INTEGRABLE MODULES OVER $\widehat{\mathfrak{gl}}_m$ AND THE DOUBLE AFFINE HECKE ALGEBRA

京都大学数理解析研究所 · 鈴木 武史 (Takeshi Suzuki) Research Institute for Mathematical Sciences, Kyoto University

Introduction

Motivated by conformal field theory on the Riemann sphere, we introduce a certain space of coinvariants obtained from tensor product of representations of the affine Lie algebra $\widehat{\mathfrak{gl}}_m$.

In [AST], an action of the degenerate affine Hecke algebra H_{κ} is defined on this space through the Knizhnik-Zamolodchikov connection. This construction gives a functor from the category of highest (or lowest) weight modules over $\widehat{\mathfrak{gl}}_m$ to the category of H_{κ} -modules.

We will see that the integrable $\widehat{\mathfrak{gl}}_m$ -modules correspond by this functor to irreducible H_{κ} -modules whose structure is described combinatorially. We also focus on the symmetric part of these irreducible H_{κ} -modules; i.e., the subspace consisting of those elements which are invariant with respect to the action of the Weyl group. We present a spectral decomposition of the symmetric part, and a character formula, which is described by level restricted analogue of the Kostka polynomial.

1. AFFINE LIE ALGEBRA

Throughout this note, we use the notation $[i, j] = \{i, i+1, \dots, j\}$ for $i, j \in \mathbb{Z}$.

Let $m \in \mathbb{Z}_{\geq 2}$. Let \mathfrak{g} denote the Lie algebra \mathfrak{gl}_m consisting of all $n \times n$ -matrices over \mathbb{C} . Let $\mathfrak{g}[t,t^{-1}]$ denote the Lie algebra consisting of all $n \times n$ -matrices over $\mathbb{C}[t,t^{-1}]$. Let $\widehat{\mathfrak{g}} = \mathfrak{g} \otimes \mathbb{C}[t,t^{-1}] \oplus \mathbb{C}c_{\mathfrak{g}}$ be the affine Lie algebra with the commutation relation

$$[a \otimes t^i, b \otimes t^j] = [a, b] \otimes t^{i+j} + \operatorname{trace}(ab)i\delta_{i+j,0}c_{\mathfrak{g}}$$

for $a, b \in \mathfrak{g}, i, j \in \mathbb{Z}$.

Let \mathfrak{h} denote the Cartan subalgebra of \mathfrak{g} consisting of all diagonal matrices, and let \mathfrak{h}^* denote its dual space. A Cartan subalgebra $\widehat{\mathfrak{h}}$ of $\widehat{\mathfrak{g}}$ is given by $\widehat{\mathfrak{h}} = \mathfrak{h} \oplus \mathbb{C}c_{\mathfrak{g}}$. Its dual space is denoted by $\widehat{\mathfrak{h}}^*$. We regard $\widehat{\mathfrak{h}}^*$ as a subspace of $\widehat{\mathfrak{h}}^*$ through the identification $\widehat{\mathfrak{h}}^* \cong \mathfrak{h}^* \oplus \mathbb{C}c_{\mathfrak{g}}^*$.

Fix $\ell \in \mathbb{C}$. For $\lambda \in \mathfrak{h}^*$, $\widehat{M}_{\ell}(\lambda)$ denote the highest weight Verma module of highest weight $\lambda + \ell c_{\mathfrak{g}}^* \in \widehat{\mathfrak{h}}^*$, and let $\widehat{M}_{\ell}^{\dagger}(\lambda)$ denote the lowest weight Verma module of lowest weight $-\lambda - \ell c_{\mathfrak{g}}^* \in \widehat{\mathfrak{h}}^*$. Their irreducible quotients are denoted by $\widehat{L}_{\ell}(\lambda)$ and $\widehat{L}_{\ell}^{\dagger}(\lambda)$ respectively.

A $\widehat{\mathfrak{g}}$ -module M is said to be of level ℓ if c acts as a scalar ℓ . For example, $\widehat{M}_{\ell}(\lambda)$ and $\widehat{L}_{\ell}(\lambda)$ are of level ℓ , and $\widehat{M}_{\ell}^{\dagger}(\lambda)$ and $\widehat{L}_{\ell}^{\dagger}(\lambda)$ are of level $-\ell$.

We identify \mathfrak{h} with \mathbb{C}^m , and introduce its subspaces $X_m = \mathbb{Z}^m$ and

$$X_m^+ = \{(\lambda_1, \dots, \lambda_m) \in X_m \mid \lambda_1 \ge \lambda_2 \ge \dots \ge \lambda_m\},$$

$$X_m^+(\ell) = \{(\lambda_1, \dots, \lambda_m) \in X_m^+ \mid \lambda_1 - \lambda_m \le \ell\}.$$

Note that $\widehat{L}_{\ell}(\lambda)$ and $\widehat{L}_{\ell}^{\dagger}(\lambda)$ are integrable for $\lambda \in X_m^+(\ell)$, and that $X_m^+(\ell)$ is empty unless $\ell \in \mathbb{Z}_{\geq 0}$.

Let $E = \mathbb{C}^m$ denote the vector representation of \mathfrak{g} . Put $E[z, z^{-1}] = E \otimes \mathbb{C}[z, z^{-1}]$, which we regard as a $\mathfrak{g}[t, t^{-1}]$ -module through the correspondence $a \otimes t^k \mapsto a \otimes z^k$.

2. The degenerate double affine Hecke algebra

Let $n \in \mathbb{Z}_{\geq 2}$. Let V denote the n-dimensional vector space over \mathbb{C} with the basis $\{y_i\}_{i\in[1,n]}$: $V=\bigoplus_{i\in[1,n]}\mathbb{C}y_i$. Introduce the non-degenerate symmetric bilinear form (\mid) on V by $(y_i|y_j)=\delta_{ij}$. Let $V^*=\bigoplus_{i=1}^n\mathbb{C}x_i$ be the dual space of V, where x_i is the dual vector of y_i . The natural pairing is denoted by $\langle\mid\rangle:V^*\times V\to\mathbb{C}$.

