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The Simple Graphs Associated with Rings and
Semigroups

Mitsuo Kanemitsu1

Let $R$ be a commutative ring, and let $Z(R)$ denote its set of zero-divisors.
We associate a simple graph $\Gamma(R)$ to $R$ with vertices $Z(R)’=Z(R)-\{0\}$ , the
set of nonzero zero-divisor of $R$ . Two distinct vertices $x$ and $y$ are adjacent
if $xy=0$ . This graphs are called the zero-divisor graphs of rings $R$ .

We also associate a simple graph $\triangle(\mathrm{Z}_{n})$ to $\mathrm{Z}_{n}$ with vertices $\mathrm{Z}_{n}$ and for
distinct elements $x$ , $y\in$ Zn, the vertices $x$ and $y$ are adjacent if and only if
$y=x^{2}(x\neq y)$ . This graphs are called the parabola graphs.

For a commutative multiplicative semigroup $S$ with 0 (Oz $=0$ for all
$x\in S)\}$ we can defined the zero-divisor graph $\Gamma(S)$ as above ([DMS]).

We denote an edge such that $a$ and $b$ are adjacent by $a-b$. We also
denote a path by, $a-b-c-d$ etc. Also, let $\chi(G)$ denote the chromatic
number of the graph $G$ and let $\chi’(G)$ denote the edge chromatic number of
the graph $G$ .

The notion of a zero-divisor graph was first introduced by I. Beck in [B1]
and further investigated in [A1], though their vertices set included the zero
element. Let $G$ be a graph.

The diameter of $G$ is

diam(G) $= \sup${ $d(x,$ $y)|x$ and $y$ are distinct vertices of $G$ },

where $d(x, y)$ denotes the length of the shortest path from $x$ to $y$ . The grith
of $G$ , denoted by $g(G)$ , is defined as the length of the shortest cycle in $G$ .

A complete subgraph of $G$ is called clique. $\omega(G)$ , the clique number $G$ , is

the greatest integer $r\geq 1$ such that $K^{r}\subset G$ . Also, $c(G)$ , the circumference of
$G$ , is the length of the longest cycle in $G$ . Let $n=p_{1}^{2n_{1}}\cdots$ $p_{k}^{2n_{k}}q_{1}^{2m_{1}+1}\cdots$ $q_{r}^{2m_{\tau}+1}$

for distinct primes $p_{i}$ , $q_{j}$ and integers $n_{i}$ , $m_{j}\geq 0$ . Then

$\omega(\Gamma(\mathrm{Z}_{n}))=p_{1}^{n_{1}}\cdot$ . . $p_{k}^{n_{k}}q_{1}^{m_{k}}\cdots q_{r}^{m_{r}}+r-1$

1 This is a part of an abstract and details will be published elsew here.
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by [ $\mathrm{B}$ , Proposition 2.3].

For a graph $G$ and an integer $n\geq 1$ , we define $\lambda(G, n)$ to be the number
of complete subgraphs (cliques) of $G$ of order $n$ . Note that $\lambda(G, 1)$ is the
number of vertices of $G$ , $\mathrm{A}(\mathrm{G}, 2)$ is the number of edges of $G$ , $\mathrm{A}(\mathrm{G}, 3)$ is the
num ber of triangles in $G$ and $\lambda(G, n)=0$ for all $n\geq\omega(G)+1$ ([AFLL]).

A graph $G$ is planar if it can be drawn in such a way that no two edges
intersect.

We examine the zero-divisor graph $\Gamma(Z_{n})$ , of the ring $Z_{n}$ where the residue
class ring modulo $n$ where $n$ is a positive integer. Many parts of this note
are contained in [DS] and [AF].

We also investigate the parabora graphs.

For any commutative semigroup $S$ , let $G(S)=$ the core of $\Gamma(S)$ be the
union of the cycles in $\Gamma(S)$ . A vertex $x$ of $\mathrm{F}(5)$ is called an end point in case
there is at most one edge in $\mathrm{f}’(S)$ with vertex $x$ .

51. Some exapm les of zero-divisor graphs and parabora graphs.

Example 1. Let $S$ be the commutative nilsemigroup

$S=<a$ , $b|a^{3}=a^{2}b=ab^{2}=b^{3}=0>=$ { $a$ , $b$ , $a^{2}$ , ab, $b^{2},0$ }.

