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On the structure of the party algebra of type B

Masashi KOSUDA

Although in the talk at Kyoto-RIMS we used the notation A, and B, to
stand for the party algebra of type A and B respectively, in the following we
use the notation P, o, and P, 5(Q) respectively since after the talk we have
obtained general definition of the party algebra P, (@) which is defined from
the centralizer algebra of the unitary reflection group G (r,1,k). This relation
is discussed in Section 3.

~

1 P,: Party algebra of type A

Before consider the party algebra of type B (= P 2(Q)), we introduce P, the
party algebra of type A.

There also exists the party algebra of type A (no tilde) called the partition
algebra which corresponds to Py, 1 (@) in our notation. However, we do not treat
this one, since it was intensively studied in the papers 2, 5, 6, 7].

1.1 Definition of a seat-plan of type A

Suppose that there exist two parties each of which consists of n members. The
parties hold meetings splitting into several small groups. Every group consists
of the same number of members of each party. The set of such decompositions
into small groups makes an algebra P, o, under a certain product and it is called

the party algebra of type A.
More precisely we consider the following situation. Let F' = {fi, fas-- s Jn}

and M = {m1,ma,...,m,} be two sets each of which consists of n distinct
elements such that F N M = §. We decompose F' U M into subsets
Sy = {71, Ts,....,Ta} |
n
| |7y =FuM, [ 21T 2 2 T4,
Jj=1

T, NF|=|T;NnM|forj=1,2,...,n,
TNy =0ifi #4)
We call such a partition into subsets a seat-plan of type A. A seat-plan of type

A is geometrically expressed. For example

Y5 3 we = {{f1, f3, fa,m1,ma, ma}, {foyms},{fs,msa}}
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will be figured as in Figure 1.

m; mp Mg My Mg

Figure 1: A seat-plan of P, o

However this geometrical expression is not unique. For example, the follow-
ing two figures in Figure 2 express the same seat-plans.

B SIS s S

T OROR

m, m, MmM; My s m, m; my; My Hj

Figure 2: {{f1>f2amlam2a }a {f3af4:m3’m4}a {fS)mS}}

Here we consider how many seat-plans of P, o, exist for an integer n. Let
P(n) be a set of partitions of n. Then there exists a partition A € P(n) such
that A = (A1, Ag,..,An) = (1T4l/2,11%]/2,...,|T.]/2). Then the number of

seat-plans is

2
n! 1
onl= D, (Alz,\Qz.a-Anz) Canlagl oyl

AEP(n)

where a; = |[{A\k; Ay = i}|. For example, we find |o3| = 16 as follows:

s 3 ( 3! )2 1
8l = Dol /oo laslas!
AEP(n) )\1./\2.)\3. Q1 i0aitg!

3\ 1/ 3\ 1 3\ 1
a (3!0!0!) '0!0!1!+(2!1101) '0!1!1!+(1!191!) 310101

= 16.




1.2 The set of seat-plans ¥, makes an algebra F, .

For seat-plans wy,wqs € %, the product is defined as in Figure 3.

£f f, f f

m, my, m; m, mg

mp m, my; my Mg

Figure 3: Product of seat-plans

It is easy to see that the identity is given by the seat-plan
{fi,mi}, {f2yma}, ..., {fasmntlh,

which is figured in Figure 4.

Figure 4: Identity of A,

We understand that Py o = P10 = Q(V2,V3,...,v/n).

1.3 Characterization for the party algebra F,
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In the paper [3], we gave a presentation of the party algebra Pp o by using
tokoroten method. According to the paper, the party algebra Py o is generated
by the seat-plans in Figure 5 (Here f; does not express a vertex on the top line),

which satisfies the relation illustrated in Figure 6.

