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Global structure of solutions for
the 1-D Ginzburg-Landau equation
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1 Introduction.

This is a joint work with Prof. Y. Morita and Prof. S. Yotsutani (Ryukoku
University). In this article we are dealing with a simplified model of the
superconductivity in a thin uniform superconducting ring. The energy func-
tional in a one-dimensional form of such a model is given by

2r
B() :=/O %!thi2+ %(1 CP)dz, D= % — i),

where 1 is a complex-valued order parameter (|1)|? expresses the density of
superconducting electrons), A is a positive parameter, and h(z) is a periodic
C' function. Note that h(z) is the projection of magnetic potential of an
applied magnetic field to the tangent direction of a parametrized ring (see
18], [9]). We consider this functional on a space of 27-periodic functions in
H (R). Then the Euler-Lagrange equation of this functional is given by

{Diw FML- [P =0, zeR W
U(z + 27) = Y(z), TER, '

which is the Ginzburg-Landau equation of this model. One feature of this
equation is that it is transformed into the equation

{um + A1 = |ul®)u = 0, z € R, (1.2)
u(z + 2m) exp(2mpi) = u(z), z €R,

by the change of variable

¥ = uexp (i /O ’ h(s)ds) , (1.3)



where
1 27

U= — h(s)ds. (1.4)
2T 0

Our goal is to completely solve (1.2) for each p € R and A > 0. We will
also discuss the global structure of solutions to (1.2) for the parameters A
and t.

We here give a remark on g in (1.2). For each i € R, let fig be a constant
such that fig € [-1/2,1/2] and fi—fio € Z. Since exp(2nfigi) = exp(2mii), all
the solutions to (1.2) for u = fig are also all solutions to (1.2) for u = ji. We
then realize that it suffices to solve (1.2) for u € [—1/2,1/2] instead of u € R.
However we assume g € R in this paper for a simple expression of each
solution to (1.1) which is given by (1.3). We also note that given solution
u(z) of (1.2) the symmetry of the equation allows u(z)e* and u(z + c) to be
solutions for any constant ¢ € R. However we will not mention about this
fact explicitly unless we need to state clearly.

As for a specific case u € Z, we note that a complete global bifurcation
diagram for X is obtained in the previous paper [4]. We will extend this
study to the present case (see also [1] and [5]). However the bifurcation
structure exhibits more complex in the presence of an additional parameter
1. Nonetheless we can see the global bifurcation structure by solving the
equation (1.2) for any 4 € R and A > 0. The approach developed in [4]
fortunately works in the present situation so that a small modification of
the argument can provide an explicit expression of every solution. In conse-
quence one can observe how the secondary bifurcating solution deforms as
1 varies until it disappears through another bifurcation.

To achieve it, we first classify all the solutions to (1.2) according to their
configuration. In what follows the idea of the classification is quite simple
but crucial for drawing the whole bifurcation diagram. Here we exclude the
trivial solution v = 0 and modify the classification found in [4] a little for
convenience of dealing with the present problem. Thus all the nontrivial
solutions to (1.2) are classified into three types as

(I) Solutions with zero.
(ITa) Solutions with constant amplitude.

(ITb) Solutions with nonconstant and nonvanishing amplitude.

Note that this classification also works in (1.1).
We here characterize solutions in each class. As will be discussed in the
next section, the solution of Type (I) is written in the form

u(z) = explic)p(x)



where ¢ is a constant in R and ¢ is a real-valued function. Thus the param-
eter p must satisfy 2u € Z if solutions of Type (I) exist. In other words,
solutions of Type (I) do not exist if 2y &€ Z. More precisely we will prove
the following. There exist solutions of Type (I) which have even zeros in
[0, 27) if and only if 24 is even and A > 1, otherwise, there exist solutions
which have odd zeros in [0, 27) if and only if 2 is odd and A > 1/4.

Next we consider the solution of Type (Ila). It is easy to obtain the
following nontrivial (constant amplitude) solution to (1.2)

U pm = V1 — (m — )2/ Xexp(i(m — p)z) (1.5)

for each m € Z. This solution exists if and only if (u, A) satisfies

A > Xy = (m — p).

