Commutative Closure of Languages ¹

Masami Ito (伊藤 正美)

Kyoto Sangyo University (京都産業大学) Kyoto 603-8555, Japan e-mail: ito@ksuvx0.kyoto-su.ac.jp

Abstract

In this paper, we provide a necessary and sufficient condition for the commutative closure of a special type of regular (context-free) language to be regular (context-free).

1 Introduction

Let X^* denote the free monoid generated by a nonempty finite alphabet X and let $X^+ = X^* \setminus \{\lambda\}$ where λ denotes the empty word of X^* . For the sake of simplicity, if $X = \{a\}$, then we write a^+ and a^* instead of $\{a\}^+$ and $\{a\}^*$, respectively. Let $L \subseteq X^*$. Then L is called a language over X. By |L|, we denote the cardinality of L. If $L \subseteq X^*$, then L^+ denotes the set of all concatenations of words in L and $L^* = L^+ \cup \{\lambda\}$. In particular, if $L = \{w\}$, then we write w^+ and w^* instead of $\{w\}^+$ and $\{w\}^*$, respectively. Let $u \in X^*$. Then u is called a word over X. Let $u \in X^*$. Then alph(u) denotes $\{a \in X \mid u = vaw, v, w \in X^*\}$. We will deal with the commutative closures of some languages. The commutative closure of L means $\{a_{\sigma(1)}a_{\sigma(2)}\cdots a_{\sigma(n)}\mid a_i\in X, i=1,2,\ldots,n, a_1a_2\cdots a_n\in L$ and σ is a permutation on $\{1,2,\ldots,n\}$. By com(L), we denote the commutative closure of $L\subseteq X^*$. In this paper, we give simple criterions for the following restricted classes of regular languages and context-free languages.

Let $L \subseteq X^*$ be a regular (context-free) language and let $z \in L$ be a word whose length is long enough. Then, by the well-known pumping lemma for regular (context-free) languages, z can be decomposed as $z = uvw \ (z = uvwxy)$ and $uv^+w \subseteq L \ (\{uv^pwx^py \mid p \ge 1\} \subseteq L)$ where the length of $v \ (vwx)$ is bounded. Thus we will consider the commutative closure of a finite union of those languages.

¹ This is an abstract and the details will be published elsewhere.

2 Commutative closure of regular languages

In this section, we provide a necessary and sufficient condition for the commutative closure of a language $L = \bigcup_{i=1}^k u_i v_i^+ w_i$ to be regular.

Proposition 2.1 Let $u_i, v_i, w_i \in X^*$ with i = 1, 2, ..., k and let $L = \bigcup_{i=1}^k u_i v_i^+ w_i$. Then com(L) is regular if and only if for any i = 1, 2, ..., k, we have $|alph(v_i)| \leq 1$.

3 Commutative closure of context-free languages

In this section, we provide a necessary and sufficient condition for the commutative closure of a language $L = \bigcup_{i=1}^k \{u_i v_i^p w_i x_i^p y_i \mid p \geq 1\}$ to be regular.

Proposition 3.1 Let $u_i, v_i, w_i, x_i, y_i \in X^*$ where i = 1, 2, ..., k and let $L = \bigcup_{i=1}^k \{u_i v_i^p w_i x_i^p y_i \mid p \geq 1\}$. Then com(L) is context-free if and only if for any i = 1, 2, ..., k, we have $|alph(v_i x_i)| \leq 2$.

4 Commutative closure of other languages

In this section, we consider the commutative closure of a context-sensitive (recursively enumerable, recursive) language.

Proposition 4.1 Let $L \subseteq X^*$ be a context-sensitive (recursively enumerable, recursive) language. Then com(L) is context-sensitive (recursively enumerable, recursive), too.