In Figure 6, the relation s;8;11fi8i+18: = fix1 means P, o is actually gen-
erated by f = fi and the symmetric group (s1,82,...,8n-1). Hence we have

obtain the following characterization of the party algebra Fp oo

by generators:
f:31)327"'78n~1
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8 Sivp £ 8j418;=

Figure 6: Relations for Py «

and relations:

82 =1 (1<i<n-1), (P1)
8i8i+18; — 8;4+15{8;41 (1 < <n— 2), (P?)
8i85 = 8484 ([’I:*‘jiZQ, 1_<_i,j§n~1), (P3)
2=, (P4)
fslmslf::fs (PS)
fsi=sif B3<i<n-—1), (P6)
fsafsy = safsaf, (P7)
f82518380 82515382 = $2518382f825818382f. (PS)

1.4 Algebraic structure of P, o,

The algebraic structure of P, o, is given by the following Bratteli diagram I'y,.
First we explain how to make I',,. Then we define T(ax) the tableauz of shape o
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for & € Ap(n), where A, (n) is the set of vertices on the bottom of I'y,.

0-th

2060
1-st

as6é
2-nd :

66 ¢ He¢o [IsR Y}
3-rd
e 6 6 Hleso Hees f————rij oo - 580

-*DID¢¢3+E:D¢¢¢ FHese oo f Heoo fmoee BD¢¢i¢DE¢¢'L¢E]¢@|'D¢D¢ énMD}'

Figure 7: I'y — The Bratteli diagram for the sequence {P; oo} g

The following is the recipe for drawing I',. Fix a positive integer n. Let
a = la(l),...,a(n)]

be an n-tuple of Young diagrams. The j-th coordinate of the tuple is referred
to the j-th board. The height ||c|| of o is defined as the weight sum of the sizes

of all the |a(7)|s. Namely, |||l is defined by
ledl = _glati)l.
j=1

Let
An(i) = {o = [a(1),...,a(n)] | [laf| =i}

be a set of n-tuples of height 4. For a € An(i), we set a(0) = n — i (the
horizontal Young diagram of depth 1 and of width n —i) if necessary. Let a?d
or &~ denote that & is obtained from a by removing one box from the Young

1
diagram on the j-th board and adding the box to the Young diagram on the
(j + 1)-st board for some j (0 < j < n —1). The diagram I', is defined as the
Hasse diagram I'y, of Uizo,“_nAn(i) with respect to the order generated by Ts.

Finally we define the sets of the tableaux on I'n. For v € Ay (n), The set
T(cx) of tableauz of shape c is defined by :

']I‘(a) — {P = (a(O),a(l), . ,Of(n)) l C!(O) = {@, ceey (Z)},a(”) = O,
a(i)ja(“’l) for0<i<m-—1}.

Under this preparation we obtain the following theorem.
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Theorem 1. Let Q be the field of rational numbers and Ko = Q(V2,V3,...,\/n)
its extension. If we define V(a) = ®@peria) Kovp as a vector space over Ko with
the standard basis {vp|P € T(ax)}, then we have

P € End(V(a)). (1)

4
aeAn(”)

For the proof of the theorem above we refer the paper [4]. In the paper [4],
we constructed concrete isomorphism in the equation (1).

2 P,»(Q):Party algebra of type B

Next we consider P, (@) the party algebra of type B.

2.1 Definition of a seat-plan of type B

Suppose again that there exist two parties each of which consists of n members.
The parties hold meetings splitting into several small groups. Every group
consists of even number of members. Some groups may consist of members of
just one of the parties. The set of decompositions into small groups makes an

algebra P, 2(Q) and it is called the party algebra of type B.

More precisely we consider the following situation. Let F' = {f1, fa,..., fn}
and M = {my,mq,...,my,} be two sets each of which consists of n distinct
elements such that F N M = (). We decompose F [ M into subsets

B o= (N, Ty,...,Tu} |

n

| |7y =FuM, |Ty| > ] > > T,
g=1

TNT; =0ifi#j

|T;] :even, j =1,2,...,n}.

We call such a partition into subsets a seat-plan of type B. A seat-plan of type
B is also geometrically expressed. For example

EjJSB S wy = {{f17ml>m2am4}7 {f29m5}1 {féaf4}7{f53m3}}

will be figured as in Figure 8.
Similarly to the case of type A we consider how many seat-plans of type B

exist for a given integer n. ‘
Since we do not have to distinguish the elements of F' and M, the number

of seat-plans of type B is given by the following:

~ (2n)! ? 1
SEl= ) ((z)\l)!(z,\z)s---(z,\n)J Coqlag! - ap! @)

AEP(n)
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my Mg mg My I

Figure 8: A seat-plan of type B

where a; = [{Ak; Ak =t}
For example,

4! 1 4! 1

vB = M .
%2 (2-2)! 011!+(2'1)!(2-1)! 210! 3)
= 14+3=4,
6! 6! 6 1
w8y = . Lo
= = G a0l @D 3 “)
= 1415415 =31,
g 8 8 1 & 1 8 1
B - ——— — i & — S —— R —— i ——— ¥ p——
2 = gtemtan ot mm 2 @y 4 (5)

= 1428+ 35+ 210+ 105 = 379.

