<table>
<thead>
<tr>
<th>Title</th>
<th>The Simple Graphs Associated with Rings and Semigroups (Algebra, Languages and Computation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Kanemitsu, Mitsuo</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 2005年, 1437: 53-58</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2005-06</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/47494</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
The Simple Graphs Associated with Rings and Semigroups

Mitsuo Kanemitsu

Let R be a commutative ring, and let $Z(R)$ denote its set of zero-divisors. We associate a simple graph $\Gamma(R)$ to R with vertices $Z(R)^* = Z(R) - \{0\}$, the set of nonzero zero-divisor of R. Two distinct vertices x and y are adjacent if $xy = 0$. This graphs are called the zero-divisor graphs of rings R.

We also associate a simple graph $\Delta(Z_n)$ to Z_n with vertices Z_n and for distinct elements $x, y \in Z_n$, the vertices x and y are adjacent if and only if $y = x^2 (x \neq y)$. This graphs are called the parabola graphs.

For a commutative multiplicative semigroup S with 0 (0$x = 0$ for all $x \in S$), we can defined the zero-divisor graph $\Gamma(S)$ as above ([DMS]).

We denote an edge such that a and b are adjacent by $a-b$. We also denote a path by, $a-b-c-d$ etc. Also, let $\chi(G)$ denote the chromatic number of the graph G and let $\chi'(G)$ denote the edge chromatic number of the graph G.

The notion of a zero-divisor graph was first introduced by I. Beck in [B1] and further investigated in [A1], though their vertices set included the zero element. Let G be a graph.

The diameter of G is

$$diam(G) = \sup\{d(x, y) \mid x \text{ and } y \text{ are distinct vertices of } G\},$$

where $d(x, y)$ denotes the length of the shortest path from x to y. The girth of G, denoted by $g(G)$, is defined as the length of the shortest cycle in G.

A complete subgraph of G is called clique. $\omega(G)$, the clique number of G, is the greatest integer $r \geq 1$ such that $K^r \subset G$. Also, $c(G)$, the circumference of G, is the length of the longest cycle in G. Let $n = p_1^{2n_1} \cdots p_k^{2n_k} q_1^{2m_1+1} \cdots q_r^{2m_r+1}$ for distinct primes p_i, q_j and integers $n_i, m_j \geq 0$. Then

$$\omega(\Gamma(Z_n)) = p_1^{n_1} \cdots p_k^{n_k} q_1^{m_1} \cdots q_r^{m_r} + r - 1$$

This is a part of an abstract and details will be published elsewhere.
by [B, Proposition 2.3].

For a graph G and an integer $n \geq 1$, we define $\lambda(G, n)$ to be the number of complete subgraphs (cliques) of G of order n. Note that $\lambda(G, 1)$ is the number of vertices of G, $\lambda(G, 2)$ is the number of edges of G, $\lambda(G, 3)$ is the number of triangles in G and $\lambda(G, n) = 0$ for all $n \geq \omega(G) + 1$ ([AFLL]).

A graph G is planar if it can be drawn in such a way that no two edges intersect.

We examine the zero-divisor graph $\Gamma(Z_n)$, of the ring Z_n where the residue class ring modulo n where n is a positive integer. Many parts of this note are contained in [DS] and [AF].

We also investigate the parabara graphs.

For any commutative semigroup S, let $C(S)$ be the core of $\Gamma(S)$ be the union of the cycles in $\Gamma(S)$. A vertex x of $\Gamma(S)$ is called an end point in case there is at most one edge in $\Gamma(S)$ with vertex x.

§1. Some examples of zero-divisor graphs and parabara graphs.

Example 1. Let S be the commutative nilsemigroup

$$S = \langle a, b \mid a^3 = a^2b = ab^2 = b^3 = 0 \rangle = \{a, b, a^2, ab, b^2, 0\}.$$

For this zero-divisor graph $\Gamma(S) = (V(\Gamma(S)), E(\Gamma(S)))$, we have that

$$V(\Gamma(S)) = \{a, b, a^2, ab, b^2\}$$

is the set of all vertices and $E(\Gamma(S)) = \{a - a^2, a - b^2, a - ab, b^2 - ab, b^2 - a^2, b^2 - b\}$. This graph is connected, $d(a, b^2) = 1$, $d(a, b) = 2$ and $a - a^2 - b^2 - a$ is a cycle of length 3. And so $\text{diam}(\Gamma(S)) = 2$ and $\omega(\Gamma(S)) = 3$. There is not an end point in $\Gamma(S)$ and $C(S) = \Gamma(S)$. Also, we have that $\omega(\Gamma(S)) = 4$. Also we have that $\lambda(S, 1) = 5, \lambda(S, 2) = 9$ and $\lambda(S, 2) = 6$.

