(u(x) = x + v(x) \) in the original homology equation and we introduce a large parameter \(\eta \) by the above argument. The resultant equation is

\[(HG)_\eta \quad \eta^{-1} \mathcal{L} v_j = \lambda_j v_j + R_j(x + v(x)), \quad j = 1, \ldots, n. \]

Definition (WKB solution). A WKB solution (0 - instanton solution) \(v(x, \eta) \) of \((HG)_\eta \) is a formal power series solution of \((HG)_\eta \) in the form

\[v(x, \eta) = \sum_{\nu = 0}^{\infty} \eta^{-\nu} v_\nu(x) = v_0(x) + \eta^{-1} v_1(x) + \cdots, \tag{3.1} \]

where the series is a formal power series in \(\eta \) with coefficients \(v_\nu(x) \) holomorphic vector functions in \(x \) in some open set in \(\mathbb{C}^n \) independent of \(\nu \).

By setting \(v = (v^1, \ldots, v^n) \) we substitute the expansion (3.1) into \((HG)_\eta \). First we note

\[\mathcal{L} v^j = \sum_{\nu = 0}^{\infty} \mathcal{L} v^j_\nu(x) \eta^{-\nu}, \]

\[R_j(x + v) = R_j(x + v_0 + v_1 \eta^{-1} + v_2 \eta^{-2} + \cdots) = R_j(x + v_0) + \eta^{-1} \sum_{k=1}^{n} \left(\frac{\partial R_j}{\partial x_k} \right) (x + v_0) v_1^k + O(\eta^{-2}). \]

By comparing the coefficients of \(\eta, \eta^0 = 1 \) and \(\eta^{-1} \) of both sides of \((HG)_\eta \) we obtain

\[\lambda_j v_0^j(x) + R_j(x_1 + v_0^1, \ldots, x_n + v_0^n) = 0, \quad j = 1, 2, \ldots, n, \tag{3.2} \]

\[\mathcal{L} v_0^j = \lambda_j v_1^j + \sum_{k=1}^{n} \left(\frac{\partial R_j}{\partial x_k} \right) (x + v_0) v_1^k, \quad j = 1, 2, \ldots, n. \tag{3.3} \]
In order to determine \(v_\nu(x) \) \((\nu \geq 2)\) we compare the coefficients of \(\eta^{-\nu}\). We obtain

\[
(3.4) \quad \mathcal{L}v_{\nu - 1}^j = \lambda_j v_\nu^j + \sum_{k=1}^{n} \left(\frac{\partial R_j}{\partial z_k} \right) (x + v_0)v_k^j
\]

+ (terms consisting of \(v_k^j, k \leq \nu - 1 \) and \(j = 1, \ldots, n \)).

In order to determine \(v_\nu \) from the above recurrence relations we need a definition. Let \(\Lambda \) be the diagonal matrix with diagonal components given by \(\lambda_1, \ldots, \lambda_n \) in this order.

Definition (turning point). The point \(x \) such that

\[
(3.5) \quad \det (\Lambda + (\partial R/\partial z)(x + v_0)) = 0
\]

is called a *turning point* of the equation \((HG)_{\eta}\).

Assumption. We assume

\[
(A.1) \quad \lambda_j \neq 0, \quad j = 1, \ldots, n.
\]

Note that the origin \(x = 0 \) is not a turning point of \((HG)_{\eta}\) for any holomorphic \(v_0(x) = O(|x|^2) \), because \(\det \Lambda \neq 0 \).

Then, we have

Proposition Assume that \(\det \Lambda \neq 0 \). Then every coefficient \(v_\nu(x) \) of a WKB solution is uniquely determined as a holomorphic function in some neighborhood of the origin \(x = 0 \) independent of \(\nu \).

Proof. The function \(v_0^j(x) \) is holomorphic at the origin \(x = 0 \) and satisfies that \(v_0^j(x) = O(|x|^2) \). Hence it is uniquely determined by \((3.2)\) in view of the implicit function theorem. Then the functions

\[v_k^j(x), \quad k = 1, 2, \ldots, j = 1, \ldots, n \]

can be uniquely determined by \((3.4)\) as holomorphic functions in some neighborhood of the origin by the assumption because the origin \(x = 0 \) is not a turning point of the equation. We note that \(v_k^j(x) \) are determined recursively by differentiation and algebraic manipulations. This implies that all \(v_k^j(x) \) are holomorphic in some neighborhood of the origin independent of \(\nu \). \(\square \)

Definition (Resonance condition). We say that \(\eta \) is *resonant*, if

\[
(3.6) \quad \sum_{i=1}^{n} \lambda_i \alpha_i - \eta \lambda_j = 0,
\]

for some \(\alpha = (\alpha_1, \ldots, \alpha_n) \in \mathbb{Z}_+^n, |\alpha| \geq 2 \) and \(j, 1 \leq j \leq n \). If \(\eta \) is not resonant, then we say that \(\eta \) is *nonresonant*.
Definition (Poincaré condition) We say that a homology equation satisfies a Poincaré condition, if the convex hull of \(\lambda_j, (j = 1, \ldots, n) \) in the complex plane does not contain the origin.

If a Poincaré condition is not verified, then we assume the following condition

\[
\lambda_j \in \mathbb{R}, \quad j = 1, \ldots, n.
\]

In this case, there are two important cases, namely, a Diophantine case and Liouville case. In the former case, either a Siegel condition or a Bruno (type) Diophantine condition is verified among \(\lambda_j, j = 1, \ldots, n \).

