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The solution formula of the elastic equation
in plane-stratified media
and its applications for inverse problems

KIRARZEREGEFPER KLE (Sei Nagayasu)
Graduate School of Science, Osaka University

1 Iﬁtroduction and main result

Our problem originates from a simplified model of an experiment conducted
by geophysicists. We cannot directly observe the structure inside the earth.
Then, for example, we perform the following experiment in order to guess it:
We create an artificial explosion at a certain point near the earth’s surface.
Waves generated by the explosion travel in the earth. We observe the waves
on the earth’s surface, and determine the structure inside the earth from the
observation data.

We consider this problem, in particular, in the case when the earth con-
sists of some layers. This problem has been studied by Bartoloni-Lodovici-
Zirilli [1], Fatone-Maponi-Pignotti-Zirilli [2], Hansen [3], for instance. They
deal with the wave equation as the equation which describes the behavior
of waves in media. The wave equation is the most fundamental equation in
equations which describe the behavior of the waves. However, the earthquake
waves are described by the elastic equation rather than the wave equation.
Then, we deal with the elastic equation. On the other hand, we consider the
situation that the earth consists of two layers as the simplest case. Therefore,
our problem is as follows.

Assume that two media, Medium 1 and Medium 2, are laying in a half-
space, and the interface wall is parallel to the boundary of the half-space
(see Figure 1). We assume that the speeds of the (primary and shear) waves
and the density of the medium in Medium 1 are known, but the width
of Medium 1, the speeds of the waves and the density of the medium in
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Figure 1: The situation which we consider.

Medium 2 are unknown. Under this situation, we try to identify these un-
known data by using the known data or the data which can be observed near
the boundary.

Now, we introduce the notations and formulate the problem above. Let us
write 2’ = (Zg, 21, Z2), " = (21,2, z3) and " = (z1, ;) for the coordinate
z = (Tg, 1, Ta, z3) in R*. The variable zo plays the role of the time and z”
the physical space. We introduce z’ for short notation when we apply the
Fourier-Laplace transformations with respect to {zg, 1, z2)-

Let h>0, and ;= {z” € R®: 0 < z3 < h}, Qp := {z" € R® : 23 > h}.
The constant h describes the width of Medium 1, and Q; Medium % for
k=1,2. Weset D,, = (1/i)(8/0z;), Vor = (Day, Doyy Day), Do = D3 +
D2 + D2 Let ¢, Cs,, and p be positive real numbers and set

Pu(Dyyu = —D2u+ (¢, — ) Vor(Van - u) + c5, Agru,
Cngm;g 0 Cngml
By(D,) = ipy 0 ¢ D, ¢ D,
(cf,k - 2c§k)Dmx (cf,,e —2c2 )D., cf,kD23

for k = 1,2. We assume c,, > ¢, for k = 1, 2. The positive number
¢, describes the speed of the primary waves, c,, the speed of the shear
waves, p; the density of the medium in Q. Suppose 0 < y3 < h. Set
y" = (0,0,y3) € R%,, and y := (0,y") € R%
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We discuss the following equations:

P(D,)G(z) =6z —y)I, z€R, z" €y, (1)
Py(D,)G(z) =0, =z €R, ¢" €y, (2)
Bi(D.)G(Z)|ss=10 =0, &' € R3, (3)
G(2)|agmto = G(T)|as=hs0, T €R’, (4)
By(D4)G(2)|sg=h-0 = Ba(De)G(2)lzs=hro, 7' ER?, (5)

where I is the identity matrix of order 3. These equations describe the sit-
uation that the initial data are (6,0,0), (0,4,0), (0,0,6) at a point 3" €
at time zo = 0 with the boundary condition (3) and the interface or trans-
mission conditions (4) and (5). The equation (4) expresses the continuity of
the displacement of waves on the interface wall, and (5) the continuity of the
stress. We remark that we solve the equations (1)—(5) by the Fourier-Laplace
transformations (see Section 2). In this regard, in order not to vanish the
Lopatinski’s determinant, we assume some inequalities for the constants ¢,
Cpys Pr (see Nagayasu [6]).