Put $\alpha_{ij} = x_i - x_j$, $\alpha_{ij}^{\vee} = y_i - y_j$ and $\alpha_i = \alpha_{ii+1}$, $\alpha_i^{\vee} = \alpha_{ii+1}$ Then $R = \{\alpha_{ij} | i, j \in [1, n], i \neq j\}$ and $R^+ = \{\alpha_{ij} \in R | i < j\}$ give a set of roots and a set of positive roots of type A_{n-1} respectively.

Let W denote the Weyl group associated with the root system R, which is isomorphic to the symmetric group \mathfrak{S}_n of degree n. Denote by s_{α} the reflection in W corresponding to $\alpha \in R$. We write $s_i = s_{\alpha_i}$ and $s_{ij} = s_{\alpha_{ij}}$.

Put $P = \bigoplus_{i \in [1,n]} \mathbb{Z}x_i$, which is preserved by W. Define the extended affine Weyl group \widehat{W} as the semidirectproduct $P \rtimes W$ with the relation $w\tau_{\eta}w^{-1} = \tau_{w(\eta)}$, where τ_{η} denotes the element of \widehat{W} corresponding to $\eta \in P$.

Let S(V) denote the symmetric algebra of V, which can be identified with the polynomial ring $\mathbb{C}[y] = \mathbb{C}[y_1, \ldots, y_n]$.

Fix $\kappa \in \mathbb{C}$. The degenerate double affine Hecke algebra (degenerate DAHA) H_{κ} of GL_n is an associative \mathbb{C} -algebra generated by the algebra $\mathbb{C}P$, $\mathbb{C}W$ and S(V), and subjects to the following defining relations

$$([C1])$$
:

$$s_{i}h = s_{i}(h)s_{i} - \langle \alpha_{i} \mid h \rangle \quad (i \in [1, n], \ h \in V),$$

$$s_{i}e^{\eta}s_{i} = e^{s_{i}(\eta)} \quad (i \in [1, n], \ \eta \in P),$$

$$[h, e^{\eta}] = \kappa \langle \eta \mid h \rangle e^{\eta} + \sum_{\alpha \in \mathbb{R}^{+}} \langle \alpha \mid h \rangle \frac{(e^{\eta} - e^{s_{\alpha}(\eta)})}{1 - e^{-\alpha}} s_{\alpha} \quad (h \in V, \ \eta \in P),$$

where e^{η} denote the element of $\mathbb{C}P$ corresponding to $\eta \in P$.

It is known that $H_{\kappa} \cong \mathbb{C}P \otimes \mathbb{C}W \otimes S(V)$ as a vector space. The subalgebra $H^{\text{aff}} = \mathbb{C}W \cdot S(V)$ is called the degenerate affine Hecke algebra. Note that the subalgebra $\mathbb{C}P \cdot \mathbb{C}W$ is isomorphic to $\mathbb{C}\widehat{W}$.

3. Induced representations of H_{κ}

For $\lambda \in X_m = \mathbb{Z}^m$ we write $\lambda \models n$ when $\sum_{i \in [1,m]} \lambda_i = n$ and $\lambda_i \in \mathbb{Z}_{\geq 0}$ for all $i \in [1,m]$. Let $\lambda, \mu \in X_m$ such that $\lambda - \mu \models n$. Introduce the subalgebra $H_{\lambda} = \mathbb{C}W_{\lambda-\mu} \cdot S(V)$ of H_{κ} , where $W_{\lambda-\mu}$ denote the parabolic subgroup $\mathfrak{S}_{\lambda_1-\mu_1} \times \cdots \times \mathfrak{S}_{\lambda_m-\mu_m}$ of W.

Let $\mathbb{C}1_{\lambda,\mu}$ denote the one dimensional representation of $H_{\lambda-\mu}$ such that

$$w\mathbf{1}_{\lambda,\mu} = \mathbf{1}_{\lambda,\mu} \quad (w \in W_{\lambda-\mu}),$$

$$y_i\mathbf{1}_{\lambda,\mu} = \langle \zeta_{\lambda,\mu} \mid y_i \rangle \mathbf{1}_{\lambda,\mu} \quad (i \in [1, n]),$$

where $\zeta_{\lambda,\mu}$ denote the element of V^* given by

(3.1)
$$\langle \zeta_{\lambda,\mu} | y_i \rangle = \mu_j + i - m_j - j - 1 \text{ for } i \in [m_j + 1, m_{j+1}],$$

with $m_0 = 0$ and $m_j = \sum_{k \in [1,j]} (\lambda_k - \mu_k)$ $(j \in [1,m])$. Define an H_{κ} -module by $\mathcal{M}_{\kappa}(\lambda,\mu) = H_{\kappa} \otimes_{H_{\lambda-\mu}} \mathbb{C} \mathbf{1}_{\lambda,\mu}$. Obviously we have

$$\mathcal{M}_{\kappa}(\lambda,\mu) \cong \mathbb{C}\widehat{W}/W_{\lambda-\mu} \cong \mathbb{C}P \otimes \mathbb{C}W/W_{\lambda-\mu}$$

as an \widehat{W} -module.

In the rest, we often identify the group ring $\mathbb{C}P$ with the Laurent polynomial ring $\mathbb{C}[\underline{z}^{\pm 1}] = \mathbb{C}[z_1^{\pm 1}, \dots, z_n^{\pm 1}]$ via the correspondence $e^{x_i} \mapsto z_i$.

Example 3.1. Let m = 1 and let $\lambda = (n)$ and $\mu = (0)$. Then $\mathcal{M}_{\kappa}(\lambda, \mu) \cong \mathbb{C}P = \mathbb{C}[\underline{z}^{\pm 1}]$, which is called the (Laurent) polynomial representation. On the representation $\mathbb{C}P$, the element y_i $(i \in [1, n])$ acts as the *Cherednik-Dunkl* operator

$$(3.2) \ T_i = \kappa z_i \frac{\partial}{\partial z_i} + \sum_{1 \le j \le i} \frac{z_j}{z_i - z_j} (1 - s_\alpha) + \sum_{i \le j \le n} \frac{z_i}{z_i - z_j} (1 - s_\alpha) + i - 1.$$

The simultaneous eigenvectors of T_1, \ldots, T_n are called the nonsymmetric Jack polynomials.