2.2 The set of seat-plans %5 also makes an algebra P, »(Q)

For seat-plans wi, w2 € Ef, the product is also defined as in Figure 9.
In case d shaded islands occur in the product, first remove holes in the islands
(if they exist) and then multiply the resulting diagram by Q? removing the d

. islands.

2.3 Characterization for the party algebra Pr2(Q)

We can also give a presentation of the party algebra of type B by using the
tokoroten method. The generators are given by the seat-plans as in Figure 10.

We can easily check that these generators satisfy the relations illustrated in
Figure 11. More precisely, we have the following proposition.

Proposition 2. For an integern > 1, the party algebra P, 2(Q) is characterized
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Figure 10: Generators of B

by the following generators and relations:

generators; e, f,81,82,-..,8n0—1,
relations; s2=1 (1<i<n-1),

8:8i418; = 8i+18i8i+1 (1 <4< n—2),
sis; = 8580 ([i —Jj] 2 2),
e’ =Qe, f*=f,
ef = fe=e, esy=s1e=¢e, fs1=5f=f
es; = sie, fs;=sf (i2>3),
espe = e, fsafsy = safsaf, fssesaf = [saf,

T85815380YS2515380 = S2815382Y82518382  (Z,y € {e, f}).
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XS$2818352)82815382
= §2818352)525183852X

(xyEfef})

i C 0
3
ofi= forf

Figure 11: Relations for P 2(Q)

f52

2.4 Algebraic structure of P, 2(Q)
The algebraic structure of Pp 2 (Q) is given by the following:

P.2(Q) = €D End(W(B)),

BeAB

and the Bratteli diagram of Py, 2(Q) is given by Figure 12.

Here we explain the recipe for drawing the Bratteli diagram. In the following
we fix an integer k so that k > n. First put an vertex indexed by a pair of Young
diagram [(k), ] on the 0-th floor. Then move the right most box in the Young
diagram in the left coordinate to the right coordinate. Put a vertex indexed by
the resulting pair of Young diagrams under the first vertex (1-st floor) and join
these vertices by an edge. The index set of the vertices on the (i + 1)-st floor
Ap(i+ 1) is obtained from the index set of the vertices on the i-th floor Ap(3)

by
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om o

=S |1 [0 1 1[=g[EE gl

m om i o PP mg 1 o o) 4 guo |3

F=FeFel el §[=>F =]=s [F 8 [==¢[=4¢|F o] ¢|
T 38 2 3 1 10 6 10 6 4 7 3 3

Figure 12: The Bratteli diagram of Py 2(Q)

1. move one of the box of the Young diagram on the left coordinate to the
Young diagram on the right coordinate, or,

2. move one of the box of the Young diagram on the right coordinate to the
Young diagram on the left coordinate,

so that the resulting pair again become a pair of Young diagrams. A vertex on
the i-th floor indexed by B; € Ag(¢) and another vertex (i + 1)-st floor indexed
by B, € Ag(i+ 1) is joined by an edge if and only if 3, is obtained from 3, by
the recipe above. Let T(B) be the set of paths from the top vertex 8 = [(k),?]
to the vertex 3 on the n-th floor. More precisely we define

T(8) = {P=(B2,8Y,....,0™) [ BY e As(i)0<i<n),
B =((k),0], 8™ =8,
B® and B+ are joined by an edge (0 <i < n — 1)}.

Let W(B) = (vp|P € T(B)) be a vector space over Q(v2,v3,...,Vk) whose
standard basis is indexed by the elements of T(3).

Note that square sums of the numbers on each floor in Figure 12 is equal to
the number of seat-plans of type B given in the equations (3)(4) and (5).