The following main result says that except the special case we can recon-
struct the width h of €, the speeds c,,, cs, of the waves and the density p,
of the medium in ©, from the observation data G(z)|s;=0 when the speeds
Cpy» Cs, Of the waves and the density p; of the medium in £, are known.

Main result. Let ¢,,, ¢s,, p1 and ys be given. Assume that the observa-
tion data G(2)|zs=40 are given, where G(z) denotes the solution of the equa-
tions (1)-(5). Then the constants ¢,,, Cs,, pa are ezpressed with the known
data. Moreover, the constant h is ezpressed with the known data unless
G(z)|es=r0 = G()|zg=t0. Here G(z) describes the waves in the situation
that only one medium Medium 1 is laying in the half-space, that is, @(w) is
the solution of

Pi(D,)G(z) =68(z — )], =z €R, z" € R5,
Bi(D)G(%)|sgmso =0, 0 €R, (21,25) € R

On the other hand, if G(2)|ay=ro = G(Z)|ss=10 then h is not identified.

We remark that this main result is the result in Nagayasu [6]. Some of the
proof in Nagayasu [6] leave the proof in Nagayasu [5]. Then, in this paper,
by mixing the proofs in [5] and [6], we prove shortly in most cases.



2 The solution formula

In this section, we solve the mixed problem (1)-(5). We mainly refer to
Matsumura [4], Sakamoto (7], and Shimizu [8].

We first rewrite these equations. We define Fy(z) by the fundamental
solution of the forward Cauchy problem for P;(D,) in the whole physical
space R3,, namely, the inverse Fourier-Laplace transform of P{§ + )" in
the sense of distribution:

1 (64 e
Ei(z) = (o) /na‘* et mPl(E‘*‘”]) 1d§,
3

where we determine 7 so as to be able to define Ey(z) as the distribution
(see Shimizu [8]).
We put Fi(z) and Fp(z) by

Fi(z) = Ei(z —y) — G(z), 2" e, (6)
Fy(z) :== G(z), 2" € Q, (7)

respectively. Since the distribution Ey(z — y) describes the first propagation
of the waves due to a point source, the distribution Fy(z) describes the
propagation in §2; of the second waves caused by the first waves, the boundary
wall {z3 = 0}, and the interface wall {z3 = h}. By (6} and (7), we can rewrite
the equations (1)-(5) to the equations in Fi(z) and Fy(z). For example, the
equation (1) is rewritten as follows:

Pl(Dm)Fl(CL') = 0, Zg € R, $E” S Ql. (8)

Next, we take the Fourier-Laplace transformations with respect to z’ for
the equation (8) and so on. In order not to vanish the Lopatinski’s determi-

nant, we take the Fourier-Laplace transformations along Sy, == {(x(§'),&1,€2) :

¢ € RE}, where x(¢) = & — imlog(2 + 1€'1), and m is a positive real large
enough. The Lopatinski’s determinant does not vanish by the assumptions
for the constants cs,, Cp,, Pk, and Tarski-Seidenberg theorem and so on in
the same way to Matsumura [4]. Then we obtain

Pi(¢, Do) By (¢, 23) =0, O<z3<h (9)

and so on, where ¢! = (x(£),€1,&2) € S, Hereafter, for £ € R® we define ¢’
by (x(¢),€1,&) in this way. Moreover, we equate &3 to (3.
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Last, we apply V(¢")~* on the left and V(¢") on the right to the equation
(9) and so on, where

1 G 0 -G
V(") ==& 0 & |-
¢} 0 ¢ 0
Since

B¢ Dy = —vien [ PGP D e,

B¢ D) =i [ PGP D v

hold, we have

Pi1({', Day)pr(¢,23) =0, 0<a3<h, (10)
P?I(C,'; D-’Bs)(pZ(CI; $3) = 07 g > h‘1 (11)

Bi1(¢', Dy )1 (¢, 3) og=0 = —%/R e~ 8B () Pu(¢) des,  (12)
3

[p1(¢', 23) + 02(C’, 23)]zgmn = _2—17f—/m e'hus)s Py () dés, (13)
g3
[Bll(cl7 Dma)g‘ol(c’a $3) + Bﬁl(Clv Dﬂ:s)wﬁ(cla $3)] i33=h
= _% . ei(h_m)can(C)Pu(O_ldfa, (14)
£3
and
Plz(c’aDza)'ﬁbl(C,»mi%) = 09 0< T3 < h‘a (15)
Pyo({', Dy )a (¢ 23) =0, 3> h, (16)