4. The space of coinvariants and the degenerate double affine Hecke algebra

Let $\ell \in \mathbb{C}$. Let M be a highest weight module of level ℓ and let N be a lowest weight module of level $-\ell$. We set

$$\tilde{\mathcal{C}}(M,N) = M \otimes E[z_1,z_1^{-1}] \otimes \cdots \otimes E[z_n,z_n^{-1}] \otimes N,$$

 $\mathcal{C}(M,N) = \tilde{\mathcal{C}}(M,N)/\mathfrak{g}[t,t^{-1}]\tilde{\mathcal{C}}(M,N).$

Let $\sigma_{ij} \in \operatorname{End}_{\mathbb{C}}\mathbb{C}[\underline{z}^{\pm 1}]$ denote the permutation of z_i and z_j . Let $\Omega_{ij} \in \operatorname{End}_{\mathbb{C}}(E^{\otimes n})$ denote the permutation of *i*-th and *j*-th component of the tensor product. Note that $\tilde{\mathcal{C}}(M,N) \cong M \otimes E^{\otimes n} \otimes \mathbb{C}[\underline{z}^{\pm 1}] \otimes N$, through which we regard σ_{ij} and Ω_{ij} as elements in $\operatorname{End}_{\mathbb{C}}(\tilde{\mathcal{C}}(M,N))$.

which we regard σ_{ij} and Ω_{ij} as elements in $\operatorname{End}_{\mathbb{C}}(\widetilde{\mathcal{C}}(M,N))$. For $i \in [0,n+1]$, define $\theta_i : \widehat{\mathfrak{g}} \to U(\widehat{\mathfrak{g}})^{\otimes n+2}$ by $\theta_i(u) = 1^{\otimes i} \otimes u \otimes 1^{\otimes n-i+1}$. For $i,j \in [0,n+1]$ with i < j, define $\theta_{ij} : \widehat{\mathfrak{g}}^{\otimes 2} \to U(\widehat{\mathfrak{g}})^{\otimes n+2}$ by $\theta_{ij}(u \otimes v) = 1^{\otimes i} \otimes u \otimes 1^{\otimes j-i-1} \otimes v \otimes 1^{\otimes n-j+1}$.

Let e_{ab} denote the matrix unit of \mathfrak{g} with only non-zero entries 1 at the (a,b)-th component. Put $r=\frac{1}{2}\sum_{a\in[1,m]}e_{aa}\otimes e_{aa}+\sum_{1\leq a< b\leq m}e_{ab}\otimes e_{ba}$ and put $r_{ij}=\theta_{ij}(r)$.

For $i \in [1, n]$, put

(4.1)
$$\widehat{r}_{0i} = r_{0i} + \sum_{k \in \mathbb{Z}_{>1}} \sum_{a,b \in [1,m], a \neq b} \theta_{0i}((e_{ab} \otimes t^k) \otimes (e_{ba} \otimes t^{-k})),$$

$$(4.2) \quad \widehat{r}_{in+1} = r_{in+1} + \sum_{k \in \mathbb{Z}_{>1}} \sum_{a,b \in [1,m], a \neq b} \theta_{in+1}((e_{ab} \otimes t^k) \otimes (e_{ba} \otimes t^{-k})),$$

which are elements of some completion of $U(\mathfrak{g}[t,t^{-1}])^{\otimes n+2}$ and define well-defined operators on $\tilde{\mathcal{C}}(M,N)$.

Define the linear operators on $\tilde{\mathcal{C}}(M,N)$ by

$$D_{i} = \kappa z_{i} \frac{\partial}{\partial z_{i}} + \widehat{r}_{0i} - \widehat{r}_{in+1} + \sum_{1 \leq j < i} r_{ij} - \sum_{i < j \leq n} r_{ji} + \theta_{i}(\rho^{\vee})$$

$$+ \sum_{1 \leq j < i} \frac{z_{j}}{z_{i} - z_{J}} (1 - \sigma_{ij}) \Omega_{ij} + \sum_{i < j \leq n} \frac{z_{i}}{z_{i} - z_{J}} (1 - \sigma_{ij}) \Omega_{ij} + i - 1,$$

where
$$\rho^{\vee} = \sum_{k \in [1,m]} \frac{1}{2} (n - 2k + 1) e_{aa} \in \mathfrak{h}$$
.

Theorem 4.1 (Theorem 4.2.2 in [AST]). Let M be a highest weight module of $\widehat{\mathfrak{g}}$ of level $\kappa-m$ and let N be a lowest weight module of level $-\kappa+m$.

(i) There exists a unique algebra homomorphism $\varpi: H_{\kappa}^{\mathrm{rat}} \to \mathrm{End}_{\mathbb{C}}(\tilde{\mathcal{C}}(M,N))$ such that

(4.3)
$$\varpi(s_i) = \Omega_{i,i+1} \sigma_{i,i+1} \ (i \in [1, n-1]),$$

$$(4.5) \varpi(y_i) = D_i \ (i \in [1, n]).$$

(ii) The H_{κ} -action on $\mathcal{C}(M,N)$ above preserves the subspace $\mathfrak{g}[t,t^{-1}]\tilde{\mathcal{C}}(M,N)$: $\varpi(a)\mathfrak{g}[t,t^{-1}]\tilde{\mathcal{C}}(M,N)\subseteq \mathfrak{g}[t,t^{-1}]\tilde{\mathcal{C}}(M,N)$

for all $a \in H_{\kappa}$. Therefore, ϖ induces an H_{κ} -module structure on $\mathcal{C}(M,N)$.

5. IMAGES OF THE FUNCTOR

The following statement has been shown in [AST].

Proposition 5.1 (Proposition 5.3.1 in [AST]). Let $\kappa \in \mathbb{C}$ and put $\ell = \kappa - m$.

