Global existence of solutions of the Keller-Segel model with a nonlinear chemotactical sensitivity function (Theory of Bio-Mathematics and It's Applications)

Sugiyama, Yoshie; Kunii, Hiroko

数理解析研究所講究録 (2005), 1432: 49-54

URL http://hdl.handle.net/2433/47414

Departmental Bulletin Paper

Kyoto University
Global existence of solutions of the Keller-Segel model with a nonlinear chemotactical sensitivity function

1 Introduction

We consider the following degenerate quasi-linear parabolic system:

\[(KS) \begin{array}{l}
 u_t = \nabla \cdot (\nabla u^m - u^{q-1} \cdot \nabla v), \\
 \tau v_t = \Delta v - v + u, \\
 u(x,0) = u_0(x), \quad \tau v(x,0) = \tau v_0(x),
\end{array} \quad x \in \mathbb{R}^N, \quad t > 0,
\]

where \(m > 1, q \geq 2, \tau = 0 \) or \(1, \) and \(N \geq 1.\) The initial data \((u_0, v_0)\) is a non-negative function and in \(L^1 \cap L^\infty(\mathbb{R}^N) \times L^1 \cap H^1 \cap W^{1,\infty}(\mathbb{R}^N), u_0^m \in H^1(\mathbb{R}^N).\) This equation is often called as the Keller-Segel model describing the motion of the chemotaxis molds.

Our aim of this paper is to prove the existence of a global weak solution of \((KS)\) under some appropriate conditions without any restriction on the size of the initial data. Specifically, we show that a solution \((u, v)\) of \((KS)\) exists globally in time either

(i) \(q < m \) for a large initial data or (ii) \(1 < m \leq q - \frac{2}{N} \) for a small initial data.

Our results are the expansions of our previous work [9], which deals with the case of \(q = 2.\)

Definition 1. For \(m > 1,\) non-negative functions \((u, v)\) defined in \([0, \infty) \times \mathbb{R}^N\) are said to be a weak solution of \((KS)\) for \(u_0 \in L^1 \cap L^\infty(\mathbb{R}^N), u_0^m \in H^1(\mathbb{R}^N)\) and \(v_0 \in L^1 \cap H^1 \cap W^{1,\infty}(\mathbb{R}^N)\) if

i) \(u \in L^\infty(0, \infty; L^2(\mathbb{R}^N)), u^m \in L^2(0, \infty; H^1(\mathbb{R}^N)), \)

ii) \(v \in L^\infty(0, \infty; H^1(\mathbb{R}^N)), \)

iii) \((u, v)\) satisfies the equations in the sense of distribution: i.e.

\[
\int_{0}^{\infty} \int_{\mathbb{R}^N} (\nabla u^m \cdot \nabla \varphi - u^{q-1} \nabla v \cdot \nabla \varphi - u \cdot \varphi_t) \, dx \, dt = \int_{\mathbb{R}^N} u_0(x) \cdot \varphi(x, 0) \, dx,
\]

\[
\int_{0}^{\infty} \int_{\mathbb{R}^N} (\nabla v \cdot \nabla \varphi + u \cdot \varphi - u \cdot \varphi_t - \tau v \cdot \varphi_t) \, dx \, dt = \int_{\mathbb{R}^N} v_0(x) \cdot \varphi(x, 0) \, dx,
\]

for every smooth test function \(\varphi\) which vanishes for all \(|x|\) and \(t\) large enough.

The first theorem gives the existence of a time global weak solution to \((KS)\) with \(\tau = 1\) and the uniform bound of the solution when \(u_0 \in L^1 \cap L^\infty(\mathbb{R}^N)\) and \(v_0 \in L^1 \cap H^1 \cap W^{1,\infty}(\mathbb{R}^N).\) The first theorem also ensures the weak solution obtained here neither blows up nor grows up. We note that the initial data is not assumed to be small.

Theorem 1.1 (time global existence of \(\tau = 1\) case) Let \(\tau = 1,\) \(q \geq 2, m > q\) and suppose that \(u_0\) and \(v_0\) are non-negative everywhere. Then \((KS)\) has a global weak solution \((u, v).\) Moreover, \(u^m \in C((0, \infty); L^2(\mathbb{R}^N))\) and \((u, v)\) satisfies a uniform estimate, i.e., that there exists a constant \(K_1 = K_1(||u_0||_{L^1(\mathbb{R}^N)}, ||v_0||_{L^1(\mathbb{R}^N)}, ||u_0||_{H^1(\mathbb{R}^N)}, ||v_0||_{W^{1,\infty}(\mathbb{R}^N)}, m, q, N) > 0\) such that

