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1 Introduction

This paper is devoted to the initial value problem (IVP) in the strip [0, 7] X R
for higher order, homogeneous, hyperbolic equations

aru = (a8 + a)B0F + - +an(HOF | u,
(1)

OMulimg = wn(z), h=0,....,m—1,

The coefficients a;(t) are smooth, real functions on [0, 7. The hyperbolicity
means that '

zm—in: a;(t)z™ 7 = ﬁ(z-)\j(t)) with  A(t) < Ao(t) < -+ < Aplt).

We say that (1) is well posed in a given functional space X if it admits a
unique solution u € C™([0,T], X) for all data ug,...,um-1 € X.



We denote by v* = v*(R), where s > 1, the class of Gevrey functions of
order s, i.e., the smooth functions ¢ satisfying

fp(z)| < AR5, VheN, VzeK, VKCCR,

and we define
,yoo — U ’YS-

s>1

Hence we have, denoting by C¥ = C¥(R) the class of real analytic functions,
C“":'ylcfyscfys’cfy""ccc’o, if 1<s<s.

When (1) is well posed in +* for all s > 1, we say that it is well posed in y*°.
Note that the well-posedness in ¥ is very close to that in C*.

If the coefficients a; are constant, we know that (1) is well posed in C*° (Ry),
but this result fails in case of variable coefficients. In any case, we have the well-
posedness in some Gevrey classes; indeed we know, by Bronshtein’s theorem
([B]), that (1), with smooth coefficients a;(?), is well posed in v* for

1
1< 1 —_— 2
< s < +m—1 ()

However, the upper bound in (2) can be sensibly improved for the special

class of equations
Uy = oft) Ugs , a(t) > 0. - (3)

Indeed, we know that (see [CJS])
i) if at) € C®, the IVP for (3) is well posed in C*,
i) if a(t) € C™®, the IVP for (3) is well posed in v,
and, more precisely, A

iii) if a(t) € C*, we have the well-posedness in 7* for 1< s < 1+k/2.
These results are optimal.

It is natural to try to extend this kind of results to higher order equa-
tions. In 1999, F. Colombini and N. Orrd found the following criterion of well-
posedness for the equations (1), in case of analytic coefficients,

MO+ N < MM -X0)?,  1<i<j<m, (4)

where M is a uniform constant, by proving
Theorem [CO] Let a;(t) € C*([0,T)) with a;(0)=0 (1 <j < m). There-
fore, (1) is well posed in. C* if and only if its characteristic roots satisfy (4).
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The main purpose of this paper is to release the assumption of analyticity
on the coefficients, and to prove that, even if these are C®, condition (4)
ensures the well-posedness in v*°.

Theorem 1 Assume that the characteristic roots of (1) satisfy (4), and the
coefficients a;(t) are C* functions on [0,1"]. Then, (1) is well posed in y>.
More precisely, if a; € C*([0,T]) for some k > 2, (1) is well posed in v* for

1< 14+ ——=.
<s< +2(m—1)

When the a;’s belong to C¥([0,T)), (1) is well posed in C=.

Remark 1 If we introduce the discriminant of the equation (1), i.e.,
A(t) = TT @) = M())%, (5)
i<j

we can write (4) in the equivalent form

Y[+ n0) T ) - M0)] < MAG. ()
si<ism

Now, the left side of (6) is a symmetric polynomial in the roots X;, hence, by
Newton’s theorem, it is also a polynomial in the coefficients {a;(t), - -, am(f)}.
Thus (6), hence also (4), can be explicitly written in terms of the a;’s, instead of
the A;’s. For instance, for the second order equations uy = a(t) gy + b(t) Use ,
we have \? + A2 = A/2+b?/2, hence the condition (4) is equivalent to

A(t) = b(t)? +4a(t) > cbt)*  (c>0).

2 The energy estimates

The well-posedness of (1) in the analytic class v* is well known, by the theorem
of Bony and Shapira. Thus, we shall prove Theorem 1 only for s > 1.