(i) Let $\lambda, \mu \in X_m^+$. Then

$$\mathcal{C}(\widehat{M}_{\ell}(\mu), \widehat{M}_{\ell}^{\dagger}(\lambda)) \cong egin{cases} \mathcal{M}_{\kappa}(\lambda, \mu) & \textit{if } \lambda - \mu \models n, \\ 0 & \textit{otherwise.} \end{cases}$$

(ii) Let $\lambda, \mu \in X_m^+(\ell)$ such that $\lambda - \mu \models n$. Then $\mathcal{C}(\widehat{L}_{\ell}(\mu), \widehat{L}_{\ell}^{\dagger}(\lambda)) \cong \mathcal{C}(\widehat{M}_{\ell}(\mu), \widehat{L}_{\ell}^{\dagger}(\lambda)) \cong \mathcal{C}(\widehat{L}_{\ell}(\mu), \widehat{M}_{\ell}^{\dagger}(\lambda)).$

For each $\lambda \in X_m$, we have the additive functor $F_{\lambda}(-) = \mathcal{C}(-, \widehat{M}_{\ell}^{\dagger}(\lambda))$ from the category of highest weight modules over $\widehat{\mathfrak{g}}$ to the category of H_{κ} -modules. It is right exact and sends the Verma module $\widehat{M}_{\ell}(\mu)$ to the induced module $\mathcal{M}_{\kappa}(\lambda, \mu)$ by Proposition 5.1. In the sequel, we will determine the image $F_{\lambda}(\widehat{L}_{\ell}(\mu))$ of the irreducible module $\widehat{L}_{\ell}(\mu)$ in the case where $\lambda, \mu \in X_m^+(\ell)$. Note that $F_{\lambda}(\widehat{L}_{\ell}(\mu)) \cong \mathcal{C}(\widehat{L}_{\ell}(\mu), \widehat{L}_{\ell}^{\dagger}(\lambda))$, and note also that it is a quotient of $F_{\lambda}(\mathcal{M}_{\kappa}(\lambda, \mu))$.

Let $\ell \in \mathbb{Z}_{\geq 0}$ and $\lambda, \mu \in X_m^+(\ell)$ such that $\lambda - \mu \models n$. Then it is known that the H_{κ} -module $\mathcal{M}_{\kappa}(\lambda, \mu)$ has a unique simple quotient ([AST, S1]), which we will denote by $\mathcal{L}_{\kappa}(\lambda, \mu)$.

The irreducible modules $\mathcal{L}_{\kappa}(\lambda,\mu)$ for $\lambda,\mu\in X_m^+(\ell)$ are investigated in [SV], and in particular their structure is described combinatorially using tableaux on periodic skew diagrams. We give a short review of the theory of periodic tableaux and the tableaux representations of H_{κ} in Appendix. By means of this combinatorial description, we can estimate the kernel of the projection $\mathcal{M}_{\kappa}(\lambda,\mu) \to \mathcal{L}_{\kappa}(\lambda,\mu)$. By comparing it with the kernel of $\mathcal{M}_{\kappa}(\lambda,\mu) \to F_{\lambda}(\widehat{L}_{\ell}(\mu))$, we have

Theorem 5.2. Let $\kappa \in \mathbb{Z}_{\geq 1}$ and put $\ell = \kappa - m$. Let $\lambda, \mu \in X_m^+(\ell)$ such that $\lambda - \mu \models n$. Then the H_{κ} -module $\mathcal{C}(\widehat{L}_{\ell}(\mu), \widehat{L}_{\ell}^{\dagger}(\lambda))$ is irreducible:

$$C(\widehat{L}_{\ell}(\mu), \widehat{L}_{\ell}^{\dagger}(\lambda)) \cong \mathcal{L}_{\kappa}(\lambda, \mu),$$

and moreover it is semisimple over S(V). (See Theorem A.3 for the combinatorial description of the weight decomposition).

The classification of the irreducible H_{κ} -modules which are semisimple over S(V) is given in [C2, SV], from which (or from Theorem A.4) we have

Corollary 5.3. Let $\kappa \in \mathbb{Z}_{\geq 1}$. Let L be an irreducible H_{κ} -module which is finitely generated and admits a weight decomposition of the form $L = \bigoplus_{\zeta \in P} L_{\zeta}$, where $L_{\zeta} = \{v \in L \mid yv = \langle \zeta \mid y \rangle \ \forall y \in V\}$. Then there exists $m \in [1, n]$ and $\lambda, \mu \in X_m^+(\kappa - m)$ such that $L \cong \mathcal{C}(\widehat{L}_{\kappa-m}(\mu), \widehat{L}_{\kappa-m}^{\dagger}(\lambda))$.

6. LOCALIZATION AND CONFORMAL COINVARIANTS

We will see the relation between our space C(M, N) of coinvariants and the space of conformal coinvariants in Wess-Zumino-Witten model [TK, TUY].

Observe that the group ring $\mathbb{C}P$ can be seen as the coordinate ring $A = \mathbb{C}[T]$ of the affine variety $T = (\mathbb{C} \setminus \{0\})^n$. Put $T_{\circ} = T \setminus \Delta$, where $\Delta = \bigcup_{i < j} \{(\xi_1, \ldots, \xi_n) \in T \mid \xi_i/\xi_j = 1\}$, and put $A_{\circ} = \mathbb{C}[T_{\circ}]$. Namely, A_{\circ} is the localization of A at Δ ; $A_{\circ} = \mathbb{C}\left[z_1^{\pm 1}, \ldots, z_n^{\pm 1}, \frac{1}{1-z_i/z_j} (i < j)\right]$. Let $\mathcal{D}(T_{\circ})$ denote the ring of algebraic differential operators on T_{\circ} . Then the Cherednik-Dunkl operators in Example 3.1 T_1, \ldots, T_n can be seen as elements of the ring $\mathcal{D}(T_{\circ}) \rtimes \mathbb{C}W$. Put $H_{\kappa, \circ} = A_{\circ} \otimes_A H_{\kappa}$. There exists a unique algebra structure on $H_{\kappa, \circ}$ extending H_{κ} .

Proposition 6.1. Let $\kappa \in \mathbb{C}^{\times}$. There exists a unique algebra isomorphism $H_{\kappa,\circ} \to \mathcal{D}(\mathcal{T}_{\circ}) \rtimes \mathbb{C}W$ such that $y_i \mapsto T_i$, $w \mapsto w$, $f \mapsto f$ for all $i \in [1,n]$, $w \in W$ and $f \in A_{\circ}$.

