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TORIC IDEALS AND CONTINGENCY TABLES

HIDEFUMI OHSUGI (RIKKYO UNIVERSITY)
TAKAYUKI HIBI (OSAKA UNIVERSITY)

ABSTRACT. Fundamental questions on semigroup rings and toric ideals arising
from contingency tables will be studied. In addition to discussing recent develop-
ments on such the topic, the algebraic background of contingency tables, including
the algebraic aspects of Markov chains will be also explained.

1. ALGEBRAIC BACKGROUND OF CONTINGENCY TABLES

In commutative algebra, a Markov chain can be regarded as a system of binomial
generators of the toric ideal arising from a contingency table.

An n-way contingency table is an $n$ dimensional matrix whose entries are non-
negative integers. For example, the following 2-way contingency table is given in [6,
Table 2].

Example 1.1, Looking at the below 2-way contingency table T, we want to know
whether “Eye color” and “Hair color” are correlated.

Eye $\mathrm{c}\mathrm{o}\mathrm{l}\mathrm{o}\mathrm{r}\backslash \mathrm{H}\mathrm{a}\mathrm{i}\mathrm{r}$ color Black Brunette Red Blonde Total
Brown
Blue
Hazel
Green

68 119 26 7
20 84 17 94
15 54 14 10
5 29 14 16

220
215
93
64

Total 108 286 71 127 592

In general, when an n-way contingency table is given, we are interested in $n$ factor
interaction. For the sake of simpleness, we explain the case $n=2$ here. (See [1] for
details.) We consider the following I $\mathrm{x}$ $J$ contingency table $T_{0}$ :

$X$ $\backslash$ $Y$ $Y_{1}$ $Y_{2}$ . . . $Y_{J}$ Total
$X_{1}$

$X_{2}$

$.\cdot$

.
$X_{I}$

$n_{11}$ $n_{12}$ $\ldots$ $n_{1J}$

$n_{21}$ $n_{22}$ $\ldots$ $n_{2J}$

$.\cdot$

.
.$\cdot$
.

.$\cdot$

.

$n_{I1}$ $n_{I2}$ $\ldots$ $n_{IJ}$

$n_{1+}$

$n_{2+}$

$.\cdot$

.

$n_{I+}$

Total $n_{+1}$ $n_{+2}$ $\ldots$ $n_{+J}$ $N$

Then we suppose the null hypothesis $H_{0}$ “there is no association between $X$ and $\mathrm{Y}$
”

and try to test it
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One of the popular methods which test the association of $X$ and $Y$ is the $\chi^{2}$ test.
In the $\chi^{2}$ test, we compute the $\chi^{2}$ statistic

$\chi^{2}(T_{0})=\sum_{i=1}^{I}\sum_{j=1}^{J}\frac{(n_{ij}-\frac{n_{\mathrm{i}+}n_{+j}}{N})^{2}}{\frac{n_{i+^{n}+j}}{N}}$ .

If the hypothesis $H_{0}$ is true, then $\chi^{2}$ statistic has asymptotic $\chi^{2}$ distributions with
degrees of freedom $(I-1)$ $(J-1)$ . Thus we compare $\chi^{2}(T_{0})$ with the value $\mathrm{a}\mathrm{o},05$ of
the right-hand side 5% point of $\chi^{2}$ distribution. If $\chi^{2}(T_{0}$ } $<\alpha_{0.05}$ , then we conclude
that $H_{0}$ is true, and $X$ and $Y$ are independent.

However, it is known that, if $T_{0}$ is sparse, that is, there are a lot of cells with
$n_{i+}n_{+j}/N<5$ , then the $\chi^{2}$ approximation is bad. Hence $\chi^{2}$ test is not good for
contingency tables such that $N/IJ$ is small.