Bl?(C,7 Da‘a)wl(clﬁ $3)1-’83=0 = "% /R eniyscsBlz(C)PIQ(C)‘ldE& (17>
€3

1

[1(¢, 23) + 12(C', 23)]leg=n = o ) efhmu)6 Py (¢) 1 dés, (18)
€3
[Bl‘Z(C,) Dz‘s)wl (Cls 273) + B22(€’: Dw3)¢2(cfa 1‘3)“23=h
= ___1- ei(h—yé)(sBlz(C)PIQ(O—ld&, (19)

271' Rﬁs



where Py;({’, Dz,) and By;(¢', D,,) are defined by

Pkl(gla Dms)

_ {C{‘,’ ( ikDﬁs + [ —(c, — 2 )¢ Da }
G )IC'"IDma @ - (Cfa,,Df,-a +c ¢ |

Pia(¢'s Day) —Co - & (D5, +1¢"),

Bii(¢', Dy,) = ipg !: (cpk G Zlc):j)lcml [C | ] )

Bia (¢, Day) = ipic}, Dey,

and ¢k(¢’, z3) and (¢, z3) are defined by

k(C,,ws) 0 1y —~1 / i
[SD 0 (' )} V(" F (¢, 25V () (20)

for k = 1,2. The equations (10)—(14) and (15)—(19) are the mixed problems
for the ordinary differential equations in essence with respect to ©x({’, z3)
and ¥r(¢’, z3), respectively. Hence we have

$1(¢, @5) = ax (€)1 + a_(¢)e %, (21)
Da((, 23) = by (¢')e ™2 (22)
by the equations (15) and (16), and

P11 (C:x ) — szlzs Kml z‘rplz:g lcmi
{ @12?((',3‘72) :I = Gl ]: } Ta-pe 1: —T, ]

'Pl ) Pi T+ (23)
+ (‘l-l-slewslx3 { Kml } + a_g€ —iTe T 1: K”Il jl
W?ll(CI:QCB) _ sz2m3 K—Nl[ 11'529:3 [ T:; }
[ <P221(C',:C3) ] N ﬂ+ple { pg ] FBrac "!C'”] (24)
for I = 1, 2 by the equations (10) and (11), where
) or11(¢’,23)  pri2({’, 3) :l
el 20) = { Oro1((’,23)  Prao((’, T3) (25)

and 7. (¢") [resp (C )] is the root with positive 1mag1nary part of the
equatlon inT: G—ci (G+E+72) =0[resp. ¢§ — 3, ((F+ ¢ +7°) =0 for
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k = 1,2. We can determine 4, and By (x = p, ) by the forms (23) and
(24) and the equations (12)-(14). In the same way, we can also determine
a and by by the forms (21) and (22) and the equations (17)-(19).

The above is the way of solving the equations (1)-(5). In the next section,
we prove our main result by using these formulas.

3 The sketch of the proof

In this section, we prove the main theorem in most cases.

First, we remark that the condition that “G(z}|s,=0 is given” is equivalent
to the condition that “p1(¢’, 23)|es=0 and ¥1({’, Z3)]as=0 are given” by (6) and
(20).

Now, we prove the following lemma. This lemma says that we obtain the
behavior of the waves in Medium 1 when the observation data are given.

Lemma 3.1. Let c,,, cs;, p1 and ys be given. Assume that the observa-

tion data N,(¢") = @1(¢’, T3)|zs=0 [esp. Ny(¢') = ¥1(¢s 73)[ze=0] are given.
Then @1(',x3) [resp. ¥1({', z3)] is expressed with the known data.

