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Summary

Kinase computing, a new method of molecular computing, was initiated by the authors in

2001 [1], In kinase computing, computing process is carried out based on the signaling

pathways of phosphorylation and dephosphorylation switched by kinases and phosphatases

[2]. One of the characteristics of kinase computing is the linear order of control-space

complexity when it is applied to 3-SAT problem solving. As we know, in mammalian cells,

there exist crosstalks between the pathways ofRho family GTPases and $\mathrm{k}\mathrm{i}\mathrm{n}\mathrm{a}\mathrm{s}\mathrm{e}\mathrm{s}/\mathrm{p}\mathrm{h}\mathrm{o}\mathrm{s}\mathrm{p}\mathrm{h}\mathrm{a}\mathrm{t}\mathrm{a}\mathrm{s}\mathrm{e}\mathrm{s}$ .

Thus, constructing a kind of coupling structure considering crosstalked pathways can improve

the performance of kinase computing systems in the sense of biochemical engineering. The

phosphorylation-dephosphorylation structure of kinase computing proposed in [2] has been

extended to a two-layer structure of GTPase pathway and $\mathrm{k}\mathrm{i}\mathrm{n}\mathrm{a}\mathrm{s}\mathrm{e}/\mathrm{p}\mathrm{h}\mathrm{o}\mathrm{s}\mathrm{p}\mathrm{h}\mathrm{a}\mathrm{t}\mathrm{a}\mathrm{s}\mathrm{e}$pathway [3]

recently for the purpose of reducing control-space complexity to a logarithmic order in the

case of applying kinase computing to 3-SAT problem solving. This derivative type of kinase

computing is called GTPase-based kinase computing. Cellular molecular switches are the

basis of the potential architecture of kinase computing in which the molecular switches in

cells are mainly classified into two categories – $\mathrm{p}\mathrm{h}\mathrm{o}\mathrm{s}\mathrm{p}\mathrm{h}\mathrm{o}\mathrm{r}\mathrm{y}\mathrm{l}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}/\mathrm{d}\mathrm{e}\mathrm{p}\mathrm{h}\mathrm{o}\mathrm{s}\mathrm{p}\mathrm{h}\mathrm{o}\mathrm{r}\mathrm{y}\mathrm{l}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}$ switches
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and GTPase switches [4]. In physical biochemistry, GTP-bound and GDP-bound states of

GTPases are determined by GEFs and GAPs, respectively. Phosphorylation and

dephosphorylation of signaling proteins are determined by kinases and phosphatases,

respectively. During the process of the GTP hydrolysis, the GTP-bound GTPase is hydrolyzed

into the GDP-bound state. The above-mentioned signaling mechanism can provide two states

of signaling molecules for us to design a molecular computing system by cellular pathways

under certain condition of cellular regulation. In order to study a generic kinase computer,

research on rigorous computation theory based on cellular pathways under engineered control

will be presented here. This theoretical work is regarded as a prerequisite to explore possible

generic architecture of a kinase computer, which is expected to be experimentally

implemented as a computational nanobiomachine capable of parallel information processing

based on the signaling pathways of GTPases as well as kinases and phosphatases.

I. PRELIMINARIES

1.1. Terms

The abbreviations of the terms in molecular cell biology we will use in the later discussion

are given as follows:

GEFs– guanine nucleotide exchange factors;

GAPs -GTPase-activating proteins;

GTP– guanosine triphosphate;

GDP– guanosine diphosphate;

GTPase– the proteins in cells with two states -GTP-bound state and GDP-bound state (for

more details, Cf., chapter 3 of [4]$)$ ;

GDI– guanine nucleotide exchange inhibitors;

Kinase – a kind ofprotein in cells that can phosphorylates the signaling molecules in cells.

Phosphatase -a kind of protein in cell that can detach the phosphate from phosphorylated

signaling molecules.