For an H_{κ} -module M, set $M_{\circ} = A_{\circ} \otimes_{A} M$. Then via Proposition 6.1, we have a structure of $\mathcal{D}(\mathcal{T}_{\circ}) \rtimes \mathbb{C}W$ -module on M_{\circ} ; namely, M_{\circ} admits a W-equivariant integrable (algebraic) connection

$$\nabla_i = \kappa^{-1} \left\{ y_i - \sum_{1 \le j < i} \frac{z_j}{z_i - z_j} (1 - s_\alpha) - \sum_{i < j \le n} \frac{z_i}{z_i - z_j} (1 - s_\alpha) - (i - 1) \right\}.$$

Now consider the case where $M = \mathcal{C}(\widehat{L}_{\ell}^{\dagger}(\mu), \widehat{L}_{\ell}(\lambda)) = \mathcal{L}_{\kappa}(\lambda, \mu)$ with $\lambda, \mu \in X_m^+(\ell)$. Then it follows that the connection given above has regular singularities along Δ , and hence $\mathcal{L}_{\kappa}(\lambda, \mu)_{\circ}$ is a projective A_{\circ} -module, or geometrically, a vector bundle over \mathcal{T}_{\circ} of finite rank ([GGOR, VV]).

For $\xi = (\xi_1, \dots, \xi_n) \in \mathcal{T}_o$, let \mathbb{C}_{ξ} denote the one-dimensional right module of A_o given by the evaluation at ξ . It follows that the space $\mathbb{C}_{\xi} \otimes_{A_o} (\mathcal{L}_{\kappa}(\lambda, \mu)_o)$ is isomorphic to with "the space of conformal coinvariants"

$$\left(\widehat{L}_{\ell}(\mu) \otimes \widehat{L}_{\ell}(\nu_{1})^{\otimes n} \otimes \widehat{L}_{\ell}(\lambda^{\dagger})\right) / \mathfrak{g}_{(0,\xi,\infty)} \left(\widehat{L}_{\ell}(\mu) \otimes \widehat{L}_{\ell}(\nu_{1})^{\otimes n} \otimes \widehat{L}_{\ell}(\lambda^{\dagger})\right),$$

where $\nu_1 = (1, 0, ..., 0) \in X_m^+(\ell)$ (the highest weight of the vector representation E), $\lambda^{\dagger} = -w_0(\lambda)$ with w_0 being the longest element of W, and $\mathfrak{g}_{(0,\xi,\infty)}$ denotes the Lie algebra of \mathfrak{g} -valued algebraic functions on $\mathbb{P}^1 \setminus \{0,\xi_1,\ldots,\xi_n,\infty\}$, which acts on $\widehat{L}_{\ell}(\mu) \otimes \widehat{L}_{\ell}(\nu_1)^{\otimes n} \otimes \widehat{L}_{\ell}(\lambda^{\dagger})$ through the Laurent expansion at each points. (See e.g. [BK] for a precise definition.)

Therefore it follows that the vector bundle $\mathcal{L}_{\kappa}(\lambda,\mu)_{\circ}$ is equivalent to the vector bundle of conformal coinvariants (the dual of the vector bundle of conformal blocks in the sense of [TUY, BK]). Moreover, the connection $\{\nabla_i\}$ on $\mathcal{L}_{\kappa}(\lambda,\mu)_{\circ}$ given via Proposition 6.1 coincides with the Knizhnik-Zamolodchikov connection on the vector bundle of conformal coinvariants.

7. WEIGHT DECOMPOSITION OF SYMMETRIC PART

For an H_{κ} -module M, put

(7.1)
$$M^W = \{ v \in M \mid wv = v \ \forall w \in W \},$$

on which the algebra $H_{\kappa}^{W} = \{u \in H_{\kappa} \mid wuw^{-1} = u\}$ acts. The algebra H_{κ}^{W} is called the zonal spherical algebra and it contains a subalgebra $S(V)^{W}$, which coincides with the center of the degenerate affine Hecke algebra H^{aff} .

For $\zeta \in V^*$, let χ_{ζ} denote the image of the projection to the quotient space $W \setminus V^*$. Identify $W \setminus V^*$ with the set $\operatorname{Hom}_{algebra}(S(V)^W, \mathbb{C})$ of characters, and set

$$M_{[\zeta]}^W = \{ v \in M^W \mid \xi v = \chi_{\zeta}(\xi) v \ \forall \xi \in S(V)^W \}.$$

In the sequel, we will give a decomposition of $\mathcal{L}_{\kappa}(\lambda,\mu)^{W}$ into weight spaces with respect to $S(V)^{W}$.

Let $\lambda, \mu \in X_m^+$ such that $\lambda - \mu \models n$. Let λ/μ denote the skew Young diagram associated with (λ, μ) :

(7.2)
$$\lambda/\mu = \{(a,b) \in \mathbb{Z} \times \mathbb{Z} \mid a \in [1,m], b \in [\mu_a + 1, \lambda_a]\}.$$

Let T be a tableau on the diagram λ/μ ; namely T is a bijection from λ/μ to [1,n]. Then it determines the sequence $\{\lambda_T^{(i)}\}_{i\in[0,n]}$ in X_m by the condition $\lambda_T^{(0)} = \mu$ and $\lambda_T^{(i)}/\lambda_T^{(i-1)} = T^{-1}(i)$ $(i \in [1,n])$.

Let $\ell \in \mathbb{Z}_{\geq 0}$. A tableau T is called an ℓ -restricted standard tableau if $\lambda_T^{(i)} \in X_m^+(\ell)$ for all $i \in [1, n]$. Let $\operatorname{St}_{(\ell)}(\lambda, \mu)$ denote the set of ℓ -restricted tableaux on λ .

Let $T \in \operatorname{St}_{(\ell)}(\lambda, \mu)$. For $i \in [1, n]$, define

(7.3)
$$h_i(T) = \begin{cases} 1 & \text{if } a < a', \\ 0 & \text{if } a \ge a', \end{cases}$$

where T(a, b) = i and T(a', b') = i + 1. Define

(7.4)
$$\eta_T = \sum_{i \in [1,n]} \left(\sum_{j < i} h_j(T) \right) x_i \in P.$$

Define $\zeta_T \in V^*$ by $\zeta_T(y_i) = b - a$ when T(a, b) = i.