For such sparse contingency tables, we use the Fisher’s exact test Let $\mathcal{F}_{T_{0}}$ denote
the set of tables with the same marginal distribution as To. For example, in Example
1.1, $\mathcal{F}_{T}$ is the set of all 4 $\mathrm{x}$ $4$ matrix such that the sum of four rows is $(108 2\mathrm{S}671127)$

and the sum of four columns is the transpose of (2202159364). We now assume
that $H_{0}$ is true and that $\mathcal{F}_{T_{0}}$ follows the multiple hypergeometric distribution. Here
the multiple hypergeometric distribution is defined by

$P(T)= \frac{(\prod_{i=1}^{I}n_{i+}!)(\prod_{j_{-}^{-}1}^{J}n_{+j}!)}{N!\prod_{i,j}n_{ij}!}$

for each $T\in \mathcal{F}_{T_{0}}$ . For the Fisher’s exact test, we compute $\chi^{2}(T)$ for all $T\in \mathcal{F}_{T_{0}}$

and P-value

$P= \sum_{T\in F\tau_{0},\chi^{2}(T)\geq\chi^{2}(T_{0})}P(T)$

of $T_{0}$ . If $P>0.05_{7}$ then we conclude that $H_{0}$ is true, and $X$ and $Y$ are independent.
Unfortunately, the Fisher’s exact test also has a problem. In general, it is very

difficult to enumerate all elements of $\mathcal{F}_{T_{0}}$ . For example, in Example 1.1, $\mathcal{F}_{T}$ consists
of $1_{7}225,914,276,76\mathrm{S},514$ elements. In such a case, it is almost impossible to compute
$P$ value of $T_{0}$ exactly.

Here we are in the position to introduce Markov Chain Monte Carlo method (called

MCMC method for short). For the computation of $P$-value, we give up above exact
calculation and make use of the Markov chain to do the sampling from $\mathcal{F}_{T_{0}}$ .

Note that, if both $T$ and $T’$ belong to $\mathcal{F}_{T_{0}}$ , then $T-T’$ is an integer I $\mathrm{x}$ $J$

matrix such that the sum of all entries of each rows and each columns is zero. Let
$\mathcal{M}_{I\mathrm{x}J}$ denote the set of all integer I $\mathrm{x}$ $J$ matrices which satisfies that the sum of all
entries of each rows and each columns is zero. Then a Markov basis is a finite subset
$\{T_{1}, \ldots, T_{\ell}\}\subseteq \mathcal{M}_{I\mathrm{x}J}$ satisfying that, for any $T$, $T’\in \mathcal{F}_{T_{0}}$ , there exist $T_{i_{1}}$ , $\ldots$ , $T_{i_{A}}$

with $\Xi_{k}=\pm 1$ such that

$T’=T+ \sum_{k=1}^{A}\epsilon_{k}T_{i_{k}}$ ,
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$T+ \sum_{k=1}^{a}\epsilon_{k}T_{i_{\mathrm{k}}}\in \mathcal{F}_{T_{0}}$

for a1J $1\leq a\leq A$ .
If a Markov basis $\{T_{1}, \ldots, T_{\ell}\}$ is given, then we can construct a Markov chain by

the following algorithm:

Metropolis-Hastings algorithm
0. Choose $T\in \mathcal{F}_{T_{0}}$ at random and set $t=T$ ;
1. Repeat the following:

1.1. Select $T_{\dot{\mathrm{t}}}$ from the uniform distribution on $\{T_{1}, \ldots, T_{\ell}\}$ ;
1.2. Select $\epsilon$ from the uniform distribution on $\{1,$ $-1\}$ (independent of $\mathrm{i}$ );
1.3. If $t+sTi$ is a nonnegative matrix, then set $t=t+\epsilon T_{i}$ with probability

$\min\{\frac{P(t+\epsilon T_{i})}{P(t)}$ , $1\}$ .

