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Introduction

A constructible function ¢ on a real analytic or complex manifold X is a Z-valued
function which is constant along a stratification. We can choose a stratification
according to the problem under consideration, so we work with subanalytic
stratifications here. . ‘

In [6], P. Schapira defined Radon transforms of constructible functions. This
is a kind of integral transformations. We consider the following diagram:

_ S
X'V \gY

Here X and Y are real analytic or complex manifolds, S is a locally closed
subanalytic subset of X x Y, and f and ¢ are real or complex analytic maps,
respectively. Then we can define Radon transform Rs(¢) of a constructible
function ¢ on X by
Rs()= [ 178
g

In [6], P. Schapira obtained a formula for Rs in general situation. This for-
mula gives an inversion formula for Radon transforms of constructible functions
from a real projective space to its dual in the case where the whole dimen-
sion is odd. Here inversion means left inverse. We can, that is, reconstruct
a consbructible function ¢ on the projective space from its Radon transform
Rs(¢). As a result, we can reconstruct the original subanalytic set K from the
knowledge of the topological Euler numbers (K N H) for all affine hyperplane
H. .

Tu this lecture, we study Radon transforms of constructible functions from
X = F,1(p) to Y = Fny1(q). We denote it by Rni1;p,q)- Here F,.1(p) is
the Crassmann manifold, that is, the set of all the p dimensional subspaces
in an n + 1 dimensional vector space. We will construct inversion for Radon
transformation. When p is not equal to 1, the assumptions of Schapira’s formula
are not satisfied. So our situation is more complicated than Schapira’s situation.
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We first recall constructible functions and Schapira’s formula in the general
case. Since the calculation in the proof of Schapira’s formula is essentially
important to study our situation, we prove Schapira’s formula in this lecture.

In Section 2, we state only our results on Radon transforms of constructible
functions on Grassmann manifolds. First we modify Schapira’s formula in the
general case under the almost same assumptions as Schapira. This gives an
inversion formula for Radon transformation Rs. We can apply this formula to
Radon transformation R,i1;1,9). Second, we consider Radon transformation
Rin+1p,q) for p# 1. We obtain an inversion formula for this by modifying the
kernel function of this inversion transform under suitable conditions of p and g¢.
Moreover we prove that Radon transformation R(n41;p,n41-p) i the non-trivial
isomorphism between CF(F,.1(p)) and its dual CF(Fn1(n + 1 —p)). Here
CF(X) is the set of constructible functions on X.

1 Preliminaries

1.1 Constructible functions

We recall the notation and results on constructible functions without proofs.

For more details, we refer to [4].
For the simplicity, let X be a real analytic manifold.

Definition 1.1. A function ¢ : X — Z is set to be constructible if there exists
a locally finite family of compact subanalytic contractible subsets {K;}; of X
such that :

¢): ZcﬁlKi‘
i

Here ¢; € Z and 14 is the characteristic function of the subset A.
We denote by CF(X) the abelian group of all the constructible functions on
X, and by €. Zx the sheaf U +» CF(U) on X.

Example 1.2. Let D& __(X) be the derived category of the category of com-

plexes of R-constructible sheaves and F € Ob(D}_ (X)) (the base ring is a field
k with characteristic zero). Then its local Euler-Poincaré index

X(F)(z) = Z(-Dj dimH (F)e

is a constructible function.

From now on, x denotes the local Euler-Poincaré index.

Theorem 1.3 (([4, Theorem 9.7.11}}). For any ¢ € CF(X), there exisis an
F ¢ Ob(Dg_ (X)) such that ¢ = x(F).

Next, we recall operations on constructible functions [4]. These operations

~ are induced by operations of Kg_.(X) through the Euler-Poincaré index x.

