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Abstract

In this paper we give an affirmative answer to the problem whether there is a
relation R on the set A(B) of atoms of a complete atomic Boolean algebra B such that
properties of a map ¢ : A(B) — B can be inherited to the relation R, that is,

1. ¢* : extensive <= R : reflexive
2. * : symmetric <= R : symmetric
3. " : closed <= R: transitive

1 Introduction

Since the presentation of rough sets by Pawlak ([4]), the theory of rough sets is applied to
many practical fields in data base theory, especially, in data-mining. But the fundamental
and mathematical base of rough sets is not enough to apply the theory to other many
research fields. Recently, many papers about mathematical fundation of rough sets are
published, but almost papers treated only the finite case of the universe U in approximation
spaces. Under this restriction, it is very hard to understand the essential properties of rough
sets. In [2, 3], J.Jarvinen obtained important and fundamental results about rough sets
using complete atomic Boolean algebras. He treated rough sets abstractly. He constructed
an operator R : P(U) — P(U) from a relation R on U and then extended it to a map
@ : A(B) — B from the set A(B) of atoms of a complete atomic Boolean algebra B to B.
He proved that properties of the relation R was inherited to those of ¢. In this paper we
extend his results. Morever, we consider the converse problem whether there is a relation
R on A(B) such that properties of a map ¢ : A(B) — B is inherted by the relation R. We
will give an aflirmative answer to the problem.

2 Preliminaries

At first we define operators R_ and R, on approximation spaces according to (2, 3].
Considering properties of approximation spaces (U, B) in rough sets, we construct subsets
R(z) = {y € U |zRy} and operators

R_:P(U) - PU).
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After that we define lower (upper) appoximation sets respectively such as :
R_(X) = {a € U|R(a) C X}
Ri(X)={acU|R(a)NX #0}

Since P(U) is a complete Boolean algebra under the usual operations N,U,° and a sin-
gleton set {z} (z € U) is identified with an atom of P(U), the Boolean algebra P(U) can
be considered as a complete atomic Boolean algebra.

Note: The fact that B is a complete atomic Boolean algebra means that any map
v: U = P(U) can be extended uniquely to the map from P(U) — P(U). Thus, for the
operator R_ induced by a relation R, if we only define the value of R_(z) (z € U) then the
map R_ : P(U) — P(U) is determined uniquely.

Let B be a complete atomic Boolean lattice and A(B) a set of atoms. For a map
¢ : A(B) = B, operators V, % are defined as follows ([3]):

2V = \/{a € A(B)|¢(a) < z}
8 = \/{a € A(B)|¢(a) Az # 0}
These correspond to respectively
R_(X)={a€U|R(a) C X}
Ri(X)={a€U|R(@)NX # 0}.
In [3] it is proved that
Proposition 1. For every a € A(B), z € B,

fagaY < pla) <z

2. a<z® < pla) Nz #0

5. 04=0,1Vv=1

foz<y = 2V <yY,2% <yt

5.\ S& = (V S)2, hence in particular, (zV y)* = z® vyh
6. NSV = (AS)Y, hence in particular, (z Ay)V =2V A yv
7. 8.9 5 dual, that is,

@v) = (=)?, @) =&)Y
For ¢ : A(B) — B, three kinds of maps are defined:

¢ : extensive <= z < ()
¢ : symmetric <= z < ¢(y) implies y < ()
@ :closed <= y < p(z) implies p(y) < ()

Since z and y are atoms, we see that a symmetric map ¢ can be represented by

@ : symmetric <= zAp(y) =01 yAp(z) =0
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In the following we adopt this definition, that is, a map ¢ is symmetric if and only zAp(y) =0
implies y A p(z) = 0 and vice versa.

Considering the relation between the properties of R and those of map ¢ defined above,
he also proved that

p : extensive <= R :reflexive
@ : symmetric <= R :symmetric
@ :closed <= R : transitive

For z =V, ax (ay € A(B)), we define a map ¢* : B - B by

0" = \/ plan).
It follows from this definition that
Proposition 2. 1. ¢* : well-defined
2. ©* : order-preserving, i.e.,
z<y = ¢'(z) < ")

A map 9 . B — B is called eztensive if ¢ < (z) for all z € B. Then extensiveness of ¢
and ¢* are the same.

Proposition 3. ¢ : extensive (i.e., a < ¢(a) for all a € A(B))
& " ! ertensive

Proof. (¢<=) Take z = a € A(B).
(=) Let 2 =V, ay {ax € A(B)). For every a,, since @ is extensive, we have

ax < p(ax)

and hence

2=\ ar <\ ola)) = ¢*(a).

A map ¢ : B — B is called symmetric when
zAY*(y) =0 yAyY*(z) =0 for all z,y € B.
Then symmetices of ¢ and ¢* are the same.

Proposition 4. ¢ : symmetric (i.e., a A p(b) = 0 iff bA ¢(a) = 0 for all a,b € A(B))
= ¢~ : symmetric

Proof. (<=) It is obvious if we take z = a,y = b (a,b € A(B)).

(=) Let 2 =V, a0\ and y = Vb (ax,by € A(B)). Suppose z A @*(y) = 0. It is
sufficient to verify y A ¢*(z) = 0.

Since z A ¢*(y) = 0, we have

VU’" A \/cp(bp) =0
A u‘



and hence

\/(G'A A ‘P(bu)) =0.

Asp
This means that for all A\, u
ay A\ (p(b#) = (.
Since  is symmetric,
by Ap(axr) = 0.

Thus, we have

Vb Ap(an) =\ ba A olan) = 0.