For this zero-divisor graph $\mathrm{T}(\mathrm{S})=(V(\Gamma(S)), E(\Gamma(S)))$ , we have th at

$V(\Gamma(S))=$ { $a$ , $b$ , $a_{1}^{2}$ ab, $b^{2}$ }

is the set of all vertices and $E(\Gamma(S))=$ {a $-a^{2}$ , $a-b^{2}$ , a-ab, $b^{2}-ab$ , $b^{2}-a^{2}$ , $b^{2}-$

$b$ , $\}$ . This graph is connected, $\mathrm{d}(\mathrm{a}, b^{2})=1$ , $d(a, b)=2$ and $a-a^{2}-b^{2}-a$ is a
cycle of length 3. And so diam $(\Gamma(S) )$ $=2$ and $g(\Gamma(S))=3$ . There is not an
end poitnt in $\Gamma(S)$ and $C(S)=\mathrm{T}(\mathrm{S})$ . Also, we have that $\omega(\Gamma(S))$ $=4$ . Also
we have that $\lambda(S, 1)=5$ , $\lambda(S, 2)=9$ and $\lambda(S, 2)=6$ .

Example 2. Let $S$ be the commutative nilsemigroup

$S=<a$ , $b|a^{3}=a^{2}b=ab^{2}=b^{3}=0$ , $a^{2}=b^{2}>=$ { $a$ , $b$ , $a^{2}$ , ab, 0}.
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$\Gamma(S)$ is connected, $d(a, a^{2})=1$ , $d(a, b)=2$ and $a-a^{2}-ab$ $-a$ is a cycle
of length 3. And so diarn(\Gamma (S)) $=2$ and $g(\Gamma(S))=3$ . There is not an
end poitnt in $\Gamma(S)$ and $C(S)$ $=\Gamma(S)$ . Also, we ahve that $\omega(\Gamma(S))$ $=3$ and
$c(\Gamma(S))$ $=3$ . Also we have that $\lambda(S, 1)=4$ , $\lambda(S, 2)=5$ and $\lambda(S, 2)=2$ .

This graph $\Gamma(S)$ is planar.

Example 3. $V(\Gamma(\mathrm{Z}_{12}))$ of the zero-divisor graph $\Gamma(\mathrm{Z}_{12})$ is the set

{2, 3, 4, 6, 8, 9, 10} and

$\mathrm{V}$ ( $\mathrm{r}$ (Zi2)) $=\{2-6,3-4,3-8,4-6,4-9,6-8,6-10,8-9\}$ .

The elements 4, 9 are idempotent elements and 6 is a nilpotent element.
Also, {0, 6} is an ideal of Zi2, $\omega(\Gamma \mathrm{Z}_{12})=4$ . Also we ha$\mathrm{v}\mathrm{e}$ that $\lambda(\mathrm{Z}_{12},1)=$

$7$ , A $(\mathrm{Z}_{12},2)=8$ and $\lambda(\mathrm{Z}_{12},3)=0$ . Also $d\mathrm{i}am(\Gamma(\mathrm{Z}_{12}))=3$ , $g(\Gamma(\mathrm{Z}_{12}))=4$

and $c(\Gamma(\mathrm{Z}_{12}))=4$ . We have that $\chi(\Gamma(\mathrm{Z}_{12}))=2$ abd $\chi’(\Gamma(\mathrm{Z}_{12}))=4$ . $\Gamma(\mathrm{Z}_{12})$

is planar.

Example 4. $V(\Gamma(\mathrm{Z}_{15}))$ of the zero-divisor graph $\Gamma(\mathrm{Z}_{15})$ is the set

{3, 5, 6, 9. 10, 12} and

$E(\Gamma(\mathrm{Z}_{15}))=\{3-5,3-10,5-6,5-9,5-12, 6-10, 9-10, 10- 12\}$ .

The elements 6, 10 are idempotent elements. The ring $\mathrm{Z}_{15}$ has no ideals
contained only two elements. We have that $\omega(\mathrm{Z}_{15})=4$ , $c(\mathrm{Z}_{15})=4$ and
also we have th at $\lambda(\mathrm{Z}_{15}, 1)$ $=6$ , $\lambda(\mathrm{Z}_{15}, 2)=8$ and $\lambda(\mathrm{Z}_{15}, 2)=0$ . Also
diam(F(Z15)) $=2$ and $g(\Gamma(\mathrm{Z}_{15}))=4$ . We have that $\chi(\Gamma(\mathrm{Z}_{15}))=2$ abd
$\chi’(\Gamma(\mathrm{Z}_{15}))=4$ . $\Gamma(\mathrm{Z}_{15})$ is planar.

