SYNTACTIC MONOIDS AND LANGUAGES*

TERUYUKI MITOMA AND KUNITAKA SHOJI
DEPARTMENT OF MATHEMATICS, SHIMEANE UNIVERSITY
MATSU, SHIMEANE, 690-8504 JAPAN

In this paper, we investigate the structures of syntactic monoids of languages and take up the related problems.

1 Syntactic monoids

Definition 1. \(X \) is finite alphabet, \(X^* \) is the set of words over \(X \), \(L \) is a subset of \(X^* \), is called a language. The syntactic congruence \(\sigma_L \) on \(X^* \) is defined by \(w \sigma_L w' \) if and only if the sets \(\{(x, y) \in X^* \times X^* \mid xwy \in L\} \) are equal to each other. The syntactic monoid of \(L \) is defined to be a monoid \(X^*/\sigma_L \).

Definition 2. An finite automaton \(A \) is a quintuple \(A = (A, V, E, I, T) \)

where \(X \) is a finite alphabet, \(V \) is a finite set of states, \(E \) is a finite set of directed edges each of which is labelled by a letter of \(X \); edges \(e \) are written as \(e = (v, a, v') \), where \(v, v' \in V \) and \(a \in X \). \(I \) is a subset of \(V \), each of which is called an initial state, and \(T \) is a subset of \(V \), each of which is called a terminal state.

Let \(L \) be a language over \(X \). Then we say that \(L \) is a regular language over \(X \) if there exists an automaton \(A \) with \(L = L(A) \).

Result 1. Let \(L \) be a language over \(X \). Then \(L \) is regular if and only if \(\text{Syn}(L) \) is a finite monoid.

Problem 1. Given a language \(L \), describe structure of \(\text{Syn}(L) \).

Result 2. Let \(L \) be a language of \(X^* \) and \(L^c \) the complement of the set \(L \) in \(X^* \). Then \(\text{Syn}(L) = \text{Syn}(L^c) \).

Example 1. Let \(A = \{a_1, \cdots, a_n\} \). Let \(L \) be a language of \(A^* \). If the syntactic monoid \(\text{Syn}(L) \) is a right zero semigroup with 1, then \(\text{Syn}(L) \) is three-element semigroup.

*This is an abstract and the paper will appear elsewhere.
Example 2. Let $A = \{a_1, \cdots, a_n\}$. For any $w = b_1 b_2 \cdots b_r$, let $w^R = b_r \cdots b_2 b_1$. Let $L = \{ww^R | w \in A^*\}$. Then $\text{Syn}(L)$ is the free monoid A^* on A.

Example 3. Let $A = \{a, b\}$ and $L = \{a^n b^n | n \in N\}$. Then all of σ_L-classes are $\{1\}$, $\{a\}$, $\{a^n\}$, $\{b^n\}$, $c_n = \{a^{p+n}b|p \in N\}$, $d_n = \{a^q b^{p+n}|q \in N\}$, $0 = A^*baA^*$. Also, $\text{Syn}(L) - \{0, 1\}$ is a D-class.

Example 4 Let $A = \{a_1, \cdots, a_n\}$. Give the length and lexicographic ordering on A^* with $a_1 < \cdots < a_n$. Let w_n be the word obtained by juxtapointing words of length n to x_1^n from lower to upper in the the length and lexicographic ordering. For instance, $w_1 = a_1 \cdots a_n$,

$$w_2 = (a_1a_1)(a_1a_2) \cdots (a_1a_n) (a_na_{n-1}) (a_na_n)$$

and let $L = \{w_n | n \in N\}$ be the set of words. The free monoid A^* on A is isomorphic to $\text{Syn}(L)$.

Example 5. Let $A = \{a_1, \cdots, a_r\}$ and let L be the set of words w_n in which each a_i occurs exactly n times. Then the free commutative monoid on A is isomorphic to $\text{Syn}(L)$.

Result 3. For every finitely generated group G, there exists a language L of X^* such that G is isomorphic to $\text{Syn}(L)$.

2 A-Graphs, Automata, and embedding of monoids in Syntactic monoids

Definition 3. Let A be a finite set. Then $G = (A, V, E)$ is a (directed) A-graph, where V is a set of vertices, E is a set of directed edges with a letter as label and so edges e from a vertex v to a vertex v' are written as $e = (v, a, v')$ or $e : v \xrightarrow{a} v'$.

A A-graph $G = (A, V, E)$ is said to be deterministic if $\forall v \in V$, $\forall a \in A$, there exists at most one vertex $v' \in V$ such that $(v, a, v') \in E$.

Assume that a A-graph $G = (A, V, E)$ is deterministic. For any $a \in A$, define a partial map $\varphi_a : V \rightarrow V$ by $\varphi_a(v) = v$ if there exists $(u, a, v) \in E$. We obtain the submonoid $M(G)$ of $\mathcal{P}_{T(V)}$ generated by the set $\{\varphi_a\}_{a \in A}$, where $\mathcal{P}_{T(V)}$ is the monoid of all partial maps $V \rightarrow V$. $M(G)$ is called the monoid of G.