\[
\sup_{t > 0} (||u(t)||_{L^r(\mathbb{R}^N)} + ||v(t)||_{L^r(\mathbb{R}^N)}) \leq K_1 \quad \text{for all } r \in [1, \infty].
\]
In addition, there exists a positive constant $K_2 = K_2(||u_0||_{L^1(\mathbb{R}^N)}, ||u_0||_{L^\infty(\mathbb{R}^N)}, ||v_0||_{H^1(\mathbb{R}^N)}, m, q, N),$
\begin{align}
||u(t)||_{L_r^r(\mathbb{R}^N)} + \sup_{t>0}||v(t)||_{H^1(\mathbb{R}^N)} &\leq K_2.
\end{align}

We next consider the case when \(\tau = 0 \) and \(m > 1 \), which corresponds to a degenerate version of "the Nagai model" for the semi-linear Keller-Segel system \cite{1, 3 - 6}.

Theorem 1.2 (time global existence of \(\tau = 0 \) case) Let \(\tau = 0, \) \(q \geq 2 \) and suppose that \(u_0 \) is non-negative. Then
(i) when \(m > q, \) (KS) has a global weak solution \((u,v)\).
(ii) When \(1 < m \leq q - \frac{2}{N} \), we also assume that the initial data is sufficiently small, i.e., \(||u_0||_{L^\frac{N(q-m)}{2-}}(\mathbb{R}^N) << 1 \), then (KS) has a global weak solution \((u,v)\).

Moreover it satisfies a uniform estimate, i.e., that in both cases (i) and (ii), there exists \(K_1 = K_1(||u_0||_{L^r(\mathbb{R}^N)}, m, q, N) \) such that
\begin{align}
\sup_{t>0} \left(||u(t)||_{L_r^r(\mathbb{R}^N)} + ||v(t)||_{L_r^r(\mathbb{R}^N)}\right) &\leq K_1 \quad \text{for all } r \in [1, \infty].
\end{align}

In addition, in both cases (i) and (ii), there exists a positive constant \(K_2 = K_2(||u_0||_{L^2(\mathbb{R}^N)}, m, q, N), \)
\begin{align}
\sup_{t>0} ||v(t)||_{H^1(\mathbb{R}^N)} &\leq K_2.
\end{align}

Finally we present the decay for the solution of (KS) in the \(\tau = 0 \) case under the smallness assumption on \(||u_0||_{L^\frac{N(q-m)}{2-}}(\mathbb{R}^N) \).

Theorem 1.3 Let \(\tau = 0, \) \(q \geq 2 \) and \(1 < m \leq q - \frac{2}{N} \) and suppose that the initial data \(u_0 \) is non-negative everywhere. We also assume that \(||u_0||_{L^\frac{N(q-m)}{2-}}(\mathbb{R}^N) \leq 1 \), then the weak solution \((u,v)\) obtained in Theorem 1.2, satisfies
\begin{align}
\sup_{t>0}(1+t)^d \cdot (||u(t)||_{L^r(\mathbb{R}^N)} + ||v(t)||_{L^r(\mathbb{R}^N)}) &< \infty \quad \text{for } r \in \left[\frac{N(q-m)}{2-}, \infty \right).
\end{align}

where
\begin{align}
d &= \frac{N}{\sigma} \left(1 - \frac{1}{r} \right), \quad \sigma = N(m - 1) + 2.
\end{align}

We will use the simplified notations:
1) \(Q_T := (0, T) \times \mathbb{R}^N, \)
2) When the weak derivatives \(\nabla u, D^2 u \) and \(u_t \) are in \(L^p(Q_T) \) for some \(p \geq 1 \), we say that \(u \in W^{2,1}_p(Q_T), \) i.e.,
\begin{align}
W^{2,1}_p(Q_T) := \left\{ u \in L^p(0, T; W^{2,p}(\mathbb{R}^N)) \cap W^{1,p}(0, T; L^p(\mathbb{R}^N)); \right. \\
|\nabla u||_{L^p(Q_T)} + ||\nabla^2 u||_{L^p(Q_T)} + ||u_t||_{L^p(Q_T)} + ||u_t||_{L^p(Q_T)} < \infty \left. \right\}.
\end{align}

