<table>
<thead>
<tr>
<th>Title</th>
<th>Endomorphisms of a Module over a Valuation Domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Ishibashi, Hiroyuki</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 2005, 1437: 17-20</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2005-06</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/47489</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>
Endomorphisms of a Module over a Valuation Domain

by

Hiroyuki Ishibashi

Department of Mathematics
Josai University
Sakado, Saitama 350-02, Japan

Unless specified, R is a valuation ring, that is, an integral domain in which either a divides b, or b divides a for any nonzero a, b in R. This shows that R is a local ring with the unique maximal ideal \mathfrak{m} consisting of all nonunits of R. Clearly its unit group is $R^* = R - \mathfrak{m}$.

Let M be a left free module over R of rank n, and $\text{End}_R(M)$ or $\text{End}(M)$ the right R-algebra of R-endomorphisms of M. The unit group of $\text{End}_R(M)$ is $\text{Aut}_R(M)$ or simply $\text{Aut}(M)$. We write an endomorphism σ on the right side of a module element $x \in M$.

The special elements in $\text{End}_R(M)$ used here are (a) to (f) following, where $E = \{e_1, e_2, \cdots, e_n\}$ is a fixed basis for M over R, and $X = \{x_1, x_2, \cdots, x_n\}$ is an arbitrarily chosen basis for M over R.

(a) For $x, y \in M$ and $L \subseteq M$, let $M = Rx \oplus Ry \oplus L$. A transposition $\Delta = \Delta_{x,y,L} \in \text{Aut}(M)$ is defined by

$$x\Delta = y, \ y\Delta = x \text{ and } \Delta = 1 \text{ on } L.$$

(b) For $a \in R$, $x, y \in M$ and $U \subseteq M$, let $M = Rx \oplus Ry \oplus U$ and $L = Ry \oplus U$. A transvection $\tau = \tau_{x,ay,u} \in \text{Aut}(M)$ is defined by

$$x\tau = x + ay \text{ and } \tau = 1 \text{ on } L.$$

(c) For $a \in R$, $x, y \in M$ and $U \subseteq M$, let $M = Rx \oplus Ry \oplus U$.

1This is an abstract and the details will be published elsewhere.
2E-mail: hishi@math.josai.ac.jp

Typeset by AMS-TEX
We define a left transposed transvection or a left skew transvection \(\varphi = \varphi_{x, ay} \in \text{Aut}(M) \) by
\[
\varphi = \Delta_{x, y, U} \tau_{x, ay, U},
\]
i.e.,
\[
 x \varphi = y, \ y \varphi = x + ay \text{ and } \varphi = 1 \text{ on } U.
\]

Similarly, a right skew transvection \(\tau_{x, ay, U} \Delta_{x, y, U} \) is possible to define. However, as we will see, left skew is right skew and right skew is left skew. Therefore, we will often call them just skew transvections.

\[(d)\] For any elements \(a_1, a_2, \cdots, a_n \) in \(R \) and for \(X \) a basis for \(M \), we define \(\delta = \delta_X(a_1, a_2, \cdots, a_n) \in \text{End}(M) \) by
\[
x_i \delta = a_i x_i, \quad i = 1, 2, \cdots, n.
\]

\[(e)\] An element \(\eta = \eta_X \in \text{Aut}(M) \) is defined by
\[
x_1 \eta = x_1 \text{ and } x_i \eta = x_1 + x_i, \quad 2 \leq i \leq n.
\]
If \(n = 1 \), i.e., \(|X| = 1 \), we define \(\eta_X = 1 \), i.e., the identity map on \(M \).

\[(f)\] For \(\pi \in S_n \) we define a permutation automorphism \(\pi_X \in \text{End}_R(M) \) by
\[
x_i \pi_X = x_{\pi i}
\]
The set of such \(\pi_X \) is denoted by \(S_X \). Clearly \(S_X \) is a subgroup of \(\text{Aut}(M) \) isomorphic to \(S_n \).

If \(X = \mathcal{E} \), i.e., the canonical basis, then for \(\pi \in S_n \) the permutation automorphism \(\pi_{\mathcal{E}} \) is said to be a canonical permutation. For simplicity we may write \(\pi \) and \(S_n \) instead of \(\pi_X \) and \(S_X \), respectively.

Moreover, providing these particular elements in \(\text{End}_R(M) \), we define the following three subsets of \(\text{End}_R(M) \), where \(X = \{x_1, x_2, \cdots, x_n\} \) is again an arbitrary chosen basis for \(M \):

The set of transvections relative to \(X \) is

\[(5.1)\]
\[
\tau_{R, X} = \{ \tau_{x_i, ax_j, U} | a \in R, \ U = \bigoplus_{h \neq i, j}^{n-1} Rx_h, \ 1 \leq i \neq j \leq n \},
\]

the set of skew transvections relative to \(X \) is

\[(5.2)\]
\[
\varphi_{R, X} = \{ \varphi_{x_i, ax_j, U} | a \in R, \ U = \bigoplus_{h \neq i, j}^{n-1} Rx_h, \ 1 \leq i \neq j \leq n \},
\]
and for subsets \(S_1, S_2, \cdots, S_n \) of \(R \) we write

\[(5.3)\]
\[
\delta_X(S_1, S_2, \cdots, S_n) = \{ \delta_X(a_1, a_2, \cdots, a_n) | a_i \in S_i \}.
\]
For any $\sigma \in \text{End}_R M$ we define the fixed submodule M_{σ} of σ by

$$M_{\sigma} = \{ x \in M \mid x\sigma = x \}.$$

Definition. For $i = 0, 1, \cdots, n$ we define

$$S^{(i)} = \{ \sigma \in \text{End}(M) \mid \text{rank } M_{\sigma} = n - i \}.$$

An element σ in $S^{(1)}$ is called a simple element, i.e., σ is simple if and only if σ fixes a hyper plane of M.

By definition, Δ in (a) and τ in (b) are in $S^{(1)}$, and φ in (c) is in $S^{(2)}$. Also δ in (d) is in $S^{(n-i)}$ if exactly i of $\{a_1, a_2, \cdots, a_n\}$ is 1. Further η in (e) belongs to $S^{(n-1)}$.

Main Theorem. Let $0 \neq \sigma \in \text{End}_R M$. Then there exist

(i) $\eta_{Z'}$ with $Z' \subseteq Z$ for some basis Z for M
and

(ii) skew transvections $\psi_1, \psi_2, \cdots, \psi_l$ with $0 \leq l \leq n - 1$

such that

$$\psi_l \cdots \psi_2 \psi_1 \eta_{Z'} \sigma = \delta_X (a_1, a_2, \cdots, a_l, a_{l+1}, \cdots, a_n)$$

for some basis X for M with $a_1 \mid a_2 \mid \cdots \mid a_l$ and $a_l \mid a_i$ for $l \leq i \leq n$.
References