It gives a solution to (1.1) as

Um = 1S, (@) exp (z /0 h(s)ds)

where 1 is defined in (1.4). For each m, this solution emerges from the
trivial solution 0 when (i, A) crosses the curve A = A, .. The study of
[10] tells a local bifurcation structure of (1.2) by using a standard local
bifurcation analysis. As a result they showed a secondary bifurcation, that
is, bifurcations from the nontrivial solution take place at '

A= Nymn=3(m—p)?—n?/2, (neN). (1.6)

Besides the local bifurcation structure, we are interested in a global one of
(1.2). Among other things it is interesting to show how the configuration of
the secondary bifurcating solution changes as the parameters varies.
Finally we deal with solutions of Type (IIb). It is much more difficult
than the other case. We will discuss it in § 3 and show that a Type (IIb)
solution arises through a secondary bifurcation which exists in regions

Do i={{1,A) s p<m—n/2, A>XNymnt, (1.7)
Do ={(,A) s u>m+n/2, A>Aymalt, (1.8)

for arbitrarily given m € Z and n € N. For fixed pp < m — n/2 (resp.
> m +n/2), as A increase in a neighborhood of the curve A = Ay mn,
a secondary bifurcating branch emanates from a branch of a Type (Ila)
solution at A = Aymn. The secondary bifurcating branch is composed



of a Type (IIb) solution. Similarly, for fixed A > n?/4, as p increase in a
neighborhood D,,;,,,LUD,’;_n,n, a secondary bifurcating branch emanates from
a branch of a Type (IIa) solution at the curve A = Aymn. A Type (IIb)
solution for (u,A) € Dy, is the component of the secondary bifurcating
branch. As u increase through p = m—n/2, the Type (IIb) solution changes
into another Type (IIb) solution for (4, A} € D;,_, , via a Type (I) solution.
The branch ends up by connecting itself with the branch of a Type (Ila)
solution at A = Ay m—nn-

2 Type (I) solutions.

In this section we treat the Type (I) solutions to (1.2). We will show that,
for each n € N, there exists a solution to (1.2) which has n zero points on

[0, 27) if and only if
A>n?2/4,  u=m+n/2 (YmeZ). (2.1)
Each solution is written in the form
u=u} ,(z+w)explic), u},:= kA/2/(1 + k2)sn(nK (k)z/7, k)

where k € (0,1) is a unique solution to

V1+EK (k) =nvVA/n, (2.2)

c and w are arbitrary constant of R, sn(z, k) is the Jacobi elliptic function
whose inverse is given by

u
1
-1
sn”(u, k) = dr,
(t:5) /0 VI= 21— k22

and K (k) is a complete elliptic integral

1
1
K(k):= d
®) /g VI— o I—k

Recall that sn(z, k) is extended to R with period 4K (k) and it is not difficult
to show ¢ = u} ,, is a solution to the real-valued equation

buz + M1 — %) = 0. (2.3)

To achieve the above results, we first show that if a nontrivial solution to
(1.2) has a zero point, then 2u is an integer and the solution is a real-valued



function multiplied by a complex constant. Consider a nontrivial solution
u(z) which vanishes at = = zg. Denote u(z) = ui(z) + fuz(x). Then (1.2)
allows the expression

{(ul)a:cc +Q(z)u1 =0, z€R,

(u0)gz + Q(z)ug =0, z€R Q(z) = A(1 — |u(z)[*).

Since u;(zo) = u;(wo +27) = 0 (j = 1,2), each u; is an eigenfunction of the
operator

d2
L:= = +Q(z), D(L) = {u€ H*(z0,0+27) : u(zo) = u(zo +27) = 0}
corresponding to zero eigenvalue if u; # 0. It thus follows that ciu; = cousg

for some constants ci,ca € R ((cl,c2) # (0,0)) from the Sturm-Liouville
theorem, which tells that the dimension of each eigenspace is one. Put

¢ :=+/1+c/cEu (or /14 c%/c3 uz). Then the solution u is written in
u(z) = $() explic)
for a constant ¢ € R. Thus the second condition of (1.2) implies
H(zx + 27) exp(2mpi) = ¢(x). ' (2.4)

Since ¢(x) is real valued, 2p must be an integer.

We next verify that any solution ¢ of (2.3) with (2.4) is written in the
form ¢ = uS_, up to translation and (2.1) is a necessary and sufficient
condition of existence. It follows from an elementary argument of ordinary
differential equations.