SPKs – signaling-protein-molecules in cells regulated by $\mathrm{k}\mathrm{i}\mathrm{n}\mathrm{a}\mathrm{s}\mathrm{e}\mathrm{s}/\mathrm{p}\mathrm{h}\mathrm{o}\mathrm{s}\mathrm{p}\mathrm{h}\mathrm{a}\mathrm{t}\mathrm{a}\mathrm{s}\mathrm{e}\mathrm{s}$ and their

corresponding pathways. These proteins mainly include serine, threonine and tyrosine [4],

$p$ -phosphate.

1.2 Notations

The notations that we will use in the later discussion are given as follows:
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$\mathrm{i}=\mathit{0},\mathit{1}$ , ..., $n$, $n\epsilon N$.
$i=\mathit{0},\mathit{1}$ , ..., $m$, $m\in N$.

$\mathit{1}=\mathit{0}$, ..., L-L$lL\in N$.
$u=\mathit{0},\mathit{1}$ , ..., Ul-l. $U_{l}$ $\in N$.

$v=\mathit{0},\mathit{1}$ , ..., $V_{l^{-}}l$ . $V_{l}\in N$.

$i’=\mathit{0},\mathit{1}$, ..., $L’- l$ , $L’\in N$.

$G-$ refers to the GTPase set $fG_{l}J$ $=G_{\mathit{0}}\iota^{\mathrm{r}}$, $G_{J}$ . $\cdot$ .., $G_{L-},J$ . ($l=\mathit{0}$, $\mathit{1}_{2}$ ..., L-l, $l\in L$ } . $G_{l}=1$ for GTP-

bound and $G_{I}=0$ for GDP-bound.

GgeJ{l)- refers to the GEF set, Ggef ($\mathfrak{h}$ $=\{G’(l_{t}u)\}$ , $\mathrm{G}’(1,\mathrm{u})$ refers to the u-th GEF in the l-th

GEF set, $u=\mathit{0}$, $l$ , ..., $U_{l}- \mathit{1}$ . $U\mathit{7}\in N$. $\mathrm{G}’(1,\mathrm{u})=1$ refers to the activation state of GEF; $G’(l,u)$

$=\mathit{0}$ refers to the inactivation state ofGEF.

Ggap - refers to the GAP set. Ggap $(\mathfrak{h}=fG’(l,\mathrm{v})J,$ $G”(l,v)$ refers to the v-th GAP in the l-th

GAP set, $v=\mathit{0},\mathit{1}$ , ..., $V_{l^{-}}\mathit{1}$ . $V_{l}\in N$. $G’(l,v)=l$ refers to the activation state of GAP; $G’(l,v)$

$=\mathit{0}$ refers to the inactivation state of GAP.

$\Psi_{i’}$ $-\mathrm{i}’$-th kinase or V-th phosphatase.

$Y_{i’}-$ refers to the state of $\mathrm{p}\mathrm{h}\mathrm{o}\mathrm{s}\mathrm{p}\mathrm{h}\mathrm{o}\mathrm{r}\mathrm{y}\mathrm{l}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}/\mathrm{d}\mathrm{e}\mathrm{p}\mathrm{h}\mathrm{o}\mathrm{s}\mathrm{p}\mathrm{h}\mathrm{o}\mathrm{r}\mathrm{y}\mathrm{l}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}$ of the V-th SPK.

$Y_{\dot{\mathfrak{l}}’}=1$ if $Y_{i’}$ is in the state of phosphorylation.

$Y_{i’}=0$ if $Y_{i}$ , is in the state of dephosphorylation.

II. MAJOR RESULTS

There is no doubt about the significance to use axiomatic representation to formulate a

theoretical system for kinase computing. For example, in the 6th Hilbert problem

“Mathematical treatment of the axioms of physics”, David Hilbert emphasized on the

axiomatic work for physics as an important task [5]. This foreseeable argument has been

proven to be true in theoretical physics. In the framework of theoretical computer science,

axiomatic system has been established many years ago. But, the corresponding axiomatic

theory for the purpose of molecular computing based on cellular pathways of GTPases and