Definition 1.4. Let X and Y be two real analytic manifolds, and f: ¥ — X
a real analytic map. :



(i) The inverse image : Let ¢ € CF(X). We set

o) = ¢(f w))-

Note that if ¢ = x(F'), then f*¢ = x(f*F).
(it) The integral : Let ¢ € CF(X). Assume that ¢ is represented as ¢ =
X(F) = ¥ cilg,. Here F € Ob(D}_.(X)), and {K;} is a locally finite

kA
family of compact subanalytic contractible subsets. Assume moreover that
¢ has compact support. Then we set

]X 4= e =x(RI(X;F))

(iii) The direct image : Let ¢ € CF(Y). Assume that f:supp(¢y) — X is
proper. Here supp(7') denotes a support of . We set

( /f w) @= [ 1w

Note that if % = x{(G) and f is proper on supp(G), then /zp = x(RAG).
f

Remark 1.5. Let A be a locally closet subset of a manifold X. Then the
integral 1, is not the usual integral, but a kind of topological integrals. By

X
Theorem 1.3 and the definition, we have the following equalities:
/ 14 = X(RI(X;ka)) = x(RT(X; 00 'kx)) = x(RI:(A; k4)) = X(4)-
X

Here kis R or C, i: A — X is an inclusion morphism and X, is the topological

Euler-Poincaré index with compact supports.
By the additivity of x., we have some examples;

/ 1oy =1, /1{0,1) =0, fl(o,:t) =L
i R R

Proposition 1.6.

(i) Inverse and direct images have functorial properties. Precisely, if f: Y —

X and g: Z — 'Y are real analytic maps, then we have;

(@) gof = (fogy, () ffffffg

(it} Consider a Cartesian diagram of morphisms of real analytic manifolds:

Yf _i Xl

hl O lg
y L. x.

Let € CF(Y). Suppose that f is proper on suppy. Then we have

s [o= [ oo
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1.2 Radon transforms of constructible functions and Schapira’s

formula

‘We recall the definition of Radon transforms of constructible functions and
Schapira’s formula ([6]).

Let X and Y be two real analytic manifolds, and .S a locally closed suban-
alytic subset of X x Y. Denote by p; and ps the first and second projections
defined on X xY, and by f and g the restrictions of py and py to S respectively:

XxY
U
P S P2 (1)
/ \
X ' Y.
We assume;
pa is proper on S (the closure of § in X x Y'). (2)

Definition 1.7. For a ¢ € CF{X), we set

Rs(6) = / £ / 15(39).

We call Rs(¢) the Radon transform of ¢.

Let " € Y x X be another locally closed subanalytic subset. We denote
again by pz and p; the first and second projections defined on Y x X, by f’ and
g’ the restrictions of p; and ps to S7, and by 7 the projection S }>§ S - X xX.

Then Schapira posed the following assumptions:

P} is proper on S’ (the closure of §' in ¥ x X)), (3)

- ; A (z#£7)
M, peZst A d x(r~ Yz, z') = e 4
peZss A pandxr e ={ ) EZT) ()

where x is the topological Euler-Poincaré index. We use the same symbol x as
the local Fuler-Poincaré index.
In this lecture, we refer to the assumption (4} as Schapira’s condition.
Under the notation above, Schapira’s formula state as follows.

Theorem 1.8 (([6, Theorem 3.1])). Assume (2), (3) and (4). Then, for any
¢ € CF(X), we have

R oRs(6) = (= N+ ( [ 26)1x

Proof. For the convenience of readers, we recall the proof of this theorem. De-

note by 2 and A’ the projections from § x §’ to § and S’ respectively.
v .

Consider the following diagram:

S x5
2N
XxX S’

LT TN



Since the square

Sxg g
Y

py O lg'
§—2 v

is of Cartesian, we have

Roorste) = [ @ [on=[ werra=] [rio
= /qzk(f%x’)q;‘cb.

Here we have

k‘({E,.’L‘]):/T*].XXX :/1gxgr.
r r ¥

By Schapira’s condition (4), we have

/15;55' =play + Alxsx\ay = (B —A)lay +Alxxx,
.,

where Ax is the diagonal of X x X.
Since / In, 10 = ¢ and f Ixxx @10 = / ¢, we obtain the result. [l
X

gz g2

In [6], Schapira applied this formula to correspondences of real flag manifolds;
that is, we consider the following diagram called the correspondence;

Fn-}-l(l? Q)
F \q\ (5)
Fn.|_1 1) Fn+1 (9)»

where f and g are projections.

We set R(nt151,q) = Rs and Rini1i0,1) = Rg:, where S = F,.1{l,¢) and
S" = F,,1(q,1). Then this situation satisfles the assumptions of Schapira’s
formula, because we have

A e Fr1(g—2) (33#331))
! (9“’“’)“{Fn(q~1) (z = ).