Let ¢ be a nontrivial solution to (2.3) with (2.4) which has zero points.
Without loss of generality we may assume ¢(0) = ¢(27) = 0 and ¢(0) >0
because ¢ is not the trivial solution. Thus there exists a point z1 € (0, 27)
such that

¢x(z1) =0, ¢z(z) >0 Vz € [0,21).

Put o = ¢(x1). Then the equation (2.3) implies

where

2+ p2=2  0<a<p. (2.5)



Changing variable £(z) := ¢(z)/c, we have

_ V2 el L dé, Veelo,s
ol vEmwmm e el
and hence
71 = V2K(K) BV, k:=a/B. (2.6)
Therefore ¢ is written in the form
¢(z) = asn (K (k)z/z1,k) (2.7)

and this equality is satisfied on the whole R. Since ¢ satisfies (2.4) and the
Jacobi elliptic function sn(-, k) also satisfies

sn(z + 2K (k)n, k) = (—1)"sn(z,k), z€R, neN,
there exist n € N and m € Z such that
T1=7/n, p=m+n/2 (2.8)

On the other hand, since o and f satisfy (2.5) and k is defined by k& = /8,
a and G are written in the form

a=k/2/(1+k2), B=+2/(1+F).

Thus (2.7) implies the expression of u ,, and (2.6) changes into

21 = V14 k2K (k)/V (2.9)

Since (2.8) and (2.9), k must satisfy (2.2).

Therefore if the equation (2.3) with (2.4) has a nontrivial solution with
n zero points in [0, 27), the solution is u3 ,, (up to translation) and & € (0, 1)
satisfies (2.2) and g = m+n/2 (m € Z). On the other hand, it is clear that,
for each n € N, u5,, solves the equation (2.3) with (2.4) if k € (0, 1) satisfies
(2.2) and p=m +n/2 (me 7).

Now let us consider (2.2). Since

K(0) = ) dK

> a0 fmER) =,

(2.2) has a unique-solution if and only if n? < 4X. Accordingly we can assert
that any solution ¢ of (2.3) with (2.4) is written in the form ¢ = 43 ,, and
the solution exists if and only if (2.1) is satisfied.



3 Type (IIb) solutions.

In this section we consider a solution with nonconstant amplitude but non-
vanishing everywhere. The method developed in the previous paper [4] can
still work in this present 2-parameters case.

Since |u(z)] > 0, we can write u = w(z)exp(if(zx)) where w(z) > 0.
Putting it into the equation (1.2) yields |

Wep — 2w+ A1 —w?)w=0 z€R, (W), =0 z€R. (3.1)
Then the periodic condition in (1.2) is reduced to
O(z + 27) + 2np = 6(z) + 2mm, (3.2)

for an integer m. Integrating the equation (w?,), = 0, we have that 6, =
b/w? for a constant b € R. Integrating this equality again and using (3.2),

we obtain
1

2m
2(m——,u,)7r=b/o de.

Thus the equation (3.1) is reduced to

¢ b2 )
w 2 dx
w(z + 2m) = w(z), z € R,
Lw(z) > 0, z € R.

Then a solution  of (1.1) is obtained by solving the above equation and it
is written in the form

P = w(z) exp {Z(m — p)i /OZ w(ls)zds/ /027r -q;zls—)gds + 14 /O:c h(s) ds}

We note that (3.3) has a constant solution

w= /1 (m—p)*/x

if A > (m — p)?. This gives a solution of Type (Ila). Since w stands for the
amplitude of a solution , we exclude this constant solution. Finding all the
solution of (3.3), we also give an attention to a solution of a higher mode,
that is, a 27 /n-periodic solution of (3.3) for n € N. Consequently all Type




(ITb) solutions are obtained by solving the following system of equations for
w(zx) and b:

2
wmm——3_+)‘<1— 2)“):07 z € R,
w(z) > 0 z €R, (3-4)
Tw=2m/n
and
~ o(m — )/fzw——l—-—da: (3.5)
ST w(@p™ |

foreachm € Z,n € N, u € R, and A > 0, where 7}, denotes the fundamental

period of w(z).
The following result establishes not only the existence but also the con-
figuration of every secondary bifurcating solution.