A
This means that
yAe*(z)=0.
[
Corollary 1. ¢* : symmeiric <= ¢*(p*z) <z’ foralzeB
There is another characterization of symmetry by use of .
Proposition 5. ¢ : symmetric <= wa = a* for all a € A(B)
Proof. (=) Prop.3.9 in [3].
(<=) Suppose that ¢ is not symmetric. There are elements a,b € A(B) such that
a < pbbut b £ pa.
Since b = b2, we have
a < b2,
Thus
pa ANb#0.
Since b is an atom, this implies
paAb="b.
So we conclude that b < @a. But this is a contradiction. Hence ¢ is symmetric. ]

A map ¢ : B — B is called closed if z < 9(y) implies ¢(z) < ¢(y) for all z,y € B.

Proposition 6. ¢ : closed (i.e., a < yb implies pa < @b for all a,b € A(B))

&= * ; closed
Proof. (=) Take z = a,y = b {a,b € A(B)).

(=>) Let ¢ = Vyax and y =/, by (ax,bu € A(B)). Suppose that ¢ < p*y. For every
A, we have

ax < \/G). <S¢y = \/gob,t.
A I
There is an element b, such that
a) S (pb“.

Indeed, since ay < V b, and ay is an atom, we have

ay = ax A \/<pr = \/(aA A pby).
@
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There is an element b, such that
ax = ax A pb,.

This implies that ay < @b, for some p. Since ¢ is closed,

pay < by < \/ b, = @™y for all A,

Thus we have
prr= cha)\ < "y

Corollary 2. ¢* : closed <= ¢*(¢*z) < *z forallz € B

3 Relations derived from operators

We generalized the map ¢* : B — B from the map ¢ : A(B) — B. This is a generalization
of the operator R_ : P(U) — P(U) induced by the relation R on a set U. Then we have
proved that the original properties of R are inherited as follows:

R :reflexive <= ¢ (or p*) : extensive
R : symmetric <= ¢ (or ¢") : symmetric
R : transivite <= ¢ (or ¢*) : closed

It is a natural question whether we can define a relation R on A(B) such that it reflects
properties of a map ¢* : B — B which is an extension of a map ¢ : A(B) — B. If we can
answer " YES” to the question, since ¢* can be represented by R completely, then we have
several methods to develop the theory of generalized rough sets.

Let ¢ : A(B) = B be any map and ©* : B — B a uniquely extended map of ¢. It is clear
that the map ¢* is order-preserving and ¢* [4(5) = ¢.

We define a relation R on A(B) as follows: For all a,b € A(B),

aRb <= a < ¢(b)
We can show that
Proposition 7. ¢* : extensive <= R : reflezive

Proof. Suppose that ¢* is extensive. For any a € A(B), since ¢* is extensive, we have
a < ¢*{a) = ¢(a) and hence R is reflexive.
Conversely, assume that ¢* is not extensive. Since z £ ¢*(z) for some z € B, there
exists a € A(B) such that
a<z but o€ ¢*(z).

Since R is reflexive, a < ¢(a) implies
w(a) £ " ().

On the other hand, a < 2 means that ¢*(a) = p(a) < ¢*(z). But this is a contradiction.
Thus, ¢* is extensive. O

Proposition 8. ¢* : symmetric <= R : symmetric



Proof. If R is not symmetric, then there exist a,b € A(B) such that aRb but not bRa. This
means that

. a < p(b) but b £ e(a)
and hence that b A p(a) = 0. Since b < (¢(a))’ and ¢* is order preserving, we have
o(b) = ¢*(b) < " ((pla))) < @'

Hence ¢(b) Aa = 0. But from a < ¢(b), we get ¢(b) Aa = a. This is a contradiction. Thus,
R is symmetric.
Conversely, assume that ¢* is not symmetric. There exist z,y € B such that

zAP*(y) =0 but yAe*(z)#0.

Since B is atomic, there exist a,ay € A(B) such that

a<y, a<e'(@) =\ plan).

It follows that a < ¢(ay) for some A and aRay. Since R is symmetric, this implies aRa,
that is, for some A,

ax < ¢la).
On the other hand, we have p(a) = ¢*(a) < ¢*(y) by a < y. Thus,
0=z A¢"(y) = arApla) =ax.

But this is a contradiction. Hence ¢* is symmetric. |

Proposition 9. ¢* : closed <= R : transitive
Proof. Suppose that aRb and bRc for a,b,¢ € A(B). This means that
a < (b)) and b < (c).

Since ¢* is closed, we have p(b) = ¢*(b) < p(c) and a < p(c). Hence, R is transitive.
Conversely, assume that o* is not closed. There exist 2,y € B such that

z <p*(y) but ¢ (z) £ 0" (y)-
If we take z = \Vax and y = V by (aa, b, € A(B)), since " (z) £ @*(y), then there exists
a € A(B) such that
a < o"(@) =\ plar) but ag e W)=\ o)

Tt follows that a < @(ay,) for some Ao but a £ ¢(by,) for all 4.
On ther other hand, since ay, < Vay =z < ¢*(y) = V ¢(by), there exists po for that
Ao such that
axy < ‘P(b#o)'
This implies aRay, and ax, Rby,,. Since R is transitive, we have aRby,, that is, a < @(by,)-
But this is a contradiction. Hence ¢* is closed.

Summing up the above, we have the following theorem.
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Theorem 1. Let B be a complete atomic Boolean algebra and A(B) be the set of all atoms
of B. For any map ¢ : A(B) — B, there exists a relation R on A(B) such that

" extensive <= R :reflexive
¢ : symmetric <= R :symmetric
p* i closed <= R :transitive
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