Fix a deterministic A-graph $G = (A, V, E)$. Let i be an element of V, called an initial vertex of G. Let T be a subset of V, whose elements are called terminal vertices of G. We obtain a (unnecessarily finite) deterministic automaton $A(G)$ in which V is a set of states, E is a set of edges, i is an initial state, and T is a set of terminal states.

Given edges $e_i = (u_i, a_i, u_{i+1})$ ($1 \leq i \leq n$), the sequence $e_1 e_2 \cdots e_n$ is called path from a state u_1 to a state u_{n+1}. the word $a_1 a_2 \cdots a_n$ is a label of the path $p = e_1 e_2 \cdots e_n$, the length of p is n, and then we write it as $|p| = n$.
If u_1 is an initial state and v_n is a terminal state, then $e_1 e_2 \cdots e_n$ is called a successful path.

A deterministic automaton $A(G)$ is called accessible if for any vertex v of G, there exists a path from a initial vertex to v.

A deterministic automaton $A(G)$ is called co-accessible if for any vertex v of G, there exists a path from v to a terminal vertex.

Lemma 1. For any deterministic automaton A, there exists an accessible and co-accessible automaton B such that $L(A) = L(B)$.

There is an action of A^* on V, that is, we write as $vw = u$ if there exists a path from u to v with a label w.

Fix an automaton $A = (A, V, E, I, T)$. Define a relation \equiv on V defined by $v \equiv u$ if and only if

$$\{w \in A^* | vw \in T\} = \{w \in A^* | uw \in T\}.$$

We get a new automaton $\overline{A} = (A, \overline{V}, \overline{E}, \overline{I}, \overline{T})$, where

$$\overline{V} = V / \equiv, \overline{E} = \{(\overline{u}, a, \overline{v}) | (u, a, v) \in E\} \text{ for } u \in V, \overline{I} = I / \equiv, \overline{T} = T / \equiv.$$

Lemma 2. Let $A = (A, V, E, I, T)$ be an deterministic accessible co-accessible automaton. Then $\overline{A} = (A, \overline{V}, \overline{E}, I, \overline{T})$ is a minimal automaton recognizing $L(A)$.

Fix a deterministic A-graph $G = (A, V = \{v_1, v_2, \ldots\}, E)$. We get an minimal automaton $A_G = (A', V', E', \{i\}, \{t\})$ where $A' = A \cup \{\alpha, \beta\}$, $V' = V \cup \{i, t\}$ and $E' = \{(i, \alpha, v_1), (v_j, \alpha, v_{j+1}), (v_{j+1}, \beta, v_j), (v_1, \beta, t) | j = 1, 2, \ldots\}$.

Theorem 1. Let $G = (A, V, E)$ be a deterministic A-graph. For the automaton A_G constructed above, $M(G)$ is embedded in $\text{Syn}(L(A_G))$.

Consequently, any monoid is a submonoid of a syntactic monoid.

3 Embedding of inverse monoids in syntactic monoids

Definition 4. A monoid M is called an inverse monoid if for any $s \in M$, there exists uniquely an element $m \in M$ with $msm = m$, $sms = s$.

Let $G = (A, V, E)$ be a deterministic A-graph. Then G is called injective if there is no pair of two edges of form (u, a, v) and (u', a, v), where $a \in A$, $u, u', v \in V$.

By choosing initial vertices and terminal vertices from V, we obtain an injective deterministic automaton $A(G)$.

Then the monoid $M(G)$ of G is a submonoid of the symmetric inverse monoid $S(V)$ on the set of V.

Now we have the following results which are an inverse monoid-version of Lemma 2 and Theorem 1.

Lemma 3. Let \(A = (A, V, E, I, T)\) be a deterministic accessible co-accessible injective automaton.

Then \(\overline{A} = (A, \overline{V}, \overline{E}, I, T)\) is a minimal automaton decognizing \(L(A)\).

Fix a deterministic injective \(A\)-graph \(G = (A, V = \{v_1, v_2, \ldots\}, E)\). We get an injective automaton \(A_G = (A', V', E', \{i\}, \{t\})\) where \(A' = A \cup \{\alpha, \beta\}\), \(V' = V \cup \{i, t\}\), \(E' = \{(i, \alpha, v_1), (v_j, \alpha, v_{j+1}), (v_1, \alpha', i), (v_{j+1}, \beta, v_j), (v_1, \beta, t), (v_j, \beta', v_{j+1}), (t, \beta', v_1)\} \quad | \quad j = 1, 2, \ldots\).

Theorem 2. Let \(G = (A, V, E)\) be a deterministic injective \(A\)-graph. For the automaton \(A_G\) constructed above, \(M(G)\) is embedded in an inverse monoid \(\text{Syn}(L(A_G))\).