From the weight decomposition of $\mathcal{L}_{\kappa}(\lambda,\mu)$ (Theorem A.3) with respect to S(V), we have

Theorem 7.1. (Conjecture 6.1.1 in [AST]) Let $\lambda.\mu \in X_m^+(\ell)$ such that $\lambda - \mu \models n$. Then

$$\mathcal{L}_{\kappa}(\lambda,\mu)^{W} = \bigoplus_{\nu \in P^{-}} \bigoplus_{T \in St_{(\ell)}(\lambda/\mu)} \mathcal{L}_{\kappa}(\lambda,\mu)^{W}_{[\zeta_{T} + \kappa(\nu + \eta_{T})]},$$

where
$$P^- = \{ \zeta \in P \mid \langle \zeta \mid \alpha_i^{\vee} \rangle \leq 0 \ \forall i \in [1, n-1] \}, \ and$$
$$\dim \mathcal{L}_{\kappa}(\lambda, \mu)_{[\zeta_T + \kappa(\nu + \eta_T)]}^W = 1$$

for all $\nu \in P^-$ and $T \in St_{(\ell)}(\lambda/\mu)$.

8. q-dimension formula

Put $\partial = \kappa^{-1} \sum_{i \in [1,n]} y_i \in S(V)^W$. Then ∂ satisfies the relation

$$[\partial, z_i] = \kappa z_i, \ [\partial, w] = 0$$

for all $i \in [1, n]$ and $w \in W$.

Our next purpose is to give a q-dimension formula for $\mathcal{L}_{\kappa}(\lambda, \mu)^{W}$ with respect to the grading operator ∂ . To this end, we need to introduce the "polynomial part" of $\mathcal{L}_{\kappa}(\lambda, \mu)$ following [AST].

Define a subalgebra $H_{\kappa}^{\geq 0}$ of H_{κ} by

$$H^{\geq 0}_{\kappa} = \mathbb{C}P^{\geq 0} \cdot \mathbb{C}W \cdot S(V),$$

where $P^{\geq 0} = \bigoplus_{i \in [1,n]} \mathbb{Z}_{\geq 0} x_i$.

Let $\kappa \in \mathbb{Z}_{\geq 1}$ and let $\lambda, \mu \in X_m^+(\kappa - m)$ such that $\lambda - \mu \models n$. Recall that the induced module $\mathcal{M}_{\kappa}(\lambda, \mu)$ is generated by the cyclic vector $\mathbf{1}_{\lambda,\mu}$. We denote by $\mathbf{1}_{\lambda,\mu}^-$ its image under the projection $\mathcal{M}_{\kappa}(\lambda,\mu) \to \mathcal{L}_{\kappa}(\lambda,\mu)$. Note that $\mathbf{1}_{\lambda,\mu}^{\geq 0} \neq 0$. Define the polynomial part of $\mathcal{L}_{\kappa}(\lambda,\mu)$ by $\mathcal{L}_{\kappa}^{\geq 0}(\lambda,\mu) = H_{\kappa}^{\geq 0}\mathbf{1}_{\lambda,\mu}^{\geq 0}$, which is an $H_{\kappa}^{\geq 0}$ -submodule of $\mathcal{L}_{\kappa}(\lambda,\mu)$.

Put $\mathcal{L}_{\kappa}^{\geq 0}(\lambda,\mu)_{(k)}^W = \{v \in \mathcal{L}_{\kappa}^{\geq 0}(\lambda,\mu)^W \mid \partial v = kv\}$. Then we have $\dim \mathcal{L}_{\kappa}^{\geq 0}(\lambda,\mu)_{(k)}^W < \infty$ and $\mathcal{L}_{\kappa}^{\geq 0}(\lambda,\mu)^W = \bigoplus_{k \in \mathbb{Z}} \mathcal{L}_{\kappa}^{\geq 0}(\lambda,\mu)_{(k)}^W$. Define

$$\dim_{q} \mathcal{L}_{\kappa}^{\geq 0}(\lambda, \mu)^{W} = \sum_{d \in \mathbb{Z}} q^{k} \dim \mathcal{L}_{\kappa}^{\geq 0}(\lambda, \mu)_{(k)}^{W}.$$

Set

(8.1)
$$h(T) = \kappa \langle \eta_T \mid \partial \rangle = \sum_{i \in [1, n]} (n - i) h_i(T).$$

¿From Theorem 7.1, we have

Theorem 8.1. Let $\kappa \in \mathbb{Z}_{\geq 0}$ and let $\lambda, \mu \in X_m^+(\kappa - m)$ such that $\lambda - \mu \models n$. Then

(8.2)
$$\dim_{q} \mathcal{L}_{\kappa}^{\geq 0}(\lambda, \mu)^{W} = \frac{q^{\Delta_{\lambda} - \Delta_{\mu}}}{(q)_{n}} F_{\lambda/\mu}^{(\ell)}(q).$$

Here $\Delta_{\lambda} = \frac{1}{2\kappa}((\lambda,\lambda) + 2(\rho,\lambda))$, $(q)_n = (1-q)(1-q^2)\dots(1-q^n)$ and $F_{\lambda/\mu}^{(\ell)}(q)$ is a polynomial of q given by

(8.3)
$$F_{\lambda/\mu}^{(\ell)}(q) = \sum_{T \in St_{(\ell)}(\lambda/\mu)} q^{h(T)}.$$

Remark 8.2. If ℓ is large enough then $F_{\lambda/\mu}^{(\ell)}(q)$ coincides with the Kostka polynomial $K_{(\lambda/\mu)'(1^n)}(q)$ associated to the conjugate $(\lambda/\mu)'$ of λ/μ . Hence our polynomial $F_{\lambda/\mu}^{(\ell)}(q)$ is an ℓ -restricted version of the Kostka polynomial (cf. [FJKLM]).

Remark 8.3. A bosonic formula for $F_{\lambda/\mu}^{(\ell)}(q)$ is known (Theorem 6.2.4 in [AST]), and Theorem 8.1 is equivalent to the formula in Conjecture 6.1.1 in [AST]. Note also that the bosonic formula suggests the existence of the BGG type resolution of $\mathcal{L}_{\kappa}(\lambda,\mu)$.

9. RATIONAL ANALOGUE

For a $\mathfrak{g}[t]$ -module N, set

$$\tilde{\mathcal{C}}(M) = E[z_1] \otimes \cdots \otimes E[z_n] \otimes N$$

$$\mathcal{C}(N) = \tilde{\mathcal{C}}(N)/\mathfrak{g}[t]\tilde{\mathcal{C}}(N),$$

where $E[z] = E \otimes \mathbb{C}[z]$. The analogous construction gives on $\mathcal{C}(N)$ an action of the rational Cherednik algebra H_{κ}^{rat} ([EG]), which can be

defined as the subalgebra of H_{κ} generated by the subalgebra $\mathbb{C}[\underline{z}] \cdot \mathbb{C}W$ and the following (pairwise commutative) elements

(9.1)
$$u_i = z_i^{-1} \left(y_i - \sum_{j < i} s_{ij} \right) \quad (i \in [1, n])$$

as pointed out in [S2].