2 Approximated Problem

The first equation of (KS) is a quasi-linear parabolic equation of degenerate type. Therefore we cannot expect the system (KS) to have a classical solution at the point where the first solution \(u \) vanishes. In order to justify all the formal arguments, we need to introduce the following approximated equation of (KS):
\begin{align}
\begin{cases}
(\text{KS})_\epsilon \quad &u_{\epsilon t}(x,t) = \nabla \cdot (\nabla (u_\epsilon + \epsilon)^m - (u_\epsilon + \epsilon)^{q-2}u_\epsilon \cdot \nabla v_\epsilon), \quad (z, t) \in \mathbb{R}^N \times (0, T), \\
&\tau v_{\epsilon t}(x, t) = \Delta v_\epsilon - v_\epsilon + u_\epsilon, \quad (z, t) \in \mathbb{R}^N \times (0, T), \\
&u_\epsilon(x, 0) = u_0(\epsilon)(x), \quad \tau v_\epsilon(x, 0) = \tau v_0(\epsilon)(x), \quad x \in \mathbb{R}^N,
\end{cases}
\end{align}
where ε is a positive parameter and $(u_{0\varepsilon}, v_{0\varepsilon})$ is an approximation for the initial data (u_0, v_0) such that

(A.1) $0 \leq u_{0\varepsilon} \in W^{2,p}(\mathbb{R}^N)$, $0 \leq v_{0\varepsilon} \in W^{3,p}(\mathbb{R}^N)$ for all $p \in [1, \infty)$, for all $\varepsilon \in (0, 1]$,

(A.2) $||u_{0\varepsilon}||_{L^p} \leq ||u_0||_{L^p}$, $\tau||v_{0\varepsilon}||_{W^{1,p}} \leq \tau||v_0||_{W^{1,p}}$ for all $p \in [1, \infty]$, for all $\varepsilon \in (0, 1]$,

(A.3) $||\nabla u_{0\varepsilon}||_{L^2} \leq ||\nabla u_0||_{L^2}$, for all $\varepsilon \in (0, 1]$,

(A.4) $u_{0\varepsilon} \to u_0$, $\tau v_{0\varepsilon} \to \tau v_0$ strongly in $L^p(\mathbb{R}^N)$ as $\varepsilon \to 0$, for some $p > \max\{2, N\}$.

We call $(u_\varepsilon, v_\varepsilon)$ a strong solution of $(KS)_\varepsilon$ if it belongs to $W^{2,1}_p \times W^{2,1}_p(Q_T)$ for some $p \geq 1$ and the equations (1),(2) in $(KS)_\varepsilon$ are satisfied almost everywhere.

The strong solution u_ε coincides with the mild solution defined in Definition 2 if $u_\varepsilon \in L^1(0, T; L^p(\mathbb{R}^N))$ with $p \geq 1$.

Firstly, we construct the strong solution of $(KS)_\varepsilon$, To do this, we prepare the following two propositions:

Proposition 2.1 Let $(u_\varepsilon, v_\varepsilon)$ be a non-negative strong solution of $(KS)_\varepsilon$ in $W^{2,1}_p(Q_T)$ with $\max\{2, N\} < p < \infty$ and suppose that (A.1) and (A.2) are satisfied. Then, u_ε and v_ε become non-negative and

\[
\sup_{t > 0} ||u_\varepsilon(t)||_{L^r(\mathbb{R}^N)} \leq M_{u,r} \quad \text{for all } r \in [1, \infty],
\]

\[
\begin{aligned}
(i) & \quad \text{when } \tau = 1, \quad q > 1, \quad m > 2q - 1, \\
(ii) & \quad \text{when } \tau = 0, \quad q > 1, \quad m > \max\{1, q - \frac{2}{N}\}, \\
(iii) & \quad \text{when } \tau = 0, \quad q > 1, \quad 1 < m \leq q - \frac{2}{N}, \quad \text{and } ||u_0||_{L^{\frac{N}{q-m}}} \text{ is small}.
\end{aligned}
\]

Proposition 2.2 Let $q > 1$, $m > 1$, $\max\{2, N\} < p < \infty$ and suppose that (A.1) is satisfied and assume that u_ε in the first equation of $(KS)_\varepsilon$ satisfies the estimate

\[
\sup_{0 < t < T} ||u_\varepsilon(t)||_{L^{\infty}(\mathbb{R}^N)} \leq M_{u,\infty},
\]

for some constant $M_{u,\infty}$. Then, $(KS)_\varepsilon$ has a non-negative strong solution $(u_\varepsilon, v_\varepsilon)$ uniquely belonging to $W^{2,1}_p \times W^{2,1}_p(Q_T)$.

By combining Proposition 2.1 with 2.2, the time global strong solution $(u_\varepsilon, v_\varepsilon)$ is obtained. As for the proof of Proposition 2.2 and 2.1, we refer to [9].