THEOREM 3.1 For each m € Z and n € N, if and only if (u, A) belongs to
D}, U Dy, ., which is defined in (1.7) and (1.8), there exists a solution

= w(z) exp(if(x))

2 202K (k nK (k) K241
\/g )\71'2 {kQ sn? (——ﬂ_—iﬂ, 1{3) - 3 }, (36)

oo =i ([ 5) [l

where k € (0,1) is a unique solution of

2(m ~ p)’ K (k)* = My(R)IL(8(k)/a(k) — 1,k)* B(k)/a(k) = 0,
alk) >0

DM}m 7 T

and «, B, v, and I1 are defined as

1
1
(v k) := dr, 3.7
() ,/0(1-5—1/72)\/1—-72\/1~—k2'r2 ’ 3.7)

2 2n2K(k)?(k?+1)
3 \ 3/\27r2 ! (3.8)
n 912
ﬁ(k):=§—2 K (k)2(1—2?) 59
2
3

alk) ==

32 ’
22K (k)RR - 2)

3A72 (3.10)

(k) =



For (4, A) € D, , U D 1, the solution uS , . satisfies

u‘i P u‘j\,u,m — 0  uniformlyon R as A — Ay mn, (3.11)

Uy~ W pm — 0 uniformly on R as g — m = +/A/3 +n?/6,
(3.12)

US ymn 95, =0  uniformlyon R as p— mtn/2 (3.13)

Moreover, for given u € R and A > 0, every solution of (1.2) except for
u = 0 1s given by one of

eicui’n(:c + w) for n € N such as n2/4 < \, n/2 — p € Z,
eicui%m(az) for m € Z such as (m — p)? < A,
eicug’#)m,n(x +w) for (m,n) € Z x N such as n?/4 < 3(m — p)? —n*/2 < A,

where ¢ and w are arbitrarily taken real numbers.

COROLLARY 3.1 Let A > 0. For given 2m-periodic C'-function h, define w
as (1.4). Then each nontriwvial solution to (1.1) is one of the following

z
u$ (7 + w) exp (z/ h{s)ds + ic) for n € N such as n?/4 < A\, n/2 — u € Z,
0
Xz
U5, m (T) €Xp (7,/ h{s)ds + ic) for m € Z such as (m — p)? < A,
0
and
x
S (T + W) eXp (z/ h{s)ds + ic)
0

for (m,n) € Z x N such as n’/4 < 3(m — )2 —n?/2 < )

where ¢ and w are real numbers.

4 Appendix.

We will give a sketch of the proof of Theorem 3.1. The readers can refer to

[4] for the detailed argument.
We solve (3.4) (without considering (3.5)). Since w is a nonconstant
periodic function in C?, there exist z1, 22 € R such that z; < z9 and

we(z1) = we(z2) =0, wy(z) >0 (Vz € (71,22)). (4.1)
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Multiplying 2w, to the equation in (3.4), we have

, 2
a ((wm)z + 5)-2- + A (2w? — w4)) =0.

dx 2
Thus |
Muw(@)? = w@)?} (oo : 2oy, 20
2 _ _ il
we(z)” = (e w(w)? {w(z)* + w(z1)* — 2}w(x) w(zy)® + \
(£.2)
Put
a=w(z)?  f=wz),
and z = z9 in (4.2). Then we obtain
(B+a—2)af +2b° /A =0,
which implies
2b?
- = = afy, vi=2—a—f. (4.3)

Introducing the new variable

and substituting (4.3) into (4.2), we can easily verify
(0a(x))? = 2X(v(z) — 0)(v() — B)(v(z) =), Vz ER.

Since
O<a<uv(z)<B, wvelz)>0 (Vo€ (21,22)),

the ordering v > [ holds. In the sequel

va(2) = V@) — )0E) - D@ — ), Ve€lmnaml
O<a<f<y, a+f+y=2 |

" Next we solve (4.4). By integration of (4.4)

=
Vax V- y—-By—7)

Changing the variable y = a + (8 — @)% in (4.5) an putting
ki=(0—a)/(y—a), | (4.6)

r— X1 = Vx € [231,:232]. (4.5)
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we see
dy 2dT

VI-2@-Bu-7 JVO-a)l-7)0-kr)
Applying this to (4.5) yields

B 2 _ v(z) — o
T —x] = msn ! (1 /—,_8———57’/{) , Yz € lz1,22]. (4.7)

Thus on the interval [z, z9] it holds

w(z) = Vv(z) = \Ja-i- (8 — «) sn? ( -'}—(—Y—Q_-gl(m — xl),k) (4.8)