Let $B=\{T_{1}, \ldots, T_{\ell}\}$ be a Markov basis and let $G_{B,T_{0}}$ denote the graph with the
vertex set $\mathcal{F}_{T_{0}}$ where $m\in \mathcal{F}_{T_{0}}$ and $m’\in \mathcal{F}_{T_{0}}$ are joined by an edge if $m-m’\in \mathcal{B}\cup-B$ .
The most important point is that, the graph $G_{B,T_{0}}$ must be connected. Otherwise,
there exists an unreachable element of $\mathcal{F}_{T_{0}}$ in Metropolis-Hastings algorithm. The
infinite set $\mathcal{M}_{I\mathrm{x}J}$ is regarded as the set of all integer solutions of some system of
linear equations, and hence we can associate $\mathcal{M}_{I\mathrm{x}J}$ with the “toric ideal” $I_{A_{r_{1}}}$ . $r_{n}$

.
A configuration in $\mathbb{R}^{d}$ is a finite set $A=$ $\{$ 1, $\ldots$ , $\mathrm{a}_{n}\}\subseteq \mathbb{Z}^{d}$ which is contained

in a hyperplane in $\mathbb{R}^{d}$ without the origin. Let $K[\mathrm{t}_{7}\mathrm{t}^{-1}]=K[t_{1}, t_{1}^{-1}, \ldots, t_{d}, t_{d}^{-1}]$

denote the Laurant polynomial ring in $d$ variables over a field $K$ . We associate a
configuration $A$ $\subseteq \mathbb{Z}^{d}$ with the semigroup ring $K[A]$ $=K[\mathrm{a}_{1}, \ldots, \mathrm{a}_{n}]\subset K[\mathrm{t}, \mathrm{t}^{-1}]$ ,
where $\mathrm{t}^{\mathrm{a}}=?$” $\ldots t_{d}^{a_{d}}$ if a $=$ $(a_{1}, \ldots, a_{d})$ . Let $K[\mathrm{x}]$ $=K[x_{1}$ , . . . , $x_{n}]$ denote the
polynomial ring in $n$ variables over $K$ . The toric ideal $I_{A}$ of $A$ is the kernel of the
surjective homomorphism $\pi$ : $\mathrm{K}[\mathrm{x}]arrow K[A]$ defined by setting $\pi(x_{i})=\mathrm{t}^{\mathrm{a}_{t}}$ for
$1\leq \mathrm{i}\leq n$ . A polynomial $f\in K[\mathrm{x}]$ of the form $u-v$ , where $u$ and $v$ are monomials,
is called a binomial It is known [14] that the toric ideal $I_{A}$ is generated by the
binomials $u-v$ with $\pi(u)=\pi(v)$ .

A configuration $A$ is called unimodular if the initial ideal of $I_{A}$ is generated by
squarefree monomials with respect to any monomial order. A configuration $A$ is
called compressed if the initial ideal of $I_{A}$ is generated by squarefree monomials
with respect to any reverse lexicographic order. We are interested in the following
conditions:

(i) $A$ is unimodular;

(ii) $A$ is compressed;

(iii) there exists a monomial order $<$ such that the initial ideal of $I_{A}$ with respect
to $<$ is generated by squarefree monomials;

(iv) $K[A]$ is normal
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Then (i) $\Rightarrow(\mathrm{i}\mathrm{i})\Rightarrow(\mathrm{i}\mathrm{i}\mathrm{i})\Rightarrow(\mathrm{i}\mathrm{v})$ holds and each of the converse of them is false
in general We refer the reader to [8], [9] and [10] for further information.

On the other hand, a binomial $f$ belonging to $I_{A}$ is called indispensable ([15] and
[10] $)$ if, for an arbitrary system $\mathcal{F}$ of binomial generators of $I_{A}$ , either $f$ or $-f$

appears in $\mathcal{F}$ . If $f$ is indispensable, then $-f$ is indispensable. Hence the set of
indispensable binomials is of the form $F\cup-F$ , where $F\cap-F=\emptyset$ . In abuse of
terminology, such a set $F$ will .called the set of indispensable binomials of $I_{A}$ .

