Title: Hyperbolic equations with non analytic coefficients well posed

Author(s): Kinoshita, Tamotu; Spagnolo, Sergio

Citation: 数理解析研究所講究録 (2005), 1431: 30-36

URL: http://hdl.handle.net/2433/47376

Type: Departmental Bulletin Paper

Textversion: publisher

Kyoto University
Hyperbolic equations with non analytic coefficients well posed in all Gevrey classes

By 木下保 and Sergio SPAGNOLO
(Tamotu KINOSHITA)

Institute of Mathematics
University of Tsukuba
Tsukuba, Ibaraki
305-8571, Japan
e-mail: kinosita@math.tsukuba.ac.jp

Dipartimento di Matematica
Università di Pisa
via F. Buonarroti 2i
56127 Pisa, Italy
spagnolo@dm.unipi.it

1 Introduction

This paper is devoted to the initial value problem (IVP) in the strip [0, T] x R_x for higher order, homogeneous, hyperbolic equations

\[
\begin{align*}
\partial_t^m u &= \left[a_1(t) \partial_x \partial_t^{m-1} + a_2(t) \partial_x^2 \partial_t^{m-2} + \cdots + a_m(t) \partial_x^m \right] u, \\
\partial_t^h u |_{t=0} &= u_h(x), \quad h = 0, \ldots, m-1,
\end{align*}
\]

(1)

The coefficients \(a_j(t) \) are smooth, real functions on \([0, T]\). The hyperbolicity means that

\[
z^m - \sum_{j=1}^{m} a_j(t) z^{m-j} = \prod_{j=1}^{m} (z - \lambda_j(t)) \quad \text{with} \quad \lambda_1(t) \leq \lambda_2(t) \leq \cdots \leq \lambda_m(t).
\]

We say that (1) is well posed in a given functional space \(\mathcal{X} \) if it admits a unique solution \(u \in C^m([0, T], \mathcal{X}) \) for all data \(u_0, \ldots, u_{m-1} \in \mathcal{X} \).
We denote by $\gamma^s = \gamma^s(R)$, where $s \geq 1$, the class of Gevrey functions of order s, i.e., the smooth functions φ satisfying

$$|\partial_x^h \varphi(x)| \leq \Lambda_K^{h+1} h!^s, \quad \forall h \in \mathbb{N}, \quad \forall x \in K, \quad \forall K \subset \subset R,$$

and we define

$$\gamma^\infty = \bigcup_{s \geq 1} \gamma^s.$$

Hence we have, denoting by $C^\omega = C^\omega(R)$ the class of real analytic functions,

$$C^\omega = \gamma^1 \subset \gamma^s \subset \gamma^{s'} \subset \gamma^\infty \subset C^\infty,$$

if $1 < s < s'$. When (1) is well posed in γ^s for all $s \geq 1$, we say that it is well posed in γ^∞. Note that the well-posedness in γ^∞ is very close to that in C^∞.

If the coefficients a_j are constant, we know that (1) is well posed in $C^\infty(R_x)$, but this result fails in case of variable coefficients. In any case, we have the well-posedness in some Gevrey classes; indeed we know, by Bronshtein's theorem ([B]), that (1), with smooth coefficients $a_j(t)$, is well posed in γ^s for

$$1 \leq s < 1 + \frac{1}{m-1}. \quad (2)$$

However, the upper bound in (2) can be sensibly improved for the special class of equations

$$u_{tt} = a(t) u_{xx}, \quad a(t) \geq 0. \quad (3)$$

Indeed, we know that (see [CJS])

i) if $a(t) \in C^\omega$, the IVP for (3) is well posed in C^∞,

ii) if $a(t) \in C^\infty$, the IVP for (3) is well posed in γ^∞,

and, more precisely,

iii) if $a(t) \in C^k$, we have the well-posedness in γ^s for $1 \leq s < 1 + k/2$. These results are optimal.

It is natural to try to extend this kind of results to higher order equations. In 1999, F. Colombini and N. Orrú found the following criterion of well-posedness for the equations (1), in case of analytic coefficients,

$$\lambda_i(t)^2 + \lambda_j(t)^2 \leq M (\lambda_i(t) - \lambda_j(t))^2, \quad 1 \leq i < j \leq m, \quad (4)$$

where M is a uniform constant, by proving

Theorem [CO] Let $a_j(t) \in C^\omega([0, T])$ with $a_j(0) = 0 \ (1 \leq j \leq m)$. Therefore, (1) is well posed in C^∞ if and only if its characteristic roots satisfy (4).
The main purpose of this paper is to release the assumption of analyticity on the coefficients, and to prove that, even if these are C^∞, condition (4) ensures the well-posedness in γ^∞.

Theorem 1 Assume that the characteristic roots of (1) satisfy (4), and the coefficients $a_j(t)$ are C^∞ functions on $[0,T]$. Then, (1) is well posed in γ^∞.