Therefore we can apply Theorem 1.8 to this case.

Proposition 1.9 (([6, Propositiond.1])). Consider the correspondence (5). For
any ¢ € CF(Fn11(1)), we have

Rint1g,1) © R(n+1;1,q)(¢)
= (g —1) = pn-1(g— 2))¢ + ttn-1(¢—2) (/ gb) 15, ,.(1)-
Fﬂ+1(1)

In particular, if n is odd, we obtain an inversion formula for Rini1;1,n)-

The topological meaning of this inversion formula is seemed to be interesting.
This inversion formula means that we can reconstruct the original subanalytic
set from the knowledge of the Euler-Poincaré indices of all its affine slices.
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2 Inversiqn transforms of Radon transforms of
constructible functions

We generalize (5); that is, we consider the following diagrams:

Fria(p) Fri1(q)
U

P Fn+1(p’ (I) § (6)

Fry1(p) Foi1(9)-

We set X = Fri1(p), Y = Fry1(g) and S = Fro 1 (p, q).
We consider the following problems;

(i) an inversion formula for R(,11;1,4) in the case where 1 is even or ¢ # n,
(ii) an inversion formula for Ry, .1;p,q) in the case where 1 <p and 1 < q.

Namely, we consider the reconstruction of ¢ from Rg(¢) on Grassmann

manifolds.
We remark that Schapira already considered this diagram (6) in [6], but he

could not obtain results for these problems..

2.1 A minor modification of Schapira’s formula

First, we modify Schapira’s formula. By modifying the kernel function of the
transposed transformation R/, we can obtain an inversion formula in general
case under the almost same assumtions as Schapira’s formula.

Definition 2.1. For a ¢ € CF(Y), we set
RA) = [ (u1s ~ M) i),
n

Definition 2.2. We define the transposed set of § by
S={(y, 2)eY xX |{z,y)e S}

In this section, we assume Schapira’s assumptions (2}, (3), (4) and the fol-
lowing assumption:

§=9. (7)
Proposition 2.3. Let ¢ € CF(X). Then we have
R oRs(¢) = plp — Mg

In particular, if (i — N) is not zero, we can reconstruct the eriginal con-
structible function ¢ from its Radon transform Rg(¢) by dividing the last term
by this eonstant p(u — ).



We apply this result to the complex or real Grassmann manifolds. We recall
the Euler-Poincaré index of the Grassmann manifold.
In the complex case, we have

o =(7) | ®)

In the real case, we have
0 (if p(n — p) is odd),

.
pn(p) = B (5)

(if p(re — p) is even).

Here E (g) denotes the integral part of g, Z) is the binomial coefficient.

We consider the correspondence (5). Then the assumptions (2}, (3), (4) and
(7) are satisfied. We remark that

p=pn(g—1), A=pn-1(g—2).

We consider the conditions of ¢ that p{u — A) # 0 from (8) and (9).
Therefore we can apply Proposition 2.3 to the Grassmann cases.

Proposition 2.4. We have u{u—X) # 0 if either one of the following conditions
are satisfied;

(i) g > 1 under the complex Grassmann case,
(1) ¢ is odd and 1 < g < n+ 1 under the real Grassmann case.

In particular, then we obtain an inversion formula for Ri,i1,1.4)-

2.2 Inversion formulas on Grassmann manifolds

For p < g, we consider the following diagram:

Fn—f—l(p) X Fn+1(Q)
U

ry/ Foa(p,q) NP2
£

Foalp Foya(g)
We set X = F,1(p), Y = F11{g) and S =F,1(p,q)-

We remark that Schapira’s condition (4) is not satisfied if 1 < p. This is
because 7~ 1 (21, T3) is (p+ 1)-th cases according to dim(z; Nzz).
We introduce new sets in order to construct to an inversion transformation

for Rin+1;p,9)-
Definition 2.5. We set
() Si={{y,z) €Y xX | dim(ynz) =1 }lori=0,1,---p,
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(i) Zj = {{z1,22) € X x X | dim(zyNag) =7 }forj=0,1,---p.
Consider the following diagram:
S x Sz

Y )
2 N
S X xX S,;
f ey '
/ o 2 \
X Y X.
Denote by h and k' the projections from S 5 S; to S and S’ respectively.