Setting U = (B;nﬁlq% e ,8;71“.78?“1 U, - ,azn_l'l_b)t , and

0 1 0

0 1 :
Alt) = |, (7)

am, (t} Ca [25] (t) aq (t)



we transform the scalar equation (1) into the system
U, = Alt)U,, U0,z) = Uplz), (8)
which becomes, by Fourier transform V(t,¢&) = F,U(t, z),
V'(t,€) = iCAV(EE), V(0,8 = V(8. )

In [DS] it was constructed, for any hyperbolic matrix (7), a quasi-symmetrizer
Q.(t) = Q.(t)*, 0 < € < 1, with the following properties:

{ Q:(t) = Qot) + 2 Qu(t) + ... +&*™ D Qn_y(t), where (10)

Qo(t), @1(t), ... ,Qm-1(t) have the same regularity in ¢ of A(t),
2D VR < (QOVV) < OV, (1)
| ({Q:(AR) — A ())Q:()}V, V)| < Ce(Q()V, V). (12)

From the existence of a Q.(t) satisfying (10)—(12), we easily derive (see
[DS]) the v* well-posedness of (8) for s < 14 1/(m — 1), i.e., the Bronshtein’s
bound, as soon as A(t) is hyperbolic and of class C? in a neighborhood of
[0, 7). We recall shortly the proof. Putting

E.(t,€) = (Q:(V(L,€), V(£ €)),

KE(t7 5) =

)

[(Q(V(2,6),V(E,€) |
(Q:MV(t,€),V(t,6)

we get, by (9),
— (QLOV,V) + i€ ((QA-A"QIV,V) < {K.(t,6) + Celél} Ex. (13)

To estimate K., we apply the Glaeser’s inequality (where f(t) > 0in a
neighborhood of [0, T)

0 < CO) F ISt sasss  FO>0,

to the functions t — (Q.(t)V, V), for fixed V € C™. Note that, by (10), these
are nonnegative and equi-bounded in C? on a neighborhood I of [0, 7.
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Thus we get, for each vector V # 0,

Q)Y V) 12
GCXOVARE G CollQellgerzy < G W E[0,T],

where Cp, C; are constants independent of V and . Replacing V by V(t,¢&)
and recalling (11), we obtain

K.(t,6) < Cye™™V, Vie[0,T], (14)
whence, going back to (13),

El(t,€) < {Cre™ ™ + e} Ba(t,6).

If we choose ¢ = [£]'/™, by Gronwall’s inequality and (11), we derive the
apriori estimate

V(O < IR W), with o =1+ ——.  (15)

This ensures the v° well-posedness for 1 < s < 1+ 1/(m — 1). Indeed, for any
compact supported U(z), we see that U € +° if and only if, for some positive
constants C, 4, v,

Il/s

U€) < Clefre®® o

To overpass, in (15), the bound s < 1+ 1/(m — 1) we must improve {14).
To this end we need, first of all, that A(t) is more regular than C%; moreover,
the quasi-symmetrizer Q. (¢} must behave like a diagonal matrix.

Definition 1 A family Q of nonnegative matrices will be called nearly diag-
onal (ND) if there is a constant cg > 0 such that, for all Q € Q,

(QV,V) > c(AQV, V), VYV eC™, (16)

qi1 0
AQ = el .
0 Grmm

For the nearly diagonal quasi-symmetrizer Q. (t), we get the following:

where

Proposition 1 Assume that A(t) admits a quasi-symmetrizer Qg(t) which
satisfies (10)—(12} and (16). Therefore:
i) if A(t) € C¥([0,T)), k > 2, (8) is v* well posed for 1<s< 1+k/[2(m —1)],

i) if A(t) € C¥([0,T7), (8) is well posed in C*°,
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3 Construction of the quasi-symmetrizer

To define the quasi-symmetrizer, we first put:

T 0

Notation: f
otation T (O 0

) € M™™  where T € MM (k< m).

Then, we define the m x m matrix QU™ (X), by setting (inductively)

QWM =1,
{ Q) = QM) + & Y[ (N

i=1

Putting
SNI:{AERm)\E-F/\?SM()\Z—)\J)Q, foralll§i<j§m},
we get the following:

Proposition 2 For each M > 0, the family of matrices
Ou = {ng)()x) c0<e<l, M€ SM}

is nearly diagonal in the sense of Definition 1.

The scalar problem (1) is equivalent to (8) where A(t) is given by (7).
Proposition 2 ensure that Q.(t) satisfies (16), and we can apply Proposition 1
to reach the conclusion of Theorem 1.
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