More precisely, if $a_j \in C^k([0,T])$ for some $k \geq 2$, (1) is well posed in γ^s for

$$1 \leq s < 1 + \frac{k}{2(m-1)}.$$

When the a_j's belong to $C^\omega([0,T])$, (1) is well posed in C^∞.

Remark 1 If we introduce the discriminant of the equation (1), i.e.,

$$\Delta(t) = \prod_{i<j} (\lambda_i(t) - \lambda_j(t))^2,$$

we can write (4) in the equivalent form

$$\sum_{1 \leq i < j \leq m} \left[(\lambda_i(t)^2 + \lambda_j(t)^2) \prod_{1 \leq h < k \leq m} (\lambda_h(t) - \lambda_k(t))^2 \right] \leq M' \Delta(t).$$

Now, the left side of (6) is a symmetric polynomial in the roots λ_i, hence, by Newton's theorem, it is also a polynomial in the coefficients $\{a_1(t), \cdots, a_m(t)\}$. Thus (6), hence also (4), can be explicitly written in terms of the a_j's, instead of the λ_j's. For instance, for the second order equations $u_{tt} = a(t) u_{xx} + b(t) u_{tx}$, we have $\lambda_1^2 + \lambda_2^2 = \Delta/2 + b^2/2$, hence the condition (4) is equivalent to

$$\Delta(t) \equiv b(t)^2 + 4a(t) \geq cb(t)^2 \quad (c > 0).$$

2 The energy estimates

The well-posedness of (1) in the analytic class γ^1 is well known, by the theorem of Bony and Shapiira. Thus, we shall prove Theorem 1 only for $s > 1$.

Setting $U = (\partial_x^{m-1} u, \cdots, \partial_x^{m-j} \partial_t^{j-1} u, \cdots, \partial_t^{m-1} u)^t$, and

$$A(t) = \begin{pmatrix} 0 & 1 & 0 & \cdots & \cdots \\ 0 & 1 & \ddots & \ddots & \ddots \\ \vdots & \ddots & \ddots & \ddots & \ddots \\ 0 & 1 & \cdots & \cdots & \cdots \\ a_m(t) & \cdots & a_2(t) & a_1(t) \end{pmatrix},$$

(7)
we transform the scalar equation (1) into the system

$$U_t = A(t) U_x, \quad U(0, x) = U_0(x),$$

which becomes, by Fourier transform \(V(t, \xi) = \mathcal{F}_x U(t, x),\)

$$V'(t, \xi) = i \xi A(t) V(t, \xi), \quad V(0, \xi) = V_0(\xi).$$

In [DS] it was constructed, for any hyperbolic matrix (7), a quasi-symmetrizer \(Q_\epsilon(t) = Q_\epsilon(t)^*, 0 < \epsilon < 1,\) with the following properties:

\[
\begin{cases}
Q_\epsilon(t) = Q_0(t) + \epsilon^2 Q_1(t) + \ldots + \epsilon^{2(m-1)} Q_{m-1}(t), & \\
Q_0(t), Q_1(t), \ldots, Q_{m-1}(t) & have the same regularity in t of A(t),
\end{cases}
\tag{10}
\]

\[
\epsilon^{2(m-1)} |V|^2 \leq (Q_\epsilon(t)V, V) \leq C |V|^2, \\
|\{(Q_\epsilon(t)A(t) - A^*(t)Q_\epsilon(t))V, V\}| \leq C \epsilon (Q_\epsilon(t)V, V).
\tag{11}
\]

From the existence of a \(Q_\epsilon(t)\) satisfying (10)–(12), we easily derive (see [DS]) the \(\gamma^s\) well-posedness of (8) for \(s < 1 + 1/(m - 1),\) i.e., the Bronshtein's bound, as soon as \(A(t)\) is hyperbolic and of class \(C^2\) in a neighborhood of \([0, T].\) We recall shortly the proof. Putting

\[
E_\epsilon(t, \xi) = (Q_\epsilon(t)V(t, \xi), V(t, \xi)),
\]

\[
K_\epsilon(t, \xi) = \frac{|(Q_\epsilon'(t)V(t, \xi), V(t, \xi))|}{(Q_\epsilon(t)V(t, \xi), V(t, \xi))},
\]

we get, by (9),

\[
E_\epsilon' = (Q_\epsilon'(t)V, V) + i \xi ((Q_\epsilon A - A^* Q_\epsilon)V, V) \leq \{K_\epsilon(t, \xi) + C \epsilon |\xi|\} E_\epsilon. \tag{13}
\]