Example 2. Let S be the commutative nilsemigroup

$$S = \langle a, b \mid a^3 = a^2b = ab^2 = b^3 = 0, a^2 = b^2 \rangle = \{a, b, a^2, ab, 0\}.$$
\[\Gamma(S) \] is connected, \(d(a, a^2) = 1, d(a, b) = 2 \) and \(a - a^2 - ab - a \) is a cycle of length 3. And so \(diam(\Gamma(S)) = 2 \) and \(g(\Gamma(S)) = 3 \). There is not an end point in \(\Gamma(S) \) and \(C(S) = \Gamma(S) \). Also, we have that \(\omega(\Gamma(S)) = 3 \) and \(c(\Gamma(S)) = 3 \). Also we have that \(\lambda(S, 1) = 4, \lambda(S, 2) = 5 \) and \(\lambda(S, 2) = 2 \). This graph \(\Gamma(S) \) is planar.

Example 3. \(V(\Gamma(Z_{12})) \) of the zero-divisor graph \(\Gamma(Z_{12}) \) is the set

\[\{2, 3, 4, 6, 8, 9, 10\} \]

\[E(\Gamma(Z_{12})) = \{2 - 6, 3 - 4, 3 - 8, 4 - 6, 4 - 9, 6 - 8, 6 - 10, 8 - 9\} \]

The elements 4, 9 are idempotent elements and 6 is a nilpotent element. Also, \(\{0, 6\} \) is an ideal of \(Z_{12} \), \(\omega(\Gamma(Z_{12})) = 4 \). Also we have that \(\lambda(Z_{12}, 1) = 7, \lambda(Z_{12}, 2) = 8 \) and \(\lambda(Z_{12}, 3) = 0 \). Also \(diam(\Gamma(Z_{12})) = 3, g(\Gamma(Z_{12})) = 4 \) and \(c(\Gamma(Z_{12})) = 4 \). We have that \(\chi(\Gamma(Z_{12})) = 2 \) and \(\chi'(\Gamma(Z_{12})) = 4 \). \(\Gamma(Z_{12}) \) is planar.

"Example 4.** \(V(\Gamma(Z_{15})) \) of the zero-divisor graph \(\Gamma(Z_{15}) \) is the set

\[\{3, 5, 6, 9, 10, 12\} \]

\[E(\Gamma(Z_{15})) = \{3 - 5, 3 - 10, 5 - 6, 5 - 9, 5 - 12, 6 - 10, 9 - 10, 10 - 12\} \]

The elements 6, 10 are idempotent elements. The ring \(Z_{15} \) has no ideals contained only two elements. We have that \(\omega(Z_{15}) = 4, c(Z_{15}) = 4 \) and also we have that \(\lambda(Z_{15}, 1) = 6, \lambda(Z_{15}, 2) = 8 \) and \(\lambda(Z_{15}, 2) = 0 \). Also \(diam(\Gamma(Z_{15})) = 2 \) and \(g(\Gamma(Z_{15})) = 4 \). We have that \(\chi(\Gamma(Z_{15})) = 2 \) and \(\chi'(\Gamma(Z_{15})) = 4 \). \(\Gamma(Z_{15}) \) is planar.

Example 5. \(V(\Gamma(Z_{16})) \) of the zero-divisor graph \(\Gamma(Z_{16}) \) is the set

\[\{2, 4, 6, 8, 10, 12, 14\} \]

\[E(\Gamma(Z_{16})) = \{2 - 8, 4 - 8, 4 - 12, 6 - 8, 8 - 10, 8 - 12, 8 - 14\} \]

The element 8 is an idempotent element and 4, 12 are nilpotent elements. The set \(\{0, 8\} \) is an ideal of \(Z_{16} \). We have that \(\omega(Z_{16}) = 3 \). Also we have that \(\lambda(Z_{16}, 1) = 7, \lambda(Z_{16}, 2) = 7 \) and \(\lambda(Z_{16}, 3) = 1 \). Also \(diam(\Gamma(Z_{16})) = \)
We have that $\chi(\Gamma(Z_{16})) = 3$ and $\chi'(\Gamma(Z_{16})) = 6$. $\Gamma(Z_{16})$ is planar.

Example 6. Let $\Gamma(Z_4[X]/(X^2)) = \Gamma(Z_4[x]) (x^2 = 0)$ be a zero-divisor graph associated with the ring $Z_4[X]/(X^2)$. Set $R_4[x] = Z_4[x]$. Then $V(\Gamma(R_4[x])) = \{2, x, 2+x, 2x, 2+2x, 3x, 2+3x\}$ and $E(R_4[x]) = \{2-2x, 2-2+2x, x-2x, x-3x, 2+x-2x, 2x-2+2x, 2+3x-2x\}$.

We have that $\omega(R_4[x]) = 3$, $c(R_4[x]) = 3$ and also we have that $\lambda(R_4[x], 1) = 7$, $\lambda(R_4[x], 2) = 8$, $\lambda(R_4[x], 3) = 2$ and $\lambda(R_4[x], 4) = 0$. Also $\text{diam}(\Gamma(R_4[x])) = 2$ and $g(\Gamma(R_4[x])) = 3$. We have that $\chi(\Gamma(R_4[x])) = 3$ and $\chi'(\Gamma(R_4[x])) = 6$.