2.5 Construction of irreducible representations

For a generator s; of P, 2(Q), we define a linear map on V(8) giving a matrix
B; with respect to the basis {vp|P € T(B)}. Namely, for a pair of tableaux
P=(B9,8Y,...,8M) and @ = (8", 8'",..., ™) of T(B) define Bvp =
ZQ@(}B)(B})QPUQ. If there is an ig € {1,2,...,n — 1} \ {i} such that 80 #
B'(0) then we put
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In the following, we consider the case that /3@”) = ﬁ'(é”) for ig € {1,2,...,n—
R\ {i}.

First, we consider the case ﬁ("') is obtained from ﬁ(i'l) by moving a box
in the Young diagram on the left [resp. right] board to the Young diagram on
the other board and ﬁ(é+1) is obtained from ,G(i) by moving another box in the
Young diagram again on the left [resp. right] board to the Young diagram on the
other board. Denote the Young diagram on the left board of ,6(7;“1) [resp. ﬁ(i),
BT by AG=1 [resp. A%, A(+D] and denote the Young diagram on the right
board of B¢ [resp. 87, AU by pG=D [resp. p®, pl+Y]. Let A*’?)\ or
)\?)\’ denote that )\ is obtained from X by removing one box. Recall that if
1/% ,u,gA, then we can define the azial distance d = d(v, p, ). Namely if p differs

from v in its ro-th row and cg-th column only, and if A differs from 4 in its r{-th
row and ci-th column only, then d = d(v, 1, A) is defined by

ha(ri,co) —1  ifrg <7y,
dzd(v,u,)\):(cl—rl)—(co—?'o):{ 1'\5%(3{),@) ifrg>ri-

Here h (4, ) is the hook-length at (4,7) in A and for A = (A1, A2, ...) the hook-
length hy(i,7) is defined by

hali§) =X — §+ {Ash = —i+ 1L
If )\(”'”1)?)\(”5):1))\(“‘1), then u(i“l)gu(i)gp(i“). Hence we can define the axial

distance d; = dACHD, XD A6-D) and dy = A0, p& DY If fdy| > 2
resp. |da| > 2], then there is a unique Young diagram N # Afresp. p’ # p4] which
satisfies )\(i‘l):l))\’:l)/\(i“‘l) [resp. u“‘”(lju’gp(ﬁ'l)]. Similarly, if }\(z”l)cli)\(@)cli)‘(”l),

then (=1 ?u(i) ?u(“'l), and we can define the axial distance dy = d(AG~1, A0, A®)
and dy = d(pCtD, p®, p=D), If |d;| > 2 [resp. |d2| > 2], then N [resp. pl—Y)]

is defined as before. Let Q1, Q2, @3 be tableaux of shape B which are obtained
from P by replacing B = [A® u@] on the j-th and the (j + 1)-st board of
BD with (A, ], N, @], [N, 4'] respectively. For the basis elements given by

the above tableaux, we define the linear map by the following matrix:

(UvaquQzans) L (vP,UQlﬁszva‘&)Bﬁ

where

Second, we consider the case that the only left boards of ﬁ(i‘l) and ,8(i+1)

coincide. Suppose that /B(i—l) = [\, p]. Then we can write 5(i+1) = [\ ]
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(n # /). Let {)\“L)['r = 1,2,...,b(\)} [resp. {A(_T,)[r’ = 1,2,...,b(0\)}] be
the set of all the Young dlagrams which satisfy )\( )D)\ [resp. A ,)C)\] and let
Py, Pg, . Py(yy [resp. @1,Qo,. . ., Qb(}\) /] be all the tableaux which are obtained

from P by replacing A% with [AF B0 '] [resp. [/\(T,), p U ¢']]. For the basis
elements given by the above tableaux, we define the linear map by the following

matrix:
h(\)?
B’i ’
(Bi)e..p, RO
h{))?
Bir.g. = Bio.p = T \/ ,
d(X <W>’Av*<>) RGO
(Bi)a.q@. = 0.