3 Proof of Theorem 1.1 and 1.2

In this section, we give a proof of Theorem 1.1 and 1.2.

Let us recall (2.1) in Proposition 2.1.

We can extract a subsequence $\{u_{n\varepsilon}\}$ such that

\[
(3.1) \quad u_{n\varepsilon} \rightharpoonup u \quad \text{weakly in } L^2(0, T; L^2(\mathbb{R}^N)).
\]

Moreover, we obtain a subsequence, still denoted by $\{u_{n\varepsilon}\}$ such that

\[
(3.2) \quad u_{n\varepsilon}^m \to u^m \quad \text{strongly in } C((0, T); L^2(\mathbb{R}^N)),
\]

\[
(3.3) \quad \nabla u_{n\varepsilon}^m \rightharpoonup \nabla u^m \quad \text{weakly in } L^2(0, T; L^2(\mathbb{R}^N)).
\]

The above (3.2) and (3.3) are shown as follows.

We multiply (1) in $(KS)_\varepsilon$ by $\frac{\partial(u_\varepsilon + \varepsilon)^m}{\partial t}$ and integrate with respect to the space variable over \mathbb{R}^N. Then
we get

$$\frac{4m}{(m+1)^2} \cdot \int \left| \left(\frac{\partial}{\partial t} \left(u_\epsilon + \epsilon \right)^{m+1} \right) \right|^2 \, dx$$

\[= - \frac{1}{2} \frac{d}{dt} \int |\nabla (u_\epsilon + \epsilon)|^2 \, dx + \frac{2m}{(m+1)^2} \int \left| \frac{\partial}{\partial t} \left(u_\epsilon + \epsilon \right)^{m+1} \right|^2 \, dx \]

\[+ \frac{4m(q-1)^2}{(m+1)^2} \cdot |\nabla v_\epsilon|^2 \cdot (M_{u,\infty} + \epsilon)^{2q-4} \int |\nabla (u_\epsilon + \epsilon)^{m+1}|^2 \, dx \]

\[+ m \int (u_\epsilon + \epsilon)^m \cdot |\Delta v_\epsilon|^2 \, dx. \]

(3.4)

By integrating with respect to time variable,

$$\frac{2m}{(m+1)^2} \cdot \int_0^T \int \left| \left(u_\epsilon + \epsilon \right)^{m+1} \right|^2 \, dx \, dt + \frac{1}{2} \sup_{0 < t < T} \int |\nabla (u_\epsilon + \epsilon)|^2 \, dx \]

\[= \frac{1}{2} \int |\nabla (u_0 + \epsilon)|^2 \, dx \]

\[+ \frac{4m(q-1)^2}{(m+1)^2} \cdot |\nabla v_\epsilon|^2 \cdot (M_{u,\infty} + \epsilon)^{2q-4} \int_0^T \int |\nabla (u_\epsilon + \epsilon)^{m+1}|^2 \, dx \, dt \]

\[+ m (M_{u,\infty} + \epsilon)^{m+2q-3} \int_0^T \int |\Delta v_\epsilon|^2 \, dx \, dt. \]

(3.5)

On the other hand, by the multiplication (1) in (KS)$_\epsilon$ by u_ϵ and the integration with respect to x and t,

$$\int_0^T \int |\nabla (u_\epsilon + \epsilon)^{m+1}|^2 \, dx \, dt \]

\[\leq \frac{(m+1)^2}{8m} \left(\frac{1}{q^2} \int_0^T \int u_\epsilon^{2q} \, dx \, dt + \frac{\epsilon^2}{(q-1)^2} \int_0^T \int u_\epsilon^{2q-2} \, dx \, dt + 2 \int_0^T \int |\Delta u_\epsilon|^2 \, dx \, dt \right) \]

(3.6)

$$+ \frac{(m+1)^2}{8m} ||u_0||^2_{L^2}. \]

From (3.5) and (3.6), we see that for $q \geq 2$ there exists a positive constant C (which is independent of $\epsilon),\]

$$\int_0^T \int \left| \frac{\partial}{\partial t} \left(u_\epsilon \right)^{m+1} \right|^2 \, dx \, dt \]

\[\leq \frac{(m+1)^2}{8m} \left(\frac{1}{q^2} \int_0^T \int u_\epsilon^{2q} \, dx \, dt + \frac{\epsilon^2}{(q-1)^2} \int_0^T \int u_\epsilon^{2q-2} \, dx \, dt + 2 \int_0^T \int |\Delta u_\epsilon|^2 \, dx \, dt \right) \]

(3.7)

$$\leq C. \]

Thus we find that $u_\epsilon^m \in L^{\infty}(0,T;H^1(\mathbb{R}^N)) \cap H^1(0,T;L^2(\mathbb{R}^N)).$ Hence, we can extract a subsequence such that

(3.8) \[u_\epsilon^m \to \xi \text{ strongly in } C((0,T);L^2(\mathbb{R}^N)).\]

This gives

$$u_\epsilon^m(x,t) \to \xi(x,t) \quad \text{a.a } x \in \mathbb{R}^N, \ t \in (0,T).$$

A function $g(u) = u^{\frac{1}{m}}$ is continuous with respect to $u.