It follows for $\lambda \in X_m^+(\ell)$ that $\mathcal{C}(\widehat{M}_{\ell}^{\dagger}(\lambda))$ is isomorphic to some induced module, and $\mathcal{C}(\widehat{L}_{\ell}^{\dagger}(\lambda))$ is isomorphic to the unique simple quotient of $\mathcal{C}(\widehat{M}_{\ell}^{\dagger}(\lambda))$, which we denote by $\mathcal{L}_{\kappa}(\lambda)$.

Let $\mathbf{0} = (0, ..., 0) \in X_m^+(\ell)$. Then it follows that the polynomial part $\mathcal{L}_{\kappa}^{\geq 0}(\lambda, \mathbf{0})$ of the H_{κ} -module $\mathcal{L}_{\kappa}(\lambda, \mathbf{0})$ is an H_{κ}^{rat} -submodule and it is isomorphic to $\mathcal{L}_{\kappa}(\lambda)$. This leads the q-dimension formula

(9.2)
$$\dim_{q} \mathcal{L}_{\kappa}(\lambda)^{W} = \frac{q^{\Delta_{\lambda}}}{(q)_{n}} F_{\lambda}^{(\ell)}(q).$$

Remark 9.1. It can be seen that the Knizhnik-Zamolodchikov functor investigated in [GGOR] transforms the irreducible representations $\mathcal{L}_{\kappa}(\lambda)$ for $\lambda \in X_m^+(\ell)$ to Wenzl's representations [W] of the affine Hecke algebra (cf. [TK]).

APPENDIX A. TABLEAUX ON PERIODIC DIAGRAMS AND REPRESENTATIONS OF THE DEGENERATE DAHA

We will review the theory of tableaux representations for H_{κ} , which is investigated in [SV] for the double affine Hecke algebra.

Fix $\kappa \in \mathbb{Z}_{\geq 1}$. Let $m \in \mathbb{Z}_{\geq 1}$.

For $\lambda, \mu \in X_m^+(\kappa - m)$ such that $\lambda - \mu \models n$, we introduce the following subsets of $\mathbb{Z} \times \mathbb{Z}$:

(A.1)
$$\lambda/\mu = \{(a, b) \in \mathbb{Z} \times \mathbb{Z} \mid a \in [1, m], b \in [\mu_a + 1, \lambda_a]\},\$$

$$(A.2) \quad \widehat{\lambda/\mu} = \{(a,b) + k(m, -\kappa + m) \in \mathbb{Z} \times \mathbb{Z} \mid (a,b) \in \lambda/\mu, \ k \in \mathbb{Z}\}.$$

The set λ/μ is called the *periodic skew diagram* of period $(m, -\kappa + m)$ associated with (λ, μ) . The following is called the skew property:

Lemma A.1. Let $(a,b), (a',b') \in \widehat{\lambda/\mu}$. If $a'-a \in \mathbb{Z}_{\geq 0}$ and $b'-b \in \mathbb{Z}_{\geq 0}$ then $(a,b'), (a',b) \in \widehat{\lambda/\mu}$.

A tableau T on $\widehat{\lambda/\mu}$ is by definition a bijection $\widehat{\lambda/\mu} \to \mathbb{Z}$ satisfying $T(a+m,b-\kappa+m)=T(a,b)+n$ for all $(a,b)\in\widehat{\lambda/\mu}$.

A tableau T is called a standard tableau if

$$T(a, b+1) > T(a, b)$$

for any
$$(a, b), (a, b + 1) \in \widehat{\lambda/\mu}$$
, and if

$$T(a+1,b) > T(a,b)$$

for any $(a,b), (a+1,b) \in \widehat{\lambda/\mu}$. Let $\mathrm{Tab}(\widehat{\lambda/\mu})$ and $\mathrm{St}(\widehat{\lambda/\mu})$ denote the set of tableaux and the set of standard tableaux on $\widehat{\lambda/\mu}$ respectively.

Define the elements $\pi = \tau_{x_1} s_1 s_2 \cdots s_{n-1}$ and $s_0 = \tau_{\alpha_{1n}} s_{1n}$ of the group $\widehat{W} = P \rtimes W$. Then $\{s_0, s_1, \ldots, s_{n-1}, \pi\}$ is a generator of the group \widehat{W} .

Define the action of \widehat{W} on the set $\mathbb Z$ of integers by

(A.3)
$$s_i(j) = \begin{cases} j+1 & \text{for } j \equiv i \mod n, \\ j-1 & \text{for } j \equiv i+1 \mod n, \\ j & \text{for } j \not\equiv i, i+1 \mod n, \end{cases}$$

(A.4)
$$\tau_{x_i}(j) = \begin{cases} j+n & \text{for } j \equiv i \mod n, \\ j & \text{for } j \not\equiv i \mod n. \end{cases}$$

Observe that $\pi(j) = j + 1$ for all j.

For $T \in \operatorname{Tab}(\widehat{\lambda/\mu})$ and $w \in \widehat{W}$, the map $wT : \widehat{\lambda/\mu} \to \mathbb{Z}$ given by

$$(wT)(u) = w(T(u)) \quad (u \in \widehat{\lambda/\mu})$$

is also a tableau on $\widehat{\lambda/\mu}$, and the assignment $T\mapsto wT$ gives an action of \widehat{W} on $\mathrm{Tab}(\widehat{\lambda/\mu})$, which preserves $\mathrm{St}(\widehat{\lambda/\mu})$. It is easy to see that the assignment $w\mapsto wT$ gives a one-to-one correspondence $\widehat{W}\stackrel{\sim}{\to} \mathrm{Tab}(\widehat{\lambda/\mu})$.

Define the map $C: \widehat{\lambda/\mu} \to \mathbb{Z}$ by C(a,b) = b - a, and define $C_T: \mathbb{Z} \to \mathbb{Z}$ by $C_T(i) = C(T^{-1}(i))$ for $T \in \operatorname{St}(\widehat{\lambda/\mu})$. Define $\zeta_T \in V^*$ by $\langle \zeta_T \mid y_i \rangle = C_T(i)$ $(i \in [1, n])$.