Here h(v) is the product of all the hook-lengths in v:
I 29
(i,7)ev

If BU-Y = [A, 4] and Bl = [M, ], then the matrix (B;) is similarly defined
by replacing A with y in the argument above. For example, let

Po= ([0, [k—1,1], [k —2,2],[1(k — 2),1])
Py = ([k,O],[k—l,l],[k~2, 12}3[1([{—2)31})
Qr = ([k,0],[k—1,1],[1(k —1),0], [L(k - 2),1])

be the tableaux of shape [1(k — 2),1]. Then the matrix By with respect to this

basis is
/2 172 1/V2
/2 1/2  —-1/vV2].
(1/\/5 ~1/v2Z 0 )

Next, we consider the case 801 = 80+D . We put ,6("“1) ,8(”1) = [\, pl.
Let {)\(T)} {)\(Tr,)}, {“E:)} and {,u(‘s,)} be the sets of Young diagrams previously
defined and let {Q s} and {PT s/} be the sets of tableaux obtained from P
by replacing B with [/\( 1y B{s )} and P\( r),p,(s,)] respectively. For the basis
elements given by the above tableaux, we define the linear map by the following
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matrix:

( 1 RO)2h(p)?
‘i()‘(:.z)7}'a)‘?;))d(l‘(s;)si"sﬂ?;)) h<A(_,J))h'(A?;))h(p/—(3’))}7/(}1.?;))
if (P, P') = (PT,S’,QT’,S) or (Qr’,37Pr,s’)a

Bpr = { 1 iamr— i (BP) = (Prs; Prs),
RGBS

R? "N ,
h(#?'s))h(l"?;;)) if (PaP) (Qr,s:@r,s )a

0 otherwise.
For example, let
1 ([k,O],[k~=1,1],[k-‘—2,2],[k—1,1])
Q = (k0] [k—1,1),(k—2,1%, [k - 1,1])
P, = ([k,()],[k‘-*1,1],[k,0],[k~1,1})
Py ([]C,O],UG—*171],[1(}6—1),0],{;{1—1,1])

be the tableaux of shape [k — 1,1]. Then the matrix B, with respect to this
basis is '

1/2 1/2 VE -1V —1/V2k
1/2 1/2 ~VE=1/V2k 1/V2k

VE—1/V2k —VE—1/V2k 1/k VE—1/k
~1/v2k 1/vV2k vE=1/k  (k—1)/k

Finally, we consider the remaining cases. In these cases, we can put ﬁ(i_l) =
O, p] and BOFD = [N, ] (A # N, # o' and [\ = [V}, |l = |¢/]). Then 8%
must be of the form AU N, pnp/]or ANXN,pUp] I BW if the former
resp. latter] one, then the tableau P’ is obtained from P by replacing B with
the latter [resp. former] one. For the basis elements given by the above tableaux,

we define the linear map by the following matrix:
0 1
(UvaP') — (UPan)Bi = (’UPa'UQ) ( 1.0 ) .

Now we have completed the preparation, we state the following main result.

Theorem 3. Let 3 = |, 8] be an ordered pair of Young diagrams. Ifk > n,
then the following statements hold: ’
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(1) Define pg as follows:

pg(sijvp = Z {(B;)prpvp,
- Prer(B)
5 _ ~
pptyr = { v IEP =B, or 61,10

_ [ ke if 8P =[(K),0]
P ﬁ(e)vp N { OP otherwise.

Then (pﬂ, V(B)) defines an irreducible representation of Py, o(k).

(2) For 3,8 € Ag(n), the irreducible representations % and rg of Py o(k)
are equivalent if and only if 8 = 3.

(8) Conversely, for any irreducible representation p of P, 2(k), there exists an
B € Ap(n) such that p and pg are equivalent.

In the process of the construction of P3, even if we replace the positive
integer k with an indeterminate @, the matrix elements of (53;)p p+ are similarly
defined. This means the theorem above is valid for any generic parameter Q).
More over if Q@ = k and k > n, then by the Schur-Weyl reciprocity, we find that
the dimension of P, (k) is equal to the square sum of the degree of P8 and it
is also equal to the number of the seat-plans of type B, which is presented by
the expression (2). Since the degree of r3 does not vary even if we replace the
positive integer & with the indeterminate ¢}, we obtain the following.