Proof. Here, we prove only the case of ¢;. We can prove the case of ¢; in
the same way.
By the assumption and (21), we have

an(¢) + a-(¢) = Ny(C): (26)
On the other hand, we have
0 ()T (C) = a- ()T (C) = 2— e (27)
by (21) and (17). By (26) and (27), we have
[a+(<’) } _ [ 1 R RS

k3 iTj 1 ,
(@7l o] | e
31

that is, we can express a.(¢') with the known data. Therefore, we can express
1 (¢’) with the known data by (21). O



By Lemma 3.1, we obtain the behavior of the waves in Medium 1 when
the observation data are given. Then, we define ¢} (¢, z3) [resp. ¥V (¢, z3)]
by the behavior of the waves in Medium 1 for the observation data N,({’) :=
©01(¢", 23)|zs=0 [resp. Ny(¢") = ¢1({’, #3)|ze=0]. Moreover, we also define
a¥(¢) and ©(¢ zs) (4,1 = 1,2) as ax(¢’) and @1;(¢’, z3) which are ob-
tained in Lemma 3.1

Next, we prove a lemma needed in order to express the unknown constants
with the known data.

Lemma 3.2. Let c,,, p1, ys be given. Assume that the observation data
Ny(¢') are given. Then we have

i(h~ya)7sh (¢')
N ird (¢h Ny —irE (¢ ie !
pZCsz 32( ) {a'+ (C,)e g 1({} +a’ (C )6 § 1@ ) 252 T+(CI) }

81 '8

28
jet(h —ys)7h (¢ ( )

§1 81

7:+I _‘+,
=pwinﬂ6){dﬂdknﬂmhﬁa§@gewh@m_

Remark 3.3. We remark that the equality (28) is equivalent to the following
equality:

je—iTe (¢ Nys
{plcsl 31(4) pQCsz sz(g )} { (g) 262 T+(<'I) }

81 $§1

“iTj’ 4
= {7 () + pact, 7 () } aN ({)e L ()R

(29)

Proof of Lemma 3.2. By (21), (22) and (18), we have
ieilh—y)Th (¢)

Sane &

&1 81

aﬁ(cl)eirg () 4+ a}j((:f)e—irj; (] + b+(cf)ei'rj‘2(g’)h —
In a similar way, by (21), (22) and (19), we have
. s (¢! —ir (¢
inn, 7 () {a ()M — (e >**}
BN C2))
+ipacly (¢ ()N = —5p I,

Multiplying (30) by ipac?, 74 (¢') and subtracting (31) from it, we have the
equality (28). O
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Now, we express the constants A, ¢s,, p2 with the known data by using
Lemma 3.2. ‘

Theorem 3.4. Let c,,, p1, ys be given. Assume that the observation data
Ny(¢') are given. Then the constant h is expressed with the given data if

al (x0(&),0,0) # 0, where we define xo(&o) = x(,0,0).
Proof. We remark that 7,} (xo(&), 0,0) = —xo(é0)/cs,- Substituting (29) into
¢" = (x0(&),0,0) and simplifying it, we have

Kleﬁxo(ﬁo)h/csl —_ K{V(go), (32)

where we define

__ P1Cs; + P2Csy

- P1Cs; — PzCsQ’

KN(g) = a¥ (x0(£),0,0) ;_\t {ieix"({")ys/“’l/2051Xo(§o)}.
a¥(x0(&0),0,0)

Applying D¢, to the equality (32) and mixing it with (32) multiplied by
(24h/cs, ) (Do xo0) (€0} KT (o), we have the equality

- 631(D£0K1N)(§O)
h= Qi(DfoXO)(ﬁo)Kfv(fo)‘ (33)

KN (&) is the known data since a¥(¢’') are the known data. Hence we can
express the constant h with the given data by (33). O

K1

Remark 3.5. Even if a”V(x0(&),0,0) = 0, if a?¥({’) # 0 then the constants
h, ¢sy, po can be expressed with the given data, and in this case we obtain
P1Cs, = pP2Cs, in particular. However we omit the proof of this case (see
Nagayasu [5]).

By Theorem 3.4, we express the constant & with the known data and the
observation data. Hence we can assume that the constant h is also given.
Next, we express the constants c,, and ps.

Theorem 3.6. Let c,,, p1, ys and h be given. Assume that the observation
data Ny(C') are given. Then the constants c,, and py are ezpressed with the
given data.