If no such conditions are satisfied, then we say that we are in a Liouville domain under our assumption.

We note that, if a Poincaré condition is verified, then the number of resonance is finite, while in a Siegel case, the number of resonance is, in general, infinite. Moreover the resonance may be a dense subset of a real line.

4. **Summability of a WKB solution in a Poincaré domain**

For the direction \(\xi, (0 \leq \xi < 2\pi) \) and the opening \(\theta > 0 \) we define the sector \(S_{\xi,\theta} \) by

\[
S_{\xi,\theta} = \left\{ \eta \in \mathbb{C}; \left| \text{Arg} \, \eta - \xi \right| < \frac{\theta}{2} \right\},
\]

where the branch of the argument is the principal value. Then we have

Theorem 1. (Resummation) Suppose that

\[
(C) \quad | \text{Arg} \, \lambda_j | < \frac{\pi}{4}, \quad j = 1, \ldots, n.
\]

Then, there exist a direction \(\xi \), an opening \(\theta > \pi \), a neighborhood \(U \) of the origin \(x = 0 \) and \(V(x, \eta) \) such that \(V(x, \eta) \) is holomorphic in \((x, \eta) \in U \times S_{\xi,\theta}\) and satisfies \((HG)_\eta\). The function \(V(x, \eta) \) is a Borel sum of the WKB solution \(v(x, \eta) \) in \(U \times S_{\xi,\theta} \) when \(\eta \to \infty \). Namely, for every \(N \geq 1 \) and \(R > 0 \), there exist \(C > 0 \) and \(K > 0 \) such that

\[
(4.2) \quad \left| V(x, \eta) - \sum_{\nu=0}^{N} \eta^{-\nu} v_\nu(x) \right| \leq CK^N N! |\eta|^{-N-1},
\]

\(\forall (x, \eta) \in U \times S_{\xi,\theta}, \, |\eta| \geq R. \)

Remark. The condition \((C)\) implies the Poincaré condition.
5. RECONSTRUCTION OF A POINCARE SOLUTION VIA ANALYTIC CONTINUATION OF A WKB SOLUTION

We shall make an analytic continuation (with respect to η) of a resummed WKB solution to the right half plane. We note that there exist an infinite number of resonances on the right-half plane $\text{Re} \eta > 0$ which accumulate only at infinity. The solution may be singular with respect to η at the resonances. We have

Theorem 2. Suppose that (C) is verified. Then the resummed WKB solution is analytically continued to the right half plane as a single-valued function except for resonances. If the nonresonance condition holds, then the analytic continuation of a resummed WKB solution to $\eta = 1$ coincides with a classical Poincaré solution of a homology equation.

Next we consider the case where a Poincaré condition is verified, while the condition (C) is not satisfied. The essential difference in this case is that there is not a unique correspondence between the WKB solution and the Poincaré solution.

Theorem 3. Suppose that the Poincaré condition is verified. Then, there exist a direction ξ, an opening $\theta > 0$, a neighborhood U of the origin $x = 0$ and $V(x, \eta)$ such that $V(x, \eta)$ is holomorphic in $(x, \eta) \in U \times S_{\xi, \theta}$ and satisfies $(HG).$ The WKB solution $v(x, \eta)$ is a Gevrey 2 asymptotic expansion of $V(x, \eta)$ in $U \times S_{\xi, \theta}$ when $\eta \to \infty$.

The function $V(x, \eta)$ is analytically continued with respect to η to the right half plane as a single-valued function except for resonances. If the nonresonance condition is verified, then we can take $V(x, \eta)$ such that the analytic continuation of $V(x, \eta)$ to $\eta = 1$ coincides with a classical Poincaré solution of a homology equation with $\eta = 1$.

6. WKB SOLUTION IN A SIEGEL DOMAIN

In this section we assume that we are in a Siegel domain. Moreover, we assume, for the sake of simplicity

$\lambda_j \in \mathbb{R} (j = 1,2, \ldots, n)$ are linearly independent over \mathbb{Q}. Then the set of all resonances is dense on \mathbb{R}. We have

Theorem 4. Under the above conditions, there exist a direction ξ, an opening $\theta > 0$, a neighborhood U of the origin $x = 0$ and $V(x, \eta)$ such that $V(x, \eta)$ is holomorphic in $(x, \eta) \in U \times S_{\xi, \theta}$ and satisfies (HG). The WKB solution $v(x, \eta)$ is an asymptotic expansion of the function $V(x, \eta)$ in $U \times S_{\xi, \theta}$ when $\eta \to \infty$.
The function $V(x, \eta)$ is analytically continued with respect to η to the upper (respectively lower) half plane as a single-valued function. If the nonresonance condition is verified, then we can take $V(x, \eta)$ such that

\[
\lim_{\pm \eta \to 1} V(x, \eta)
\]

does not exist as a formal power series and they coincide with a Siegel solution of a homology equation as a formal power series solution.

Remark. i) We do not know whether the WKB solution $v(x, \eta)$ is a Gevrey asymptotic expansion of $V(x, \eta)$ in $U \times S_{\xi, \theta}$ when $\eta \to \infty$.

ii) On the real line \mathbb{R}, $V(x, \eta)$ has dense singularities in η. Hence, $V(x, \eta)$ cannot be continued analytically to the point $\eta = 1$.

References

Present adress: Graduate School of Sciences, Hiroshima University, Higashi-Hiroshima, 739-8526, Japan. e-mail: yoshino@math.sci.hiroshima-u.ac.jp