Theorem 4. IfQ ¢ {0,1,...,n—1}, then the party algebra P, 2(Q) is semisim-
ple and {pﬂ;ﬁ € Ag(n)} gives a complete representatives of irreducible repre-

sentations of P, 2(Q).

3 Define F,.(Q) from the centralizer of the uni-
tary reflection group G(r,1,k)

As we wrote in the beginning of this note, the party algebra P, ,(Q) is defined
from the centralizer algebra of the unitary reflection group G(r,1,%k). In this
section we explain how the party algebra P, (@) is introduced from the uni-
tary reflection group G(r,1,k). Although in the paper [10] Tanabe studied the
centralizer of the unitary reflection group even for the type G(r,p, k), in the
following we consider only the case p = 1.

The unitary reflection group G(r, 1, k) is the subgroup of GL(k, C) generated
by the set of all permutation matrices of size k¥ and diag(¢,1,1,...,1) where ¢
is a primitive 7-th root of unity. Let V be the vector space of dimension k
and suppose that it has the standard basis {e;,...,ex}. The unitary reflection
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group G(r,1,k) acts on V naturally and it also acts on V®" diagonally. For
X € EndV®", we denote by Xj1/» the matrix coefficients of X with respect
to the basis {emy, ®- - ®e€m, | M1, .., My € [k]}. Since we can write G(r, 1, k) =
(Z/rZ) 18, in order to check whether X commutes with the action of G(r, 1, k)
or not we first examine the following action in the tensor space. For o € Gy,
we have

o Xo(em, ® -+ @ em,) = x7hoth) o @@y,

f1ses fr€lk]

Hence we have the basis of Endg, V&

| ~ is an equivalence relation on {1,...2n}
whose number of classes is less than or equal ton |’

where

(TN)mn+1 yeers 20 e
TiyeessMin 0 otherwise.

{ 1 if (m; = m; if and only if ¢ ~ j),
Here we set mn4; == f; (1 <4 < n). Note that ~ is zero if the number of classes

for ~ is more than k.
In addition to the argument above, considering the action of { € Z/rZ we
find that the following equivalence relation becomes a basis of the centralizer.

Lemma 5. Let o, be the set of all the partitions of [2n] into subsets. For B =
{By,..., B} € IIy,, (some of the parts may be empty), let bot(B;) 1= B; N [n]
and top(B;) == B; N (2n]\ [n]) A1 <i < k). Let

o (r, 1, k) := {B = {B1,...,Bi} ; |top(B;)| = |bot(B;)|(mod r)(1 < i < k)}.
Then {Twp : B € Iy, (r)} is a basis of Endgr,1,5) Ve

The set X, of seat-plans of type A is equivalent to the set Ilo,(r, 1,k) if
k > n and r > n. The set 2 of seat-plans of type B is equivalent to the case
r = 2 and k > n. In this way we can obtain a basis of the party algebra P, (k)
and its geometrical presentation. Moreover, replacing k¥ with the parameter Q
in case k > n in the geometrical definition of the product, we obtain the party

algebra P, ,(Q).
We further know the generator of the party algebra P, ,(Q) by Tanabe’s

paper [10].
Proposition 6. (Tanabe [10, Theorem 3.1]) The party algebra P, »(Q) is gen-

erated by the symmetric group {(s1,S2,...,5n—1) together with f and e, as in
Figure 13
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Figure 13: The generators of P, -(Q)

4 'El’ldg(zl’g)v’@n

So far, we have assumed that the left coordinate of the top vertex B = [(k), 0]
has k boxes such that k& > n. It is easy to see that the same diagram will
appear even if we begin with B©® = [(ky),0] such that k; > n and k;y # k. On
the other hand, in case k; < n, the resulting diagram vary. We mention what
happens if we draw a diagram under the condition that B = [(3), 0] according
to the same recipe. In this situation, we have Figure 14. This corresponds to
the centralizer algebra Endg(z,l,g)VQW, which is a quotient of the party algebra
P 2(3).

This diagram periodically grows in higher levels. This indicates that this
centralizer may give an example of subfactors. Hence we can expect that using
this algebra the Turaev-Viro-Ocneanu invariants of 3-dimensional manifolds will
be calculated in the same way as in the papers [8, 9].
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Figure 14: The Bratteli diagram of Endg,1,5Ve"
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