Since this w(z) is defined over R and periodic with period 2K (k)/2/A(y — @)
(sn?(z, k) has a period 2K (k)), Ty = 27/n implies

2 _“27r

= T

(4.9)
Combining (4.3), (4.6), and (4.9), we obtain the expressions (3.8), (3.9), and
(3.10). In the sequel we obtained solutions of (3.4). In fact let n € N and
A > 0. Then (w(z), A, b) satisfies (3.4) if and only if there exist 71 € R and
k € (0,1) such that o = a(k) > 0 and

'ZU(CB‘(‘.’L'l)«-_w a+(ﬂ_&)sn2 (nK(k>fL’,k),
r (4.10)
b2 = /\0‘257.

Now we take the condition (3.5) into account. Since T, = 27/n and a

symietry,
/2” dx /QW dz ) [W/n d
— = ——— = 2N — .,
o w(z)? Jo wlzt+m)? o w(z+z1)?

The similar argument used in the derivation of (4.5) and (4.7) leads us to

/“/n dz _ 1 /f” dy
o wE+z)? V2XJa y/lv—a)(y—B)y—7)
_— gn(ﬁ/a — 1) k)

_\[\ — (4.11)
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where II is the complete elliptic integral defined in (3.7). Since a > 0 and
v —a = 2n2K(k)2/ r?, the equation (3.5) is written as

b= (m—paK(k)/TH{/a—1,k).

Substituting this into the second equation in (4.10), we can reduce our prob-
lem to solving the equation

2(m — ) 2K (k)? — MIL(8/a — 1,k)? f/a =0 (412)

under the constraint o > 0. To simplify the notation in the rest of this
paper, we denote the left hand of the above equation by p(k, A, 1) for each
n € N and m € Z, that is, we put

pk, X, p) = 2(m — )2 K (k)? = ML (8/c — 1, k)% B/a. (4.13)

Summarizing the above argument, we can assert that for each given
neEN meZ peR, A>0, and 21 € R, every nonconstant solution of
(3.4) with (3.5) is written as

w(z +x1) = \/04 + (8 — a) sn? (nK;T(k) z, k), b=sgn(m — u) )\0;,6’7’
(4.14)

if the equation p(k, A, u) = 0 has a solution (&, A) € A where
A= {(k,A) €(0,1) xRY : a(k) >0}.

The following proposition guarantees the unique existence of a solution
to p=0.

PROPOSITION 4.1 Letn ¢ N and m € Z.
(i) The equation (4.12) has a solution (k,A) = (k(A\, p), A) € A if
(1, A\) € Dy, UDF (4.15)

which are defined in (1.7) and (1.8). Moreover k() ) is unique for
each (u,\) € Dy, , UDS .

(i) Let (4, A) € Dy, , UD; . Then
k(A ) — 0 as A — 3(u—m)? — n?/2, (4.16)
E(Apu) — as p— m =+ +/A/34+ n?/6, (4.17)
a(k(A, ,LL)) — 0 as p—mtn/2. (4.18)
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(iii) There is no solution to (4.12) in A if

(1, A) & U (Df—z_z,n U D;;,n)

meZ, neN

Proof of Proposition 4.1 (i). Let k = ky(A) € (0,1) satisfy a(k) = 0. It is
easy to verify that k = k4 ()\) is uniquely determined for each A > n?/4 and
A is written in the form

A={(k,N):0<k < ko), \>n?/4}.

We here remark that A = 0 if A < n?/4. By using the same manner as the
proof of Proposition 3.1 (i) in [4], we can see

72 /6(m — )2 — n2
b0 =T (6( SR ,\) (4.19)

and

2
lim  plk, A\ p) = (4(m — p)? — nQ)M. (4.20)

kTka(A) 2
Indeed, changing the variable t = /v + 17/+/1 — 72 and v = U —1 into (3.7),

we have
© 1 v+t ~
v 10 — = dt. 4.21
\/;H(l/ 1, k) /(; 1 + tz \/1:" + (1 . k2>t2 ( )

Clearly the integral kernel satisfies

oo ! \/ P+ 1 1
1+ o+ 1= e ~ 1+2\ 1k
(Vk € [0, ko (N)], ¥0 >0, Vt > 0).
Thus it follows that
VI — 1,k) = /2 (7 — o).
Since B/a — oo as k T kq(A), we obtain
VB/en (B/a~1,k) —m/2 (k1 ka(A)) (4.22)

and hence we obtain (4.20). Thus the function p(:, -, u) is extended as a con-
tinuous function on A\ {\ = n?/4}. Consequently p(0, \, u}p(ka(A), A, 1) <
0 is satisfied if and only if

6(m — pu)? — n?