Note that Z, = {(z1,22) € X x X | &1 = z2} and we have / 17,416 = ¢
a2
In order to apply the same argument as in the proof of Theorem 1.8 and Section

2.1, we modify the kernel such that / (kernel) is equal to 1z,.

r

We can calculate [ 1gxg, by Schubert calculus [3]. This calculation is com-
Y

”
plicated but elementary, so we omit this calculation in this lecture. We set

P

4
(/ 1S><Se> (21,22) = 3 / Lso iz | 1z, =1 ) _cigla,e
Jr Y S})fs; J:O

§=0

Note that we can calculate these c;; concretely.
Here, we denote by CP¢ the square matrix {¢;j)o<i,j<p of size (p+1). Since
this is the lower triangular matrix, we have

p
|det CP4| = H Pn1—2p+5{(0 — P) (10)
§=0

in both cases. In particular it is Z-valued.
In the argument here after, we consider the case where det 7 £ (0. We
derive the following conditions for det C7 # 0 from (8) and (9):

(i} p+¢ <n-1 in the complex Grassmann case,
(ii) p-+¢g <n+1and g—pis even in the real Grassmann case.

Under the preliminaries above, we define the kernel function of an inversion

formula for Renr1;p,4)-
We obtain the equation

j:,. 15‘1\:5’0

1z Jr Lsxs:

Q
=
o3

il

1z, Jr 1sxs,
v



When det CP2 # 0, we can solve this equation with respect to 1z, by
Cramer’s formula:

( o0 0 e 0 J;, 1S>< So \
Y
€10 C11 T : fr Lsxs
X
detCP? .15 =det
z 0
Cp_"'}‘vg cp'“lrl et cp—l,p~1 J; 1S§(,Sp4l
\ Cpo - Cpt "t Cpp-1 fr 1555;, /
Definition 2.6. If det C7? 3£ 0, we set
Coo 0 s 0 ]_50
€10 €11 T : 1s,
Ky 4 = det 0
Cp—1,0 Cp—11 *°* Cpip-1 1ls, 4
Lp,0 Cpt "0 Cpp—1 s,

Then we can define R™1(¢) for a ¥ € CF(F,11(q)) by
RV = [ Kpq- (p50)-
W)= [ Koo 030

The main result is:

Theorem 2.7. If det CP4 £ 0, then for any ¢ € CF(F,11(p)) we have
Rfl ] R(n—i—l;p,q) (¢‘) = det Cp7q . ¢<

This means that we can Teconstruct the original constructible function ¢
from its Radon transform Rni1,p,q)(¢) by dividing the last term by the constant
det CP49. In particular, we obtain an inversion formula for Ri,q1p ) ¢ either
one of the following conditions are satisfied;

(i) p+¢ < n+1 under the complex Grassmann case,
(i) p+q <n+1 and g—p is even under the real Grassmann case.

Remark 2.8. In the argument above, we consider only the case where p < g.
However, we obtain results in other cases.
When p = ¢, the inversion formula is clear because Rin11:p,q) = 4CF(F, 11 (p))-
When p > g, by the duality, we can obtain

(nt+tl-py<(n+1-gq),
Fn—}—l(n+ pr) gF‘rH‘l(p);
Fn+1(n+1“Q) -'EFn-E-l(Q)‘

Then we have only to.consider the result in the case of p < ¢ by these dualities
of Grassmann manifolds. Namely, we obtain an inversion formula for Rny1,p,q)
if p+¢>n+ 1 in the complex case or if p+g>n+1andp—giseven in the
real case.
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For general p and g, our inversion formulas are not always inverse transforms
of Radon transformations. R~ gives only left inverse transformation. However,
we can show that R~ gives right inverse transformation by the same calculation

when p+¢=mn-+1.

Theorem 2.9. Let p+q=n+1 hold. The inversion transformation R~ de-
fined in Definition 2.6 gives the inverse transformation for Radon transforma-
tion Rynt1;p,4y- Namely, the Radon transformation Ry 1.p,q) @S the non-trivial
isomorphism from CF(Fyy1(p)) to CF(Fny1(q)) up to constant if either one of
the following conditions are satisfied;

(i) the complex case,

(ii) p+g=n+1 and g—p is even in the real case.
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