$\mathrm{k}\mathrm{i}\mathrm{n}\mathrm{a}\mathrm{s}\mathrm{e}\mathrm{s}/\mathrm{p}\mathrm{h}\mathrm{o}\mathrm{s}\mathrm{p}\mathrm{h}\mathrm{a}\mathrm{t}\mathrm{a}\mathrm{s}\mathrm{e}\mathrm{s}$ is still open. The biochemical signaling mechanism, which is the kernel

for understanding of the computing process based on cellular pathways, is the starting point

for us to formalize the computing process. Here, we propose two axioms. The first axiom

dedicates to the description of GTPase molecular switch in the sense of physical biochemistry
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The second axiom also dedicates to the description of GTPase molecular switch in the sense

of physical biochemistry but under the condition of engineered pathways in cells.

AXIOM 1

Under the condition that $\mathrm{G}\mathrm{E}\mathrm{F}\mathrm{s}/\mathrm{G}\mathrm{A}\mathrm{P}\mathrm{s}$ pathways in cells are activated, we have that

$G_{l}=1$ if Ggef(l) $\neq\phi$ and Ggap(l)$)=\phi$ , (1. 1)

and

$G_{l}=0$ if Ggef(l) $=\phi$ and Ggap(l) $\neq\phi$ . (1.2)

In $\mathrm{G}\mathrm{E}\mathrm{F}\mathrm{s}/\mathrm{G}\mathrm{A}\mathrm{P}\mathrm{s}$ pathways, 1 is used to represent the state ofGTP-bound; 0 is used to represent

the state of GDP-bound. We assume that the quantity ofGEF or GAP is sufficiently enough to

catalyze the GTPase activation or GTPase inactivation, respectively. The assumption is also

valid for axiom 2.

AXIOM 2
Under the condition that engineered $\mathrm{G}\mathrm{E}\mathrm{F}\mathrm{s}/\mathrm{G}\mathrm{A}\mathrm{P}\mathrm{s}$ pathways in cells are activated, we have that

$G_{1}=1$ if and only if Ggef(l)\neq \phi and Ggap(l) $=\phi$ , (2.1)

and

$G_{1}=0$ if and only ifGgef(/) $=\phi$ and Ggap(T) $\neq\phi$ . (2.2)

As a preliminary status of formalization, a simple form of automata is needed to show how to

carry out computation in terms of the GTPase pathway structure in cells. Here, the following

assumptions are suggested for the basic formal description of the kinase computing process.

Provided that there exist the feedback from GTPase to $\mathrm{G}\mathrm{E}\mathrm{F}\mathrm{s}/\mathrm{G}\mathrm{A}\mathrm{P}\mathrm{s}$ and a set of signaling

molecules { $Q(\mathrm{I})]$ ($l$ $=\mathit{0},\mathit{1}$ , ,.., L-l) that are intermediate components between GTPase and
$\mathrm{G}\mathrm{E}\mathrm{F}/\mathrm{G}\mathrm{A}\mathrm{P}$ . The mapping ffom $\{G_{l}\}$ to $\{Q(l)\}$ is many-to-one, and the mapping from $\{Q(l)\}$

to Ggef(l) and {Ggap (l)} are one-to-many.

Then, we can formalize this feedback mechanism.

Let $A$ be an alphabeta. $Gw$ is the set of all the states $fw(\mathit{2}^{L})J$ encoded by ;Ggef(l)u Ggap(l)$)$

based on axiom 1 and axiom 2. $s_{\mathit{0}}$ is the start state in $Gw$ . $Gwq$ is the set of the final states that

are acceptable when halt happens. $Gwq\subseteq Gw$ .
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We can conceptually design a deterministic finite state automaton [6]

$W=$ ($A_{J}Gw$, so, $Gwq$, 5) (3.1)

where 5 is defined as following ffinction:

5.$\cdot$ $GwxA$ $–>Gw$ (3.2)