5 <A, 0<4(m—p)?—n? (4.23)
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because the inequality A > n?/4 implies

6(m—,¢2/,)2 —n? e 3(4(m ——4@)2 ~n2).

Therefore it follows from the continuity of p(k, A, i) that (4.12) has a solution
k = k(X u) if (u, ) satisfies (4.15) for each n € N and m € Z.

The following lemma implies that a solution k = k(A, ) to (4.12) is
unique for each (u, ) if it exists in (0, kx(A)).

LEMMA 4.1 If k € (0,ko(N)) satisfies p(k, A, ) = 0, then

Op
—{k, A .
5 K A p) > 0
The proof of Lemma, 4.1 is performed literally in the same way as in [4],
we omit it here (see the proof Lemma 3.5 in [4]). U

Proof of Proposition 4.1 (ii). We first show (4.16). It is clear that, for
fixed 1 which satisfies (u—m)? > n?/4, the both p(0, A, i) and p(ka(A), A, 1)
are strictly positive if A € (n?/4, \ymn). From Lemma 4.1, it follows that

plk, M) >0, VEk€[0,ka(N)], YA€ (n*/4, Aumn) (4.24)
and hence

p(k, Au,m,mﬂ) = \ lim p(k, A p) >0, Vke {07 ka(Ay,m,n)]'

pm,n

By using (4.19), (4.20), and Lemma 4.1 again, we can conclude that

Pk Awmins 1) > 0, Yk € (0, ka(Aumn)l; (4.25)
ﬂ((); A,u,,m,m IU’> =0.

Let {A\s} be any sequence satisfying Ay | Aymn as 0 — oo0. Since k(A, p1)
is bounded and p is continuous, there exists a subsequence {Ay} C {As}
such that a limit k. of k(\y, ) as ¢’ — oo exists in [0, ko(Aymn)] and
p(ks, Aymons ) = 0. Thus the limit k. must be 0 by (4.25). This concludes
the proof of (4.16). |

We next prove (4.17). That is similar to the above argument. Let
A > n?/4 be fixed. If y satisfies (u — m)% > A/3 +n?/6

plk A ) >0, Yk € [0, ka(N)].
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Because the both p(0, A, 4t) and p(ka(A), A, ) are strictly positive and Lemma 4.1
is applied. Thus : ‘

p(k, A\, m £ /X/3+n2/6) >0, Vkel0, ka(N)]-

Combining (4.19), (4.20), Lemma 4.1, and the above inequality, we obtain
(4.17) by a similar argument to the proof of (4.16).
Now we observe (4.18), that is, we will prove

im k(A p) = ka(A) (4.26)

p—matn /2

for (1, \) € D, UDj . Let A > n2/4 be fixed. The both p(0, ), ) and
o(ka(X), A, i) are strictly negative if y satisfies

m-n/2<p<m+n/2
Lemma 4.1 implies
plk, A m) <0, Vke[0,ka(N)], Vue(m—n/2,m+n/2) (4.27)

Thus
plk, A, m £n/2) <0, Vke€ [0, ko (M)} (4.28)

Combining (4.19), (4.20), (4.28), and Lemma 4.1, we obtain

{ p(k, \,m £n/2) <0, VE € [0,ka(N), (4.29)

p(ka()\)7 A, m In’/z) =0,

Therefore it follows that k(\, p) — ko(A) as g — m £n/2 from a similar

argument to the proof of (4.16).
1

Proof of Proposition 4.1 (ili). Let m € Z and n € N be fixed. As
mentioned in the proof of (i), 4 = @ if A\ < n?/4. Thus it suffices to
prove p(k, A, ) # 0 for ¥k € (0,ka(N)) if (u,A) € {(p,A) + A > n?/4} \
(D, U D5 ). Since (4.24) and (4.25), it is clear that p(k, A, p) > 0 for
¥k € (0,ka(N) if n2/4 < X < Aympn. On the other hand, it follows from
(4.27) and (4.29) that p(k, A, p) < 0 for VE € (0,ka(N)) f m —n/2 < p <
m + n/2 and X > n?/4. Therefore (iii) was proved. [