Thus, we see that

(3.9) \[u_\epsilon(x,t) \to \xi^{\frac{1}{m}}(x,t) \quad \text{a.a } x \in \mathbb{R}^N, \ t \in (0,T),\]
Since the sequence \(\{u_{\epsilon_{n}}\} \) is bounded in \(L^{2}(0, T; L^{2}(\mathbb{R}^{N})) \), we conclude by Lions's Lemma that

\[
(3.10) \quad u_{\epsilon_{n}} \rightharpoonup \xi \quad \text{weakly} \quad \text{in} \ L^{2}(0, T; L^{2}(\mathbb{R}^{N})).
\]

By (3.1), (3.8) and (3.10),

\[
(3.11) \quad u_{\epsilon_{n}}^{m} \rightarrow u^{m} \quad \text{strongly} \quad \text{in} \ C((0, T); L^{2}(\mathbb{R}^{N})),
\]

which proves (3.2).

Next, we multiply (1) in (KS)\(_{\epsilon}\) by \(u_{\epsilon}^{m} \) and integrate with respect to the space variable over \(\mathbb{R}^{N} \). Then we get

\[
(3.12) \quad \frac{1}{m+1} \cdot \frac{d}{dt} \int u_{\epsilon}^{m+1} \, dx \leq -\frac{1}{2} \int |\nabla(u_{\epsilon} + \epsilon)^{m}|^{2} \, dx + \frac{1}{2} \cdot \|u_{\epsilon} + \epsilon\|_{L^{\infty}(Q_{T})}^{2(q-1)} \cdot \|\nabla v_{\epsilon}\|_{L^{2}(Q_{T})}^{2}. \tag{3.12}
\]

Integrating (3.12) with respect to \(t \), by (2.1) in Proposition 2.1 and (A.3), we have

\[
(3.13) \quad \frac{1}{m+1} \int u_{\epsilon}^{m+1} \, dx + \frac{1}{2} \cdot \int_{0}^{T} \int |\nabla u_{\epsilon}^{m}|^{2} \, dx \, dt \leq \frac{1}{m+1} \int u_{0\epsilon}^{m+1} \, dx + \frac{1}{2} \|u_{\epsilon} + \epsilon\|_{L^{\infty}(Q_{T})}^{2(q-1)} \cdot \|\nabla v_{\epsilon}\|_{L^{2}(Q_{T})}^{2} \leq C. \tag{3.13}
\]

From (3.2) and (3.13), we obtain (3.3).

By the standard argument, in both cases \(\tau = 0 \) and \(\tau = 1 \), we see that there exists a positive constant \(C \) which is independent of \(\epsilon \),

\[
(3.14) \quad \int_{0}^{T} \int |(v_{\epsilon})_{t}|^{2} \, dx \, dt + \sup_{0 < t < T} \int |\nabla v_{\epsilon}|^{2} \, dx \leq C.
\]

Hence, we can extract a subsequence \(\{v_{\epsilon_{n}}\} \) such that

\[
(3.15) \quad v_{\epsilon_{n}} \rightarrow v \quad \text{strongly} \quad \text{in} \ C((0, T); L^{2}(\mathbb{R}^{N})),
\]

\[
(3.16) \quad \nabla v_{\epsilon_{n}} \rightharpoonup \chi = \nabla v \quad \text{weakly} \quad \text{in} \ L^{2}(0, T; L^{2}(\mathbb{R}^{N})).
\]

By the standard argument, we complete the proof of Theorem 1.1 and 1.2.

4 Proof of Theorem 1.3

As for the proof of Theorem 1.3, we refer to [9].

Acknowledgments: The author wishes to express her sincere gratitude to Professors T.Nagai and T.Ogawa for many stimulating conversations; to Professors H.Horstmann, K.Kang, M.Misawa, G.Akagi who provided both encouragement and helpful advice to Professors S.Luckhaus and A.Stevens for several helpful comments and advice.

References