Example 5. $V(\Gamma(\mathrm{Z}_{16}))$ of the zero-divisor graph $\Gamma(\mathrm{Z}_{16})$ is the set

{2, 4, 6, 8, 10, 12, 14} and

$E(\Gamma(\mathrm{Z}_{16}))=\{2-8$ , 4-8, 4-12, $6$ -8, 8–10, 8-12, 8–14$\}$ .

The element 8 is an idempotent element and 4, 12 are nilpotent elements.
The set {0, 8} is an ideal of $\mathrm{Z}_{16}$ . We have that $\omega(\mathrm{Z}_{16})=3$ . Also we have

that $\lambda(\mathrm{Z}_{16}, 1)=7$, $\lambda(\mathrm{Z}_{16},2)=7$ and $\lambda(\mathrm{Z}_{16},3)=1$ . Also $d\mathrm{i}am(\Gamma(\mathrm{Z}_{16}))=$
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2, $g(\Gamma(\mathrm{Z}_{16}))=3$ and $c(\Gamma(\mathrm{Z}_{16}))=3$ . We have that $\chi(\Gamma(\mathrm{Z}_{16}))=3$ and
$\chi^{J}(\Gamma(\mathrm{Z}_{16}))=6$ . $\mathrm{F}(\mathrm{Z}\mathrm{n})$ rs planar.

Example 6. Let $\Gamma(\mathrm{Z}_{4}[X]/(X^{2}))=\Gamma(\mathrm{Z}_{4}[x])(x^{2}=0)$ be a zero-divisor
graph associated with the ring $\mathrm{Z}_{4}[X]/(X^{2})$ . Set $R_{4}[x]=\mathrm{Z}_{4}[x]$ . Then
$V(\Gamma(R_{4}[x]))=\{2, x, 2+x, 2x, 2+2x, 3x, 2+3x\}$ and $E(R_{4}[x])=\{2-2x$ , 2-
$2+2x$ , $x-2x$ , $x-3x$, $2+x-2x$ , $2x-2+2x$, $2+3x-2x\}$ .

We have that $\omega(R_{4}[x])=3$ , $c(R_{4}[x])=3$ and also we have that
$\lambda(R_{4}[x], 1)=7$ , A $(R_{4}[x], 2)=8$ , $\lambda(R_{4}[x], 3)=2$ and A $(R_{4}[x], 4)=0$ . Also
Jiam(I ( $\mathrm{R}$ $4[x])$ ) $=2$ and $g(\Gamma(R_{4}[x]))=3$ . We have that $\chi(\Gamma(R_{4}[x]))=3$ and
$\chi’(\Gamma(R_{4}[x]))=6$ .

$\Gamma(R_{4}[x])$ is planar.

Lemma 1. $\Gamma(\mathrm{Z}_{n})$ is connected and $diam(\mathrm{Z}_{n})\leq 3$ .

Lemma 2. If $\Gamma(\mathrm{Z}_{n})$ contains a cycle, then $g(\mathrm{Z}_{n})\leq 4$ .

Conjecture. The number of end points of $\Gamma(\mathrm{Z}_{n})$ is an even number.

This conjecture is valid for $n\leq 30$ .

Lemma 3. If $n\geq 9$ and $\Gamma(\mathrm{Z}_{n})$ is a zero-divisor graph of $\mathrm{Z}_{n}$ , then there
exists an element $x$ such that $\{0, x\}$ is an ideal of $\mathrm{Z}_{n}$ , $Ann(x)$ is a maximal
ideal of $\mathrm{Z}_{n}$ and $\mathrm{Z}_{n}/Ann(x)\cong \mathrm{Z}_{2}$ .

If $p$ is a prime number $(\neq 2)$ , then $\{0, p\}\mathrm{i}s$ an ideal of $\mathrm{Z}_{2p}$ . So $\Gamma(\mathrm{Z}_{2p})$ is

a star graph.

Lemma 4. If any vertex in $\Gamma(\mathrm{Z}_{n})$ is either a vertex of the core $C(\Gamma(\mathrm{Z}_{n}))$

or else is an end point of $\Gamma(\mathrm{Z}_{n})$ .