Proof of Theorem 3.1. As mentioned above we proved that the noncon-

stant amplitude solution is written in the form (4.14) and Proposition 4.1
directly implies the existence condition and the nonexistence condition of
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the nonconstant amplitude solutions which are stated in Theorem 3.1. Sub-
stituting (3.8), (3.9), and z; = 0 into (4.14), we obtain (3.6). Now we verify
(3.11), (3.12), and (3.13). In the rest of the proof, w = w(z) denotes (4.14)
with z1 = 0 for simplicity.

We first prove (3.11). It follows from (4.16) that if (/,L, A €Dy, UDS
and A — Ay mn, then (A, p) — 0. Thus :

a—2/3=n%/6Aimn=1—(—m)*/Aumn 88 A= Aymn, (430)
8—a—10 as A — Aymp.  (4.31)

For each £ € Z, if z € [2n¢,2w({ + 1)] then

) = e = m— {2 [ TZ—dy//%-—l—dy—w}
= (m — ,u){?vr/ox o ) y//27r dy+27r€»—x}.

alk(A p)) < wlz) < Bk 1),

a simple calculation implies

Since

(:B—Z'RK)

z—2mf 27 '
- 6(3} 2ml) < 27r/ 2 y// dy—i—27r£ z < i
g 0 o

and hence we obtain

sip |0@) — (m— | < T AB=a) g, g
z€ 2w, 2w (4+1)] o

It is clear that
08, s (2) = 65,1 ()] = [0(@) 0 (1 (6(2) = (m ~ )a)) — VT = (m — 2/
< ()| [exp (¢ (8(z) — (m ~ u)w)) ~1]
+ ) = V= (m— w2/

and
' sup lw(z \/1—m #2//\[%0 as A — Aymon
z€R
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for (4.30) and (4.31). It is also clear that

lexp (i (8(z) — (m — p)z)) — 11> = {cos (8(z) — (m — p)z) — 1}7
+sin? (8(z) — (m — p)z)
< 4sin’ (rm — pl(8 - a) /)
+sin? (2nm — p|(B8 — @) /)

and hence

suplexp(f(z) — (m —p)z) =1 =0 as A — Aymn
zelR

for (4.31). Therefore (3.11) follows.

Similarly, (3.12) follows from (4.17).

Next we prove (3.13). Let (4, ) € Dy, ,, U D/, .. First, we consider the
limit of w = w(zx) as p — m £ n/2. Since a(ks(A)) = 0 and (4.18) implies
k(A 1) — ko(X) as p — m £ n/2,

f—a— 2k'a()‘>2/(ka(>‘)2 +1) (p—m=£n/2)
and hence

w — ka( N2/ (ka(MN)?2 + 1) |sn (nK (ko (X))z /7, ka(N))] (4.32)

uniformly for z as p — m +n/2. On the other hand, k = ko()) satisfies
(2.2). Thus uj , is written in the form |

U 1 (@) = ka(M)V/2/ (1 + ka(A)?) sn(nK (ka(N)z /7, ka(A))-

Therefore we obtain the following: For any € > 0, there exists §y = dp(e) > 0

such that
sup |w(z) — |u§n(x)H <e (4.33)
zeR
for Yy € (m—mn/2— g, m—n/2)U(m+mn/2,m+n/2+0). We here remark
that uf\n(x) can be defined independently of y, however it is not a solution
to (1.2) if 2u ¢ Z. Since v ,(z) is zero at & = 2Un/n (£ € L), we can verify
that, for any € > 0, there exist d; = d1(¢) and d; = 61(¢) such that

max sup |w(z)| L&, (4.34)
€L \z—26r/n|<dy
max sup [|ui,(z)| e (4.35)

LEL (g2 /n|<dy
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for Vu € (m —n/2 — 81,m —n/2) U{(m+n/2,m+n/2+ d1).
Next we deal with §. Combining (3.8), (3.10), and (4.11), we have

/Qﬂ 1 _ 2rll(B/a —1,k)
o w( '

az)zdx B aK (k)