To estimate \(K_\epsilon,\) we apply the \textit{Glaeser's inequality} (where \(f(t) \geq 0\ in a neighborhood of [0, T])

\[
|f'(t)| \leq C(\delta) f(t)^{1/2} ||f||_{C^2[-\delta, T+\delta]}^{1/2}, \quad \forall \delta > 0,
\]

to the functions \(t \mapsto (Q_\epsilon(t)V, V),\) for fixed \(V \in C^m.\) Note that, by (10), these are nonnegative and equi-bounded in \(C^2\) on a neighborhood \(\tilde{I}\) of \([0, T].\)
Thus we get, for each vector $V \neq 0$,

$$\frac{|(Q_{\epsilon}^{l}(t)V, V)|}{(Q_{\epsilon}(t)V, V)^{1/2}|V|} \leq C_{0}||Q_{\epsilon}||_{C^{2}(I)}^{1/2} \leq C_{1} \quad \forall t \in [0, T],$$

where C_{0}, C_{1} are constants independent of V and ϵ. Replacing V by $V(t, \xi)$ and recalling (11), we obtain

$$K_{\epsilon}(t, \xi) \leq C_{1}\epsilon^{-(m-1)} \quad \forall t \in [0, T], \quad (14)$$

whence, going back to (13),

$$E_{\epsilon}'(t, \xi) \leq \{C_{1}\epsilon^{-(m-1)} + \epsilon|\xi|\}E_{\epsilon}(t, \xi).$$

If we choose $\epsilon = |\xi|^{1/m}$, by Gronwall's inequality and (11), we derive the apriori estimate

$$|V(t, \xi)| \leq C|\xi|^{1/\sigma}e^{C|\xi|^{1/\sigma}}|V_{0}(\xi)|,$$

with $\sigma = 1 + \frac{1}{m-1}$. (15)

This ensures the γ^{s} well-posedness for $1 < s < 1 + 1/(m-1)$. Indeed, for any compact supported $U(x)$, we see that $U \in \gamma^{s}$ if and only if, for some positive constants C, δ, ν,

$$|\hat{U}(\xi)| \leq C|\xi|^\nu e^{-\delta|\xi|^{1/\sigma}} \square$$

To overpass, in (15), the bound $s < 1 + 1/(m-1)$ we must improve (14). To this end we need, first of all, that $A(t)$ is more regular than C^{2}; moreover, the quasi-symmetrizer $Q_{\epsilon}(t)$ must behave like a diagonal matrix.

Definition 1 A family Q of nonnegative matrices will be called nearly diagonal (ND) if there is a constant $c_{0} > 0$ such that, for all $Q \in \mathcal{Q}$,

$$(QV, V) \geq c_{0}(\Lambda_{Q}V, V), \quad \forall V \in \mathcal{C}^{m}, \quad (16)$$

where

$$\Lambda_{Q} = \begin{pmatrix} q_{11} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & q_{mm} \end{pmatrix}.$$

For the nearly diagonal quasi-symmetrizer $Q_{\epsilon}(t)$, we get the following:

Proposition 1 Assume that $A(t)$ admits a quasi-symmetrizer $Q_{\epsilon}(t)$ which satisfies (10)–(12) and (16). Therefore:

i) if $A(t) \in \mathcal{C}^{k}([0, T]), \ k \geq 2$, (8) is γ^{s} well posed for $1 < s < 1 + k/[2(m-1)]$,

ii) if $A(t) \in \mathcal{C}^{\omega}([0, T]),$ (8) is well posed in \mathcal{C}^{∞}.
3 Construction of the quasi-symmetrizer

To define the quasi-symmetrizer, we first put:

Notation: \(T^* = \begin{pmatrix} T & 0 \\ 0 & 0 \end{pmatrix} \in \mathcal{M}^{m \times m} \), where \(T \in \mathcal{M}^{k \times k} \) \((k < m)\).

Then, we define the \(m \times m \) matrix \(Q^{(m)}(\lambda) \), by setting (inductively)

\[
\begin{cases}
Q^{(1)}(\lambda) = 1, \\
Q^{(m)}(\lambda) = Q^{(m-1)}(\lambda) + \varepsilon^2 \sum_{i=1}^{m} [Q^{(m-1)}(\pi_i \lambda)]^2.
\end{cases}
\]

Putting

\(S_M = \left\{ \lambda \in \mathbb{R}^m : \lambda_i^2 + \lambda_j^2 \leq M (\lambda_i - \lambda_j)^2, \text{ for all } 1 \leq i < j \leq m \right\} \),

we get the following:

Proposition 2 For each \(M > 0 \), the family of matrices

\(Q_M = \left\{ Q^{(m)}(\lambda) : 0 < \varepsilon < 1, \lambda \in S_M \right\} \)

is nearly diagonal in the sense of Definition 1.

The scalar problem (1) is equivalent to (8) where \(A(t) \) is given by (7). Proposition 2 ensure that \(Q^{(m)}(t) \) satisfies (16), and we can apply Proposition 1 to reach the conclusion of Theorem 1.

References

