<table>
<thead>
<tr>
<th>Title</th>
<th>SYNTACTIC MONOIDS AND LANGUAGES (Algebra, Languages and Computation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Mitoma, Teruyuki; Shoji, Kunitaka</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (2005), 1437: 11-16</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2005-06</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/47481</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
SYNTACTIC MONOIDS AND LANGUAGES*

TERUYUKI MITOMA AND KUNITAKA SHOJI
DEPARTMENT OF MATHEMATICS, SHIMANE UNIVERSITY
MATSUE, SHIMANE, 690-8504 JAPAN

In this paper, we investigate the structures of syntactic monoids of languages and take up the related problems.

1 Syntactic monoids

Definition 1. X is finite alphabet, X^* is the set of words over X, L is a subset of X^*, is called a language. The syntactic congruence σ_L on X^* is defined by $w \sigma_L w'$ if and only if the sets $\{(x, y) \in X^* \times X^* \mid xwy \in L\}$ are equal to each other. The syntactic monoid of L is defined to be a monoid X^*/σ_L.

Definition 2. An finite automaton A is a quintuple

$$\mathcal{A} = (A, V, E, I, T)$$

where X is a finite alphabet, V is a finite set of states, E is a finite set of directed edges each of which is labelled by a letter of X; edges e are written as $e = (v, a, v')$, where $v, v' \in V$ and $a \in X$. I is a subset of V, each of which is called an initial state, and T is a subset of V, each of which is called a terminal state.

Let L be a language over X. Then we say that L is a regular language over X if there exists an automaton A with $L = L(A)$.

Result 1. Let L be a language over X. Then L is regular if and only if $\text{Syn}(L)$ is a finite monoid.

Problem 1. Given a language L, discribe structure of $\text{Syn}(L)$.

Result 2. Let L be a language of X^* and L^c the complement of the set L in X^*. Then $\text{Syn}(L) = \text{Syn}(L^c)$.

Example 1. Let $A = \{a_1, \cdots, a_n\}$. Let L be a language of A^*. If the syntactic monoid $\text{Syn}(L)$ is a right zero semigroup with 1, then $\text{Syn}(L)$ is three-element semigroup.

*This is an abstract and the paper will appear elsewhere.
Example 2. Let $A = \{a_1, \ldots, a_n\}$. For any $w = b_1b_2\cdots b_r$, let $w^R = b_r \cdots b_2b_1$. Let $L = \{ww^R | w \in A^*\}$. Then $\text{Syn}(L)$ is the free monoid A^* on A.

Example 3. Let $A = \{a, b\}$ and $L = \{a^nb^m | n, m \in \mathbb{N}\}$. Then all of the σ_L-classes are $\{1\}$, $\{(ab)^n\}$, $\{b^n\}$, $c_n = \{a^{n+1}b^n | p \in \mathbb{N}\}$, $d_n = \{a^{n+1}b^{n+1} | q \in \mathbb{N}\}$, $0 = A^*baA^*$. Also, $\text{Syn}(L) - \{0, 1\}$ is a D-class.

Example 4. Let $A = \{a_1, \ldots, a_n\}$. Give the length and lexicographic ordering on A^* with $a_1 < \cdots < a_n$. Let w_n be the word obtained by juxtapointing words of length n to x^*_n from lower to upper in the the length and lexicographic ordering. For instance, $w_1 = a_1 \cdots a_n$, $w_2 = (a_1a_1)(a_1a_2) \cdots (a_1a_n) \cdots (a_na_{n-1})(a_na_n)$ and so on.

and let $L = \{w_n | n \in \mathbb{N}\}$ be the set of words. The free monoid A^* on A is isomorphic to $\text{Syn}(L)$.

Example 5. Let $A = \{a_1, \ldots, a_r\}$ and let L be the set of words w_n in which each a_i occurs exactly n times. Then the free commutative monoid on A is isomorphic to $\text{Syn}(L)$.

Result 3. For every finitely generated group G, there exists a language L of X^* such that G is isomorphic to $\text{Syn}(L)$.

2 A-Graphs, Automata, and embedding of monoids in Syntactic monoids

Definition 3. Let A be a finite set. Then $G = (A, V, E)$ is a (directed) A-graph, where V is a set of vertices, E is a set of directed edges with a letter as label and so edges e from a vertex v to a vertex v' are written as $e = (v, a, v')$ or $e : v \overset{a}{\longrightarrow} v'$.

A A-graph $G = (A, V, E)$ is said to be deterministic if $\forall v \in V, \forall a \in A$, there exists at most one vertex $v' \in V$ such that $(v, a, v') \in E$.