Lemma 5 ([B] and [AN]), Let $p$ , $q$ and $r$ be all distinct prime numbers.
The following satements are satisfied.

(1) $\omega(\Gamma(\mathrm{Z}_{n}))=1$ if and only if $n=4$ .
(2) $\omega(\Gamma(\mathrm{Z}_{n}))=2$ if and only if $n=8,9$ , $pq$ , $4p(p\neq 2)$ .
(3) $\omega(\Gamma(\mathrm{Z}_{n}))=3$ if and only if $n=prq$ , $Apq(p\neq 2, q\neq 2)$ , $8p(p\neq$

$2)$ , $9p(p\neq 3)$ , 16, 27.
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52. The parabola graph y $=x^{2}$

We associate a simple graph a $(\mathrm{Z}_{n})$ to $\mathrm{Z}_{n}$ with vertices $\mathrm{Z}_{n}$ and for distinct
elements $x$ , $y\in \mathrm{Z}_{n}$ , the vertics $x$ and $y$ are adjacent if and only if $y=x^{2}(x\neq$

$y)$ .

Example 1. The vertices set $V(\triangle(\mathrm{Z}_{7}))$ of the simple graph $\mathrm{A}(\mathrm{Z}7)$ is
the set $\mathrm{Z}_{7}$ and $E(\triangle(\mathrm{Z}_{7}))=\{1$ – 6, 2 - 3, 2– 4, 4– 5 $\}$ . A(A $(\mathrm{Z}_{7})$ , 1) $=$

$7$ , $\lambda(\triangle(\mathrm{Z}_{7}), 2)=4$ and $\lambda(\triangle(\mathrm{Z}_{7}), 3)=0$ . We have that $d\mathrm{i}am\acute{(}\triangle(\mathrm{Z}_{7}))=$

$3$ , $\omega(\triangle(\mathrm{Z}_{7}))=2$ , $c(\triangle(\mathrm{Z}_{7}))=g(\triangle(\mathrm{Z}_{7}))=0$ .

Example 2. Let $\triangle(\mathrm{Z}_{11})=(V(\triangle(\mathrm{Z}_{11})), E(\triangle(\mathrm{Z}_{11})))$ be a simple graph
associated with $\mathrm{Z}_{11}$ . We have that $V(\triangle(\mathrm{Z}_{11})=\mathrm{Z}_{11}$ and $E(\triangle(\mathrm{Z}_{11}))=\{2-$

$10$ , 3 –5, 3–6, 3–9, 4–5, 4-9, 5–7, 8–9}.
$\lambda(\triangle(\mathrm{Z}_{11}))1)=11$ , $\lambda(\triangle(\mathrm{Z}_{11}), 2)=8$ and $\lambda(\triangle(\mathrm{Z}_{11}), 3)=0$ , $\lambda(\triangle(\mathrm{Z}_{11}), 4)=1$ .
We have that $d\mathrm{i}am(\triangle(\mathrm{Z}_{11}))=4,\omega(\triangle(\mathrm{Z}_{11}))=2$ , $c(\triangle(\mathrm{Z}_{11}))=4$ , $g(\triangle(\mathrm{Z}_{11}))=$

$4$ . This graph is not a forest.

Theorem, (a) Let $\triangle(\mathrm{Z}_{7})$ be a parabola graph and let A7 be an adjacent
matrix of a parabola graph $\triangle(\mathrm{Z}_{7})$ . Also, $f_{n}(X)=f_{A^{n}}(X)$ be a minimal
polynomial of A7. Then the following statements hold.

(1) If $n$ is an even narural number, then $f_{n}(X)$ has a divisor $X^{2}-L_{n}X+1$ .
(2) if $n$ is an odd natural number, then $f_{n}(X)$ has a divisor $X^{2}-L_{n}X-1$ ,

where $L_{n}$ is a Lucas number.
(b) (1) $\triangle(\mathrm{Z}_{p})$ has no triangles, that is, $\lambda(\triangle(\mathrm{Z}_{p}), 3)=0$ for a prime

number $p$ .
(2) $\lambda(\triangle(\mathrm{Z}_{n}))=0$ for $1\leq n\leq 10$ and $12\leq n\leq 20$ .
(3) For parabora graphs $\triangle(\mathrm{Z}_{n})(2\leq n\leq 20)$ , their graphs are forest

except $n=11$ .
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