Consequently, any inverse monoid is a submonoid of an inverse syntactic monoid.

4 Word problems for Syntactic monoids of context-free languages

Definition 5. Context-free languages are defined as languages consisting of words accepted by pushdown automata. Equivalently, context-free languages are defined languages accepted by formal grammars as follows:

A formal grammar \(\Gamma\) consists of a finite set \(V\) of symbols and a special symbol \(\sigma\), a finite set of alphabets \(A\) and a subset \(P\) of \(V^+ \times (V \cup A)^*\), which is called *product*. Then the formal grammar \(\Gamma\) is denoted by \((V, A, P, \sigma)\).

Definition 6. Let \(L\) be a language over a finite alphabet \(A\). Then a word problem for the syntactic monoid \(\text{Syn}(L)\) is the following question:

For any pair of two words \(w, w' \in A^*\), does there exists an algorithm deciding whether \((w, w') \in \sigma_L\) or \((w, w') \not\in \sigma_L\) ?

Let \(I\) be a non-empty set of a semigroup \(S\). Then \(I\) is called an *ideal* of \(S\). An ideal \(I\) of \(S\) is called *completely prime* if for any \(x, y \in S\), \(xy \in I\) implies that either \(x \in I\) or \(y \in I\).

The following follows immediately.

Lemma 4. Let \(L\) be a language over \(A\) and \(\text{sub}(L)\) the set of subwords of words in \(L\).

Then the complement of \(\text{sub}(L)\) in \(L\) is completely prime.

Corollary 1. Let \(L\) be a language over \(A\) and \(\text{sub}(L)\) the set of subwords of words in \(L\).
Then the syntactic monoid \(\text{Syn}(L) \) has a zero element if and only if either \(A^* \neq \text{sub}(L) \) or \(A^* \neq \text{sub}(L^c) \).

Theorem 3. Let \(L \) be a language over \(A \). The syntactic monoid \(\text{Syn}(L) \) has a zero element if and only if there exists a word \(w \) over \(A \) such that either \(A^*wA^* \subseteq L \) or \(A^*wA^* \subseteq L^c \).

Problem 2 Let \(L \) be a deterministic context-free language over a finite alphabet \(A \). Then is word problem for the syntactic monoid \(\text{Syn}(L) \) undecidable?

Problem 3 Let \(L \) be a deterministic context-free language over a finite alphabet \(A \). Then is it decidable whether the syntactic monoid \(\text{Syn}(L) \) has a zero element or not?

5 Presentation of monoids with regular congruence classes

Result 4. Let \(G \) be a finitely generated group and \(\varphi : A^* \to G \) an onto homomorphism with \(L = \varphi^{-1}(1) (\subseteq A^*) \). Then

1. \((6)\) \(G \) is finite if and only if \(L \) is a regular language.
2. \((7),(8),(9)\) \(G \) is virtually free (a finite extension of free group) if and only if \(L \) is a deterministic context-free language.

Lemma 5. Let \(L \) be a language of \(A^* \). Then \(L \) is a union of \(\sigma_L \)-classes in \(A^* \).

Theorem 4. Let \(L \) be a language of \(A^* \). Then the following are equivalent:

1. \(L \) is a \(\sigma_L \)-class in \(A^* \).
2. \(xLy \cap L \neq \emptyset \) (\(x,y \in A^* \)) \(\Rightarrow xLy \subseteq L \).
3. \(L \) is an inverse image \(\phi^{-1}(m) \) of a homomorphism \(\phi \) of \(A^* \) to a monoid \(M \).

Theorem 5. For every finitely generated monoid \(M \), there exist languages \(\{L_m\}_{m \in M} \) of \(A^* \) such that \(M \) is embedded in the direct product of syntactic semigroups.

Definition 7. Let \(M \) be a monoid and \(A \) a finite alphabet. \(M \) has the presentation with regular congruence classes if there exists a onto homomorphism of \(\varphi : A^* \to M \) is such that if for any \(m \in M \), \(\varphi^{-1}(m) \) is a regular language.

Definition 8. A monoid \(M \) is residually finite if for each pair of elements \(m, m' \in M \), there exists a congruence \(\mu \) on \(M \) such that the factor monoid \(M/\mu \) is finite and \((m, m') \notin \mu \).

Theorem 6. Let \(M \) be a finitely generated monoid and \(\phi : A^* \to M \) a onto homomorphism.

Then for each \(m \in M \), the following are equivalent.
$\phi^{-1}(m)$ is a regular language

$|M/\sigma_m| < \infty$.

Let M be a monoid and m an element of M. Define a relation σ_m by $a \sigma_mb (a, b \in M)$ if and only if

$$\{(x, y) \in M \times M \mid xay = m\} = \{(x, y) \in M \times M \mid xby = m\}.$$

Then σ_m is a congruence on M.

Theorem 7. Let M be a finitely generated monoid and $\varphi : A^* \rightarrow M$ be a presentation of M with regular congruence classes. Then M is residually finite.

References