Assume that a A-graph $G = (A, V, E)$ is deterministic. For any $a \in A$, define a partial map $\varphi_a : V \rightarrow V$ by $\varphi_a(v) = v$ if there exists $(u, a, v) \in E$. We obtain the submonoid $M(G)$ of $\mathcal{PT}(V)$ generated by the set $\{\varphi_a | a \in A\}$, where $\mathcal{PT}(V)$ is the monoid of all partial maps $V \rightarrow V$. $M(G)$ is called the monoid of G.

Fix a deterministic A-graph $G = (A, V, E)$. Let i be an element of V, called an initial vertex of G. Let T be a subset of V, whose elements are called terminal vertices of G. We obtain a (unnecessarily finite) deterministic automaton $A(G)$ in which V is a set of states, E is a set of edges, i is an initial state, and T is a set of terminal states.

Given edges $e_i = (u_i, a_i, u_{i+1})$ ($1 \leq i \leq n$), the sequence $e_1e_2 \cdots e_n$ is called path from a state u_1 to a state u_{n+1}. The word $a_1a_2 \cdots a_n$ is a label of the path $p = e_1e_2 \cdots e_n$, the length of p is n, and then we write it as $|p| = n$. \[/ \]
If u_1 is an initial state and v_n is a terminal state, then $e_1e_2 \cdots e_n$ is called a successful path.

A deterministic automaton $A(G)$ is called accessible if for any vertex v of G, there exists a path from a initial vertex to v.

A deterministic automaton $A(G)$ is called co-accessible if for any vertex v of G, there exists a path from v to a terminal vertex.

Lemma 1. For any deterministic automaton A, there exists an accessible and co-accessible automaton B such that $L(A) = L(B)$.

There is an action of A^* on V, that is, we write as $vw = u$ if there exists a path from u to v with a label w.

Fix an automaton $A = (A, V, E, I, T)$. Define a relation \equiv on V defined by $v \equiv u$ if and only if $\{w \in A^* | vw \in T\} = \{w \in A^* | uw \in T\}$.

We get a new automaton $\overline{A} = (A, \overline{V}, \overline{E}, \overline{I}, \overline{T})$, where $\overline{V} = V/\equiv$, $\overline{E} = \{(u, a, v) | (u, a, v) \in E\}$ (for $u \in V$), $\overline{I} = I/\equiv$, $\overline{T} = T/\equiv$.

Lemma 2. Let $A = (A, V, E, I, T)$ be an deterministic accessible co-accessible automaton. Then $\overline{A} = (A, \overline{V}, \overline{E}, \overline{I}, \overline{T})$ is a minimal automaton recognizing $L(A)$.

Fix a deterministic A-graph $G = (A, V, E)$. We get an minimal automaton $A_G = (A', V', E', \{i\}, \{t\})$ where $A' = A \cup \{\alpha, \beta\}$, $V' = V \cup \{i, t\}$ and $E' = \{(i, \alpha, v_1), (v_j, \alpha, v_{j+1}), (v_{j+1}, \beta, v_j), (v_1, \beta, t) | j = 1, 2, \ldots\}$.

Theorem 1. Let $G = (A, V, E)$ be a deterministic A-graph. For the automaton A_G constructed above, $M(G)$ is embedded in $\text{Syn}(L(A_G))$.

Consequently, any monoid is a submonoid of a syntactic monoid.

3 Embedding of inverse monoids in syntactic monoids

Definition 4. A monoid M is called an inverse monoid if for any $s \in M$, there exists uniquely an element $m \in M$ with $msm = m, sms = s$.

Let $G = (A, V, E)$ be a deterministic A-graph. Then G is called injective if there is no pair of two edges of form (u, a, v) and (u', a, v), where $a \in A, u, u', v \in V$.

By choosing initial vertices and terminal vertices from V, we obtain an injective deterministic automaton $A(G)$.

Then the monoid $M(G)$ of G is a submonoid of the symmetric inverse monoid $S(V)$ on the set of V.
Now we have the following results which are an inverse monoid-version of Lemma 2 and Theorem 1.

Lemma 3. Let $\mathcal{A} = (A, V, E, I, T)$ be a deterministic accessible co-accessible injective automaton.

Then $\overline{\mathcal{A}} = (A, \overline{V}, \overline{E}, \overline{I}, \overline{T})$ is a minimal automaton decognizing $L(A)$.

Fix a deterministic injective A-graph $G = (A, V = \{v_1, v_2, \ldots\}, E)$. We get an injective automaton $A_G = (A', V', E', \{i\}, \{t\})$ where $A' = A \cup \{\alpha, \beta\}$, $V' = V \cup \{i, t\}$, $E' = \{(i, \alpha, v_1), (v_j, \alpha, v_{j+1}), (v_1, \alpha', i), (v_{j+1}, \alpha', v_j), (v_1, \beta, t), (v_j, \beta', v_{j+1}), (t, \beta', v_1) \mid j = 1, 2, \ldots\}$.