In the present paper, we study the configuration arising from a $r_{1}\mathrm{x}$ $r_{2}\mathrm{x}$ $\cdots$ $\mathrm{x}$

$r_{n}$

contingency table, where $r_{1}\geq r_{2}\geq\cdots\geq r_{n}\geq 2$ . Let $A_{r_{1}r_{2}\cdots r_{n}}$ be the set of vectors

$\mathrm{e}_{i_{2}i_{3}\cdots i_{n}}^{(1)}\oplus \mathrm{e}_{i_{1}i_{3}\cdots i_{n}}^{(2)}\oplus\cdot$ . . $\oplus \mathrm{e}_{i_{1}\dot{x}_{2}\cdots i_{n-1}}^{(n)}$ ,

where each $\mathrm{i}_{k}$ belongs to $[r_{k}]=\{1,2, \ldots, r_{k}\}$ and $\mathrm{e}_{j_{1}j_{2}\cdots j_{n-1}}^{(k)}$ is a unit coordinate
vector of $\mathbb{Z}^{r_{1}\cross\cdots r_{k-1}\mathrm{x}r_{k+1}\cdots \mathrm{x}r_{n}}$ . The toric ideal $I_{A_{r_{1^{f}2}}..r_{n}}$ is the kernel of the homomor-
phism

$\pi$ : $K[\{x_{\mathrm{z}_{1}\iota_{2}\cdots i_{n}} ; \mathrm{i}_{k}\in[r_{k}]\}]arrow K[\{t_{i_{1}\cdots i_{k-1}i_{k+1}\cdots i_{n}}^{(k)} ; k\in[n], \mathrm{i}_{k}\in[r_{k}]\}]$

defined by $\pi(x_{i_{1}i_{2}\cdots \mathrm{i}_{n}})=t_{i_{2}i_{3}\cdots i_{n}}^{(1)}t_{i_{1}i_{3}\cdots i_{n}}^{(2)}\cdots$ $t_{i_{1}i_{2}\cdots i_{n-1}}^{(n)}$ .

Proposition 1.2. Work with the same notation as above. Then $B\subseteq \mathcal{M}_{r_{1}\mathrm{X}\cdots \mathrm{X}r_{n}}$ is
a Markov basis for an arbitrary $T$ if and only if the toric ideal $I_{A_{\tau_{1}}}r_{\hslash}$ is generated

by the binomials $\mathrm{x}^{\beta^{+}}-\mathrm{x}^{\beta^{-}}\in K[\mathrm{x}]$ with $\beta^{+}-\beta^{-}\in B$ .

2. RECENT DEVELOPMENTS

In the present section, we discuss the recent developments ([12]) on semigroup
rings and toric ideals arising from contingency tables. First, using the formula in
[13, p. 162], we can compute the dimension of $K[A_{r_{1}},\ldots,r_{n}]$ .

Proposition 2.1. The dimension of $K[A_{r_{1},\ldots,r_{n}}]$ is equal to

$(-\mathrm{l})^{}$ $+ \sum_{k=1}^{n-1}(-1)^{n-k-1}\sum_{i_{1}<\cdots<i_{k}}r_{i_{1}}\cdots r_{i_{k}}$

Indispensable binomials have been completely determined for the following three
classes of $I_{A,r12}$ . $r_{n}$

.
(1) $n=2$ (unimodular, Segre product of polynomial rings),
(2) $n\geq 3$ and $r_{1}\mathrm{x}$ $r_{2}\mathrm{x}$

$2\mathrm{x}\cdots \mathrm{x}$ $2$ (Lawrence lifting)
(3) $r_{1}\mathrm{x}$

$3\mathrm{x}$ $3$ , $r_{1}\mathrm{x}$
$4\mathrm{x}$ $3,4\mathrm{x}$ $4\mathrm{x}$ $4$ (computed by Aoki-Takemura [2], [3]).