The input to this automaton is defined as a single molecule in $\{Q(l)\}$ and denoted as $q$ in $A$ .
The current state of the automaton is denoted as $Gw(t)$ and next state of the automaton is

denoted as $Gw(t\dagger \mathit{1})$ . According to the automaton structure, any possible implementation of

the state transition from the current state of $\mathrm{G}\mathrm{E}\mathrm{F}/\mathrm{G}\mathrm{A}\mathrm{P}$ to the next state of $\mathrm{G}\mathrm{E}\mathrm{F}/\mathrm{G}\mathrm{A}\mathrm{P}$ will be

controlled by the input in A. Here, we assume that a single molecule $Q\beta$) exist in the above

process. This fits the definition of automaton in the basic form. It is possible to be extended

into a multiple automata system under certain condition (we denote this condition as $\Theta$ to be

studied in future work). In addition to the assumption on a single molecule from $fQ\beta$)$J$ , other

possible situations include manual operation of the state transition based on detection of

GTPase and automated state transition by control of engineered pathways. In theory, multiple

automata for the above-mentioned process can be formalized equivalently to the

corresponding single automaton based on the abstract representation given above.

By automaton $W$, the configuration $C_{\mathit{0}}$, $C_{l_{\mathrm{J}}}\ldots$ , $C_{n}$ can be defined as

$(q, Q_{w})$

where $\mathrm{Q}_{\mathrm{w}}$ refers to the sequence that is constructed by the molecules from ($\mathrm{Q}(1)\}$ and is to be

activated in succeeding steps. They can be generated by controlling the related pathways.

Thus, certain sequences for computation can be formulated by this sequence

$fCf$ $(\mathrm{i}=\mathit{0}_{J}l_{\mathrm{J}}\ldots, n)$.

Here, the configuration process is only presented by formalization. We conclude this

speculation as follows;

$\mathrm{A}\mathrm{s}\mathrm{s}\mathrm{u}\mathrm{m}\mathrm{p}\underline{\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}2}$

The configuration $C_{\mathit{0}_{l}}C_{l}$ , $\ldots$ , $C_{n}$ can give rise to a computing process of deterministic finite

state automaton under the condition of assumption 1 axiom 1 and axiom 2.

Now, we discuss the above-mentioned process for computing in the definition of

automaton. The feasibility of this computing process is based on the “controllability” of

biochemical signaling mechanism. The range of the biochemical concentration is $(0,1)$ . If we

can prove that any arbitrary state in the range of $(0,1)$ can be obtained in theory, the
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corresponding feasibility of the computing process we present above can be inferred

consequently.

THEOREM 1

Based on the axioml, axiom 2, assumption 1, and assumption 2, the automaton defined above

is feasible in the sense of controllability on engineered pathways.

Proof.$\cdot$

The quantitative relation between $Q(l)$ and Ggef $u$ Ggap is represented in the matrix $B_{LxL}$ .
Because the total number of the activated GTPase is $\mathrm{L}$ , the activated GEF in Ggef and the

activated GAP in Ggap satisfy the condition that $\mathrm{L}1+\mathrm{L}2=\mathrm{L}$ where Ll is the number of the

activated GEF in Ggef and L2 is the number of activated GAP in Ggap.

The feasibility of the integrated pathways can be inferred from the study of pathway of

signaling molecule ($Q(l)\}$ whose input is the $fQ\beta$)$J^{(t)}$ and output is $\mathrm{G}\mathrm{E}\mathrm{F}/\mathrm{G}\mathrm{A}\mathrm{P}$ in
$\iota’Ggef_{\mathrm{L}},GgapJ^{(\iota+I)}$ , and pathway of $\mathrm{G}\mathrm{E}\mathrm{F}/\mathrm{G}\mathrm{A}\mathrm{P}$ whose input is $\mathrm{G}\mathrm{E}\mathrm{F}/\mathrm{G}\mathrm{A}\mathrm{P}$ in $(Ggef[\mathcal{L}gapJ^{(t+J)}$

and output is $\{G(l)J^{(t+l)}$ .
Now, let’s consider an equation for a quantitative description of the $\mathrm{G}\mathrm{E}\mathrm{F}/\mathrm{G}\mathrm{A}\mathrm{P}$ pathways that

control the GTP-bound/GDP-bound states ofGTPases:

$d/dt(X)=\mathrm{Q}(1)X+\mathrm{E}\mathrm{f}\mathrm{t})\mathrm{U}(\mathrm{t})$, (4.1)

where

$X-$ refers to the vector represented by activated $\mathrm{G}\mathrm{E}\mathrm{F}\mathrm{s}/\mathrm{G}\mathrm{A}\mathrm{P}\mathrm{s}$ whose total number is $\mathrm{L}$ ,

$A(t)-$ refers to the matrix of the cross-talks in the above-mentioned integrated pathways

among the $\mathrm{G}\mathrm{E}\mathrm{F}\mathrm{s}/\mathrm{G}\mathrm{A}\mathrm{P}\mathrm{s}$, whose size is $LxL$,

$U(t)-$ a vector constructed from the set of $fQ\beta$)$J$ ,

$B(t)-$ a matrix constructed by the cross-talks of the integrated pathway between $fQ(l)J$

and $\mathrm{G}\mathrm{E}\mathrm{F}\mathrm{s}/\mathrm{G}\mathrm{A}\mathrm{P}\mathrm{s}$ where the interaction is physically available among the engineered-

pathways. Its rank is $LxL$ .
Here, controllability of the computing process refers to the ability to make the states of $m$ Rho

family GTPases fall into ranges corresponding to all of the related combinatorial forms.

Let Aft) $=A$ and Eft) $=B$. The existence of controllability of related pathways is dependent

on the rank of
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$B.\cdot \mathrm{A}B.\cdot\ldots.\cdot \mathrm{A}^{L,J}B$. (4.2)

The rank of $B.\cdot \mathrm{A}B:\ldots.\cdot A^{L- l}B$ is $L$ because the related pathway units encoded for GTPases

whose number is $L$ always generate the maximum number of $L\cross$ $L$ cross-talked pathways.

Therefore, the signaling mechanism for the computing process presented based on axiom 1

and 2 and assumption 1 and 2, which is constructed by the signaling pathways between

$\mathrm{G}\mathrm{E}\mathrm{F}/\mathrm{G}\mathrm{A}\mathrm{P}$ and $\{Q(l)\}$ pathways, is feasible in the sense of quantitative measurement for the

related crosstalking mechanism, according to the necessary and sufficient condition of

controllability. The controllability refers to that the related system (i.e., for equation (4.1)) is

controllable if and only if the rank of $B.\cdot \mathrm{A}B:\ldots.\cdot \mathrm{A}^{L- l}B$ is L. (For more details on related

controllability theory for control systems, Cf, [7]. Some of the notations used for

controllability in this summary are different from those used in [7] $)$ . Therefore, the conclusion

is obtained.

Is there any code designed rigorously by GTPases in $\mathrm{m}\mathrm{a}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{m}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{c}\mathrm{s}^{\eta}$
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APPENDIX:

AXIOM 3
Under the condition that $\mathrm{k}\mathrm{i}\mathrm{n}\mathrm{a}\mathrm{s}\mathrm{e}/\mathrm{p}\mathrm{h}\mathrm{o}\mathrm{s}\mathrm{p}\mathrm{h}\mathrm{a}\mathrm{t}\mathrm{a}\mathrm{s}\mathrm{e}$ pathways in cells are activated, we have that

$Y_{i’}=1$ if $\Psi_{i’}=\mathrm{i}$’-th kinase

and

$Y_{i’}=0$ if $\Psi_{i’}=\mathrm{i}$’-th phosphatase.

AXIOM 4

Under the condition that engineered $\mathrm{k}\mathrm{i}\mathrm{n}\mathrm{a}\mathrm{s}\mathrm{e}/\mathrm{p}\mathrm{h}\mathrm{o}\mathrm{s}\mathrm{p}\mathrm{h}\mathrm{a}\mathrm{t}\mathrm{a}\mathrm{s}\mathrm{e}$ pathways in cells are activated, we
have that

$Y_{i’}=1$ if and only if $\Psi_{i},$ $=$ i’-th kinase

and

$Y_{i’}=0$ if and only if $\Psi_{i’}=$ i’-th phosphatase.