Theorem 2. Let $G = (A, V, E)$ be a deterministic injective A-graph. For the automaton A_G constructed above, $M(G)$ is embedded in an inverse monoid $\text{Syn}(L(A_G))$.

Consequently, any inverse monoid is a submonoid of an inverse syntactic monoid.

4 Word problems for Syntactic monoids of context-free languages

Definition 5. Context-free languages are defined as languages consisting of words accepted by pushdown automata. Equivalently, context-free languages are defined languages accepted by formal grammars as follows:

A formal grammar Γ consists of a finite set V of symbols and a special symbol σ, a finite set of alphabets A and a subset P of $V^+ \times (V \cup A)^*$, which is called product. Then the formal grammar Γ is denoted by (V, A, P, σ).

Definition 6. Let L be a language over a finite alphabet A. Then a word problem for the syntactic monoid $\text{Syn}(L)$ is the following question:

For any pair of two words $w, w' \in A^*$, does there exists an algorithm deciding whether $(w, w') \in \sigma_L$ or $(w, w') \notin \sigma_L$?

Let I be a non-empty set of a semigroup S. Then I is called an ideal of S. An ideal I of S is called completely prime if for any $x, y \in S$, $xy \in I$ implies that either $x \in I$ or $y \in I$.

The following follows immediately.

Lemma 4. Let L be a language over A and $\text{sub}(L)$ the set of subwords of words in L.

Then the complement of $\text{sub}(L)$ in L is completely prime.

Corollary 1. Let L be a language over A and $\text{sub}(L)$ the set of subwords of words in L.
Then the syntactic monoid $\text{Syn}(L)$ has a zero element if and only if either $A^* \neq \text{sub}(L)$ or $A^* \neq \text{sub}(L^c)$.

Theorem 3. Let L be a language over A. The syntactic monoid $\text{Syn}(L)$ has a zero element if and only if there exists a word w over A such that either $A^*wA^* \subseteq L$ or $A^*wA^* \subseteq L^c$.

Problem 2 Let L be a deterministic context-free language over a finite alphabet A. Then is word problem for the syntactic monoid $\text{Syn}(L)$ undecidable?

Problem 3 Let L be a deterministic context-free language over a finite alphabet A. Then is it decidable whether the syntactic monoid $\text{Syn}(L)$ has a zero element or not?

5 Presentation of monoids with regular congruence classes

Result 4. Let G be a finitely generated group and $\varphi : A^* \to G$ an onto homomorphism with $L = \varphi^{-1}(1) (\subseteq A^*)$. Then

1. ([6]) G is finite if and only if L is a regular language.
2. ([7], [8], [9]) G is virtually free (a finite extension of free group) if and only if L is a deterministic context-free language.

Lemma 5. Let L be a language of A^*. Then L is a union of σ_L-classes in A^*.

Theorem 4. Let L be a language of A^*. Then the following are equivalent:

1. L is a σ_L-class in A^*.
2. $xLy \cap L \neq \emptyset$ ($x, y \in A^*) \Rightarrow xLy \subseteq L$.
3. L is an inverse image $\phi^{-1}(m)$ of a homomorphism ϕ of A^* to a monoid M.

Theorem 5. For every finitely generated monoid M, there exist languages $\{L_m\}_{m \in M}$ of A^* such that M is embedded in the direct product of syntactic semigroups.

Definition 7. Let M be a monoid and A a finite alphabet. M has the presentation with regular congruence classes if there exists an onto homomorphism of $\varphi : A^* \to M$ is such that if for any $m \in M$, $\varphi^{-1}(m)$ is a regular language.

Definition 8. A monoid M is residually finite if for each pair of elements $m, m' \in M$, there exists a congruence μ on M such that the factor monoid M/μ is finite and $(m, m') \not\in \mu$.

Theorem 6. Let M be a finitely generated monoid and $\phi : A^* \to M$ a onto homomorphism.

Then for each $m \in M$, the following are equivalent.
(1) \(\phi^{-1}(m) \) is a regular language
(2) \(|M/\sigma_m| < \infty\).

Let \(M \) be a monoid and \(m \) an element of \(M \). Define a relation \(\sigma_m \) by \(a\sigma_m b \) (\(a, b \in M \)) if and only if
\[
\{(x, y) \in M \times M \mid xay = m\} = \{(x, y) \in M \times M \mid xby = m\}.
\]
Then \(\sigma_m \) is a congruence on \(M \).

Theorem 7. Let \(M \) be a finitely generated monoid and \(\varphi : A^* \to M \) be a presentation of \(M \) with regular congruence classes. Then \(M \) is residually finite.

References