In particular, for all of (1) – (3), a minimal set of binomial generators 1s umque.

Conjecture 2.2. The toric ideal of the configuration $A_{\tau_{1}r_{2}\cdots r_{n}}$ is generated by in-

dispensable binomials.

On the other hand, Boffi-Rossi [5] computed a lexicographic Grobner basis of the
toric ideal $I_{A_{r_{1^{33}}}}$ whose initial ideal is generated by squarefree monomials. We now
discuss the following two properties of the toric ideal of the configuration $A_{333}$ .
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Theorem 2.3. No reduced Grobner basis of $I_{A_{333}}$ coincides with the set of indis-
pensable binomials ($=$ the minimal set of binomial generators) of $I_{A_{333}}$ .

Theorem 2.4. The configuration A333 is compressed.

We characterize the configurations $A_{\tau_{1}r_{2}\cdots r_{n}}$ for which there exists a monomial
order $<such$ that the reduced Gr\"obner basis of $I_{A_{r_{1^{r}2}}}$ ... $r_{n}$

with respect to $<$ is the
set of indispensable binomials of $I_{A_{r_{1^{r}2}}}r_{n}$ .

Theorem 2.5. Let $n\leq 3$ . Then the following conditions are equivalent $forA_{r_{1}r_{2}\cdots r_{n}}$ :
(i) either $n=2$ or $r_{3}=2$ ;
(ii) $A_{\tau_{1}r_{2}\cdots r_{n}}$ is unimodular ;
(iii) there exists a monomial order $<$ such that the reduced Gr\"obner basis of

$I_{A\tau_{1}r_{2}\cdot\cdot\tau_{n}}$ with respect $to<\mathrm{i}s$ the set of indispensable binomials of $I_{Ar_{1^{r}2}}\mathit{7}\eta$ ;
(iv) there exists a monomial order $<$ such that the reduced Gr\"obner basis of

$I_{A_{r_{1^{f}2}}}r_{n}$ with respect $to<\mathrm{i}s$ a minimal set of binomial generators of $I_{A_{r_{1}r_{2}}}r_{n}$ .

We study normality of semigroup rings arising from contingency tables. We clas-
sify all normal semigroup rings $K[A_{r_{1}r_{2}\cdots r_{n}}]$ except for $K$ [A553], $K[A_{543}]$ and $K[A_{443}]$ .
Theorem 2.6. Work with the same notation as above. Then toe have

$r_{1}$
$\mathrm{x}$

$r_{2}$ or $r_{1}$ $\cross r_{2}$
$\mathrm{x}$ $2$ $\mathrm{x}\cdots$ $\mathrm{x}$ $2$ unimodular

$r_{1}$
$\mathrm{x}$ $3$ $\mathrm{x}$ $3$ normal

5 $\mathrm{x}$ $5$ $\mathrm{x}$ $3$ or 5 $\mathrm{x}$ $4\cross 3$ or 4 $\mathrm{x}$ $4$ $\mathrm{x}$ $3$ UNKNOWN if normal or not
otherwise, $i$ . $e.$ ,

$n\geq 4$ and $r_{3}\geq 3$

$n=3$ and $r_{3}\geq 4$

$n=3$ , $r_{3}=3$ , $r_{1}\geq 6$ and $r_{2}\geq 4$

not normaf

Even though a unique minimal set of generators of $I_{A_{r_{1}43}}$ is given in [3], it seems
to be difficult to know if $K[A_{543}]$ and $K[A_{443}]$ are normal. On the other hand, we
do not know if $A_{r_{1}33}$ with $r_{1}\geq 4$ are compressed.

Question 2.7, Are $K[A_{553}]_{f}K[A_{543}]$ and $K[A_{443}]$ normal?

Question 2.8. Is $A_{r_{1}33}$ compressed for $r_{1}\geq 4$ ?
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