$\Gamma(R_4[x])$ is planar.

Lemma 1. $\Gamma(Z_n)$ is connected and $\text{diam}(Z_n) \leq 3$.

Lemma 2. If $\Gamma(Z_n)$ contains a cycle, then $g(Z_n) \leq 4$.

Conjecture. The number of end points of $\Gamma(Z_n)$ is an even number.

This conjecture is valid for $n \leq 30$.

Lemma 3. If $n \geq 9$ and $\Gamma(Z_n)$ is a zero-divisor graph of Z_n, then there exists an element x such that $\{0, x\}$ is an ideal of Z_n, $\text{Ann}(x)$ is a maximal ideal of Z_n and $Z_n/\text{Ann}(x) \cong Z_2$.

If p is a prime number ($\neq 2$), then $\{0, p\}$ is an ideal of Z_{2p}. So $\Gamma(Z_{2p})$ is a star graph.

Lemma 4. If any vertex in $\Gamma(Z_n)$ is either a vertex of the core $C(\Gamma(Z_n))$ or else is an end point of $\Gamma(Z_n)$.

Lemma 5 ([B] and [AN]). Let p, q and r be all distinct prime numbers. The following statements are satisfied.

1. $\omega(\Gamma(Z_n)) = 1$ if and only if $n = 4$.
2. $\omega(\Gamma(Z_n)) = 2$ if and only if $n = 8, 9, pq, 4p (p \neq 2)$.
3. $\omega(\Gamma(Z_n)) = 3$ if and only if $n = prq, 4pq (p \neq 2, q \neq 2), 8p (p \neq 2), 9p (p \neq 3), 16, 27$.

§2. The parabola graph $y = x^2$

We associate a simple graph $\Delta(Z_n)$ to \mathbb{Z}_n with vertices \mathbb{Z}_n and for distinct elements $x, y \in \mathbb{Z}_n$, the vertices x and y are adjacent if and only if $y = x^2 (x \neq y)$.

Example 1. The vertices set $V(\Delta(Z_7))$ of the simple graph $\Delta(Z_7)$ is the set \mathbb{Z}_7 and $E(\Delta(Z_7)) = \{1 - 6, 2 - 3, 2 - 4, 4 - 5\}$. $\lambda(\Delta(Z_7), 1) = 7, \lambda(\Delta(Z_7), 2) = 4$ and $\lambda(\Delta(Z_7), 3) = 0$. We have that $\text{diam}(\Delta(Z_7)) = 3, \omega(\Delta(Z_7)) = 2, c(\Delta(Z_7)) = g(\Delta(Z_7)) = 0$.

Example 2. Let $\Delta(Z_{11}) = (V(\Delta(Z_{11})), E(\Delta(Z_{11})))$ be a simple graph associated with \mathbb{Z}_{11}. We have that $V(\Delta(Z_{11})) = \mathbb{Z}_{11}$ and $E(\Delta(Z_{11})) = \{2 - 10, 3 - 5, 3 - 6, 3 - 9, 4 - 5, 4 - 9, 5 - 7, 8 - 9\}$. $\lambda(\Delta(Z_{11}), 1) = 11, \lambda(\Delta(Z_{11}), 2) = 8$ and $\lambda(\Delta(Z_{11}), 3) = 0, \lambda(\Delta(Z_{11}), 4) = 1$. We have that $\text{diam}(\Delta(Z_{11})) = 4, \omega(\Delta(Z_{11})) = 2, c(\Delta(Z_{11})) = 4, g(\Delta(Z_{11})) = 4$. This graph is not a forest.

Theorem. (a) Let $\Delta(Z_7)$ be a parabola graph and let A_7 be an adjacent matrix of a parabola graph $\Delta(Z_7)$. Also, $f_n(X) = f_{A^n}(X)$ be a minimal polynomial of A_7. Then the following statements hold.

1. If n is an even natural number, then $f_n(X)$ has a divisor $X^2 - L_nX + 1$.
2. If n is an odd natural number, then $f_n(X)$ has a divisor $X^2 - L_nX - 1$, where L_n is a Lucas number.

(b) (1) $\Delta(Z_p)$ has no triangles, that is, $\lambda(\Delta(Z_p), 3) = 0$ for a prime number p.

(2) $\lambda(\Delta(Z_n)) = 0$ for $1 \leq n \leq 10$ and $12 \leq n \leq 20$.

(3) For parabola graphs $\Delta(Z_n) (2 \leq n \leq 20)$, their graphs are forest except $n = 11$.

References

Department of Mathematics
Aichi University of Education
Kariya-shi, Aichi, 448-8542, JAPAN

e-mail: mkanemita@uecc.aichi-edu.ac.jp