We also obtain that for each £ € Z if z € (2nf/n,2n(£ + 1)/n) then
z _ T
/ 1 s = (20 4+ D)nl(B/c — 1,k) +/ 1 ds,
0 (

w(s)? - naK (k) 20+1)7/n w(s)?

else if x = 27w¢/n then
/w 1 2nll(B/a — LK)
0

w(s? T noK(k)
Thus
((m—p)2+ 171 (m—plaKk) [* 1
n H(ﬁ/& -1, k) [%—H)W/n w(3>2 s
0(z) = if z € (2ml/n, 2n(L +1)/n), (L€ Z),
(m = pir if z =2nl/n, (£E€Z).

s (4.36)

The limit of § as p — m % n/2 is characterized as follows. Since (4.22), it
holds that
o/TI(B/a—1,k) =0 (kT kalN). (437)

Let dy > 0. It is also clear that

<= Vo € [2n8/n + dy, 21(L + 1) /n — da).

z 1
/ 5 ds
(2¢+1)m/n W(S)

Thus it follows from (4.32), (4.36), (4.37), and the above inequality that for
any € > 0 there exists dg = da(e,d2) > 0 such that

sup 0(z) — (26 +1)7/2| < e
z€(2nl/n+-d2,27(€+1) /n—dz)
Y € (m—n/2 —8,m—n/2), (4.38)
sup 0(z)+ (26 + Vr /2| <e

z€(2nl/n+do,2m{£+1) /n—d2)
Vu € (m+n/2,m+n/2+ds). (4.39)
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Now we estimate
S, pyymyn (). 103 o ()
= w(z)? cos(6(x))? + {w(z) sin(8(z)) = u ,(z)}*. (4.40)
For € > 0, put
§ = 6(e) = min{do(e), 61(€), 62(e, d1(€))}. (4.41)
Then it is clear that, if 4 € (m—n/2 -6, m—n/2)U(m+n/2,m+n/2+7),

supw(z)?cos?(B(z)) <max  sup  w(z)? cos®(H(z))
z€R £€Z |z—9¢m /n|<d;

1 max sup w(z)? cos?(8(z))
LEL ye(oml/n+tdy,2m(d4+1)/n—d1)

<el+ néleazxﬁcosg((% + /2 +¢€)
< g% 4 2sin*(e). (4.42)

Next we estimate the second term of the right hand side of (4.40). Since
(4.34) and (4.35), we have the following estimate in neighborhoods of zero

points of ui,n:

max sup  {w(z)sin(f(z)) £ uf n(a:)}z < 4¢?
CEL |p—20m/n|<d ’

if pe(m—n/2—8m—n/2)U(m+n/2,m+n/2+6). In the complement
to the neighborhoods of the zero points of uj ,, the second term of the right
hand side of (4.40) is estimated as follows: Let u € (m—n/2—6m—n/2)
and z € (2wé/n + dy,2m(¢ +1)/n —dy). Then

() sin(8(@)) = v}, ()
< Jw() — o8 2(a) | ()] + [15,0(@)] sin(¥(@) — (1Y

< & 4 ka2 + kalV?) [sin(0(@)) = (1"
<5+\/‘¥sm z)) — (- 1)21

Since #(z) has an estimate (4.38) and sin(6(z)) — (—1)! is estimated as

Ism 6(z)) — (- ‘ = ‘ Y {cos(8(z) — (20 + 1)7/2) — 1}l
= 2sin? ((f(z) — (2£ +1)7w/2)/2)
< 2sin®(e/2),
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we obtain

sup lw(z)sin(f(z)) — ud p(z)] < e+ 2v/2sin?(e/2).
z€(2me/n+d1, 27w (€+1) /n—d1)
(4.43)

Similarly, if g € (m +n/2,m +n/2+6), it holds that

Sup hw(z) sin(0(z)) + v, (@)] < €+ 2v2sin?(e/2).
re(2ml/n+d1,2n(€+1) /n—d1)
(4.44)

Combining (4.42) and (4.43), we obtain that there exists C > 0 such that
for any € > 0

sup lu‘f\#mn(m) - zu‘f\n(m)l <Ce VYue(m-—-n/2—5m—n/2).
ze€R

On the other hand, (4.42) and (4.44) imply that, for any € > 0,

sup |}, mn(T) + zuin(x)} < Ce, VYu€(m+n/2,m+n/2+97).
Tz€R :

Therefore it completes the proof of (3.13). U
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