Proof. Put

jeilh=ys)Td (¢
2¢5,78(¢) 7

ety ()

$1° 81

K () = al¥ (()emH O 4 oM (¢ @ -
KJ() = a ()€ — ¥ (e -

We remark that K& (¢') and K (¢') are expressed with the given data. More-
over

paca, T (CVKG (€)= prcs, 7 (O KZ (€) (34)
holds by the equality (28). By (34), we have
pacs, T (¢') = KY'(€) (35)
where K (¢') = pic2 7L (CVKN(E) /K (¢). We remark that KJ'(¢) is
expressed with the given data. Squaring the equality (35), we obtain
pcs, {x(&) - (& +€)} = K (€). (36)

Applying D¢, to the equality (36) and simplifying it, we have

20 _ KV (€)(De, K7€)
o (@) (Dex)(€)

(37)

Hence we have

o _ XEO KEODLKNE) ~ DeX)©EY €))
- (DK EVE +8)

by substituting (37) into (36) and simplifying it. Since the right-hand side
of (38) is expressed with only the given data and c,, is positive, the constant
Cs, is expressed with the given data by (38). Then by (37) we have

,02 — Kiv(gl)(DEOKfle)(gl) (39)
2T 2, x(€)(Dex)(€)
We remark that the right-hand side of (39) is expressed with only the given

data. Therefore we express also the constant p, with the given data because
ps is positive. O

(38)
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By Theorem 3.4 and 3.6, the unknown constant which is not expressed
with the given data yet is only the constant ¢,,. The constant ¢,, does not
appear in the equality (28). Then we determine ¢,, by using the equalities

for w({’, z3).

Theorem 3.7. Let cp,, ¢s,, p1 and ys be given. Let csy, p2 and h be given.
Assume that the observation data N,({') are given. Then the constant ¢, s
expressed with the given data.

Proof. By the (1, 1)-component of (13) and the (2, 1)-component of (14), we

have
{ ¢l 1 } BimeT | _ [ KY(¢) ]
(Ts-g 2 __ Ié—mlz _ZKUI[ /6-1-51@”82 T;; KéV(CI) ’ |

where KJ¥({') and K¢’ (') are defined by

Ny kC”’|2
K €)= ‘10111@ T3)|og=h + 573 2Co
Pl

p
EJ () =~ p2c12 (€, =26 )I¢" |1 (¢ w3)las=n
52

+ 01271 D-Tag‘g]l\ii)(cl xS)lx3=h}
iplcgl {|€”l‘((7-+ : Kml ) -y3)Tp1 2[(’/’lTjei(h—%)~r§1 } .
1

_3;3)1-,,1 + T, +et(h yg)‘rs1 } ,

2@ pact, o,
We remark that K (¢') and K} (') are expressed with only the given data.
Since o e
1 0
= -5 ?é O;
(7.;: 2 _ ]Cm!2 _2]<///| 32

we can solve this equation, and obtain

Bip et = G 7(¢) (40)
@
in particular, where K2 ({') is defined by KN (¢) := 2|¢"| KN (") + K§'({),
and this is expressed with the given data. In a similar way, by the (2,1)-
component of (13) and the (1, 1)—component of (14), we have

Bape Pt = Kév (QF (41)

CQ



where
E'({)
- ((T:; 2 _ Kml?)

X [—90?;1(@', Z3)]zs=0 +

Lz {Km[ei(h—ya)rg‘l _ lcmlei(h—ys)rji}
26

+ K”,l {_ppclz {CE1<D$3W11\£1)(€,3 133)];,;3:}; + 03114”’]90%1 (le $3)l$3=h}

92
L o2
1p1C5,

T 26i(h—y3)71?1 4+ ()2 — |2 ei(h"m)'rjl }:} ]
st {2¢"] () = 1)

We remark that K2 (¢{’) is determined with the given data. By the equalities
(40) and (41), we obtain

K (¢
rh =B 42
=T RC) )
Squaring the equality (42) and simplifying it, we have the equality
2
c < (43)

T (RECV/EF O+ ¢

The constant ¢, is expressed with the given data hence the right-hand side
of (43) is expressed with the given data and c,, is positive. O
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