The following lemma follows from the skew property and the definition of the standard tableaux:

Lemma A.2. Let $T \in \operatorname{St}(\widehat{\lambda/\mu})$ and $i \in [0, n-1]$.

(i) $C_T(i) - C_T(i+1) \neq 0$.

(ii)
$$s_i T \in \operatorname{St}(\widehat{\lambda/\mu})$$
 if and only if $C_T(i) - C_T(i+1) \notin \{-1, 1\}$.

Now, we introduce the tableaux representation associated with $\widehat{\lambda/\mu}$. Let $\mathcal{V}_{\kappa}(\widehat{\lambda/\mu})$ be the vector space with the basis $\{v_T\}_{T\in\operatorname{St}(\widehat{\lambda/\mu})}$:

$$\mathcal{V}_{\kappa}(\widehat{\lambda/\mu}) = \bigoplus_{T \in \operatorname{St}(\widehat{\lambda/\mu})} \mathbb{C} v_T.$$

By Lemma A.2 and induction argument, we have

Theorem A.3. (Theorem 3.16, Theorem 3.17 in [SV]) Let $\kappa \in \mathbb{Z}_{\geq 1}$. Let $\lambda, \mu \in X_m^+(\kappa - m)$ such that $\lambda - \mu \models n$.

(i) There exists a unique H_{κ} -module structure on $\mathcal{V}_{\kappa}(\widehat{\lambda/\mu})$ such that $y_i v_T = C_T(i) v_T \quad (i \in [1, n]),$ $\pi v_T = v_{\pi T},$

$$s_i v_T = \begin{cases} \frac{1+a_i}{a_i} v_{s_i T} - \frac{1}{a_i} v_T & \text{if } s_i T \in \operatorname{St}(\widehat{\lambda/\mu}) \\ -\frac{1}{a_i} v_T & \text{if } s_i T \notin \operatorname{St}(\widehat{\lambda/\mu}) \end{cases} \quad (i \in [0, n-1]),$$

where $a_i = C_T(i) - C_T(i+1) \neq 0$ (by Lemma A.2).

- (ii) $\mathcal{V}_{\kappa}(\lambda,\mu) = \bigoplus_{T \in \operatorname{St}(\widehat{\lambda/\mu})} \mathcal{V}_{\kappa}(\lambda,\mu)_{\zeta_T}$, and $\mathcal{V}_{\kappa}(\lambda,\mu)_{\zeta_T} = \mathbb{C}v_T$ for all $T \in \operatorname{St}(\widehat{\lambda/\mu})$.
- (iii) The H_{κ} -module $\mathcal{V}_{\kappa}(\widehat{\lambda/\mu})$ is irreducible.
- (iv) $\mathcal{V}_{\kappa}(\widehat{\lambda/\mu}) \cong \mathcal{L}_{\kappa}(\lambda,\mu)$.

The following result is also announced in [C2]:

Theorem A.4. (Theorem 3.19 in [SV]) Let $\kappa \in \mathbb{Z}_{\geq 1}$. Let L be ab irreducible H_{κ} -module such that $L = \bigoplus_{\zeta \in P} L_{\zeta}$. Then there exist $m \in [1, n]$ and $\lambda, \mu \in X_m^+(\kappa - m)$ with $\lambda - \mu \models n$ such that $L \cong \mathcal{V}_{\kappa}(\widehat{\lambda/\mu})$.

REFERENCES

- [AST] T. Arakawa, T. Suzuki and A. Tsuchiya, Degenerate double affine Hecke algebras and conformal field theory, in Topological Field Theory, Primitive Forms and Related Topics; the proceedings of the 38th Taniguchi symposium, Ed. M Kashiwara et al. (1998), Birkhäuser, 1-34.
- [BK] B. Bakalov, A. Kirillov, Jr. Lecture on tensor categories and modular functors, (American Mathematical Society, 2001).
- [FJKLM] B. Feigin, M. Jimbo, R. Kedem, S. Loktev, and T. Miwa, Spaces of coinvariants and fusion product. II. sl₂ character formulas in terms of Kostka polynomials, J. Algebra 279 (2004), No. 1, 147–179.
- [C1] I. V. Cherednik, A unification of Knizhnik-Zamolodchikov and Dunkl operators via affine Hecke algebras, Invent. Math. 106 (1991), No.2, 411-431.
- [C2] I. V. Cherednik, Double affine Hecke algebras and differential Fourier transforms, Invent. Math. 152 (2003), No. 2, 213-303.
- [EG] P. Etingof and V. Ginzburg Symplectic reflection algebras, Calogero-Moser space, and deformed Harish-Chandra homomorphism, Invent. Math. 147 (2002), No. 2, 243–348.
- [GGOR] V. Ginzburg, N. Guay, E. Opdam and R. Rouquier On the category O for rational Cherednik algebras, Invent. Math. 154 (2003), No. 3, 617–651.
- [S1] T. Suzuki, Classification of simple modules over degenerate double affine Hecke algebras of type A, Int. Math. Res. Not. 43 (2003), 2313–2339.

- [S2] T. Suzuki, Rational and trigonometric degeneration of double affine Hecke algebras of type A, preprint, arXiv:math.RT/0502534.
- [SV] T. Suzuki and M. Vazirani, Tableaux on periodic skew diagrams and irreducible representations of the degenerate double affine Hecke algebras of type A, preprint, arXiv:math.QA/0406617.
- [TK] A. Tsuchiya and Y. Kanie, Vertex operators in conformal field theory on \mathbb{P}^1 and monodromy representations of braid group Adv. Stud. in Pure Math. 16 (1988), 297–372.
- [TUY] A. Tsuchiya, K. Ueno and Y. Yamada, Conformal field theory on universal family of stable curves with gauge symmetries Adv. Stud. in Pure Math. 19 (1989), 459–566.
- [VV] M. Varagnolo and E. Vasserot, From double affine Hecke algebras to quantized affine Schur algebras, Int. Math. Res. Not. 26 (2004), 1299–1333.
- [W] H. Wenzl Hecke algebras of type A and subfactors Invent. Math. 92 (1988), No. 2, 349–383.

E-mail address: takeshi@kurims.kyoto-u.ac.jp