Cospectral graphs of the Grassmann graphs

Jack Koolen
Dept Math.
POSTECH
Pohang, South Korea
koolen@postech.ac.kr
(joint work with Edwin van Dam)
Let \(q \) be a prime power, and \(V \) be a \(n \)-dimensional space over the \(GF(q) \) the field with \(q \) elements. Let \(1 \leq e \leq n - 1 \) be an integer.

The **Grassmann Graph** \(G_q(n, e) \) has as vertices the \(e \)-dimensional subspaces and \(S \sim T \) iff their intersection is \((e - 1) \)-dimensional.

To construct graphs with the same spectrum as \(G_q(n, e) \) we first will look at a partial linear space.
Let n, e be positive integers such that $4 \leq 2e \leq n$.

Let V be a n-dimensional vector space over $GF(q)$ and

let H be a $2e$-dimensional subspace of V.
We first construct the partial linear space

$$LG_q(n, e, e + 1).$$

Its points are the e-dimensional subspaces of V.

There are two kinds of lines:

Lines of the first kind: $(e + 1)$-dimensional subspaces L of V which are not a subspace of H. A line L as points the e-dimensional subspaces contained in L.

b Lines of the second kind: $(e - 1)$-dimensional spaces M contained in H. A line M has as points the e-dimensional spaces contained in H which contain M as a subspace.
Now $\mathcal{L}_q(n, e, e + 1)$ has
$\binom{n}{e}$ points,
$\binom{n}{e+1}$ lines,
each point is incident with $\binom{n-e}{1}$ lines
and each line is incident with $\binom{e+1}{1}$ points.

Through any pair of points there is at most one line.
If P and Q are points then they are on a line iff $P \cap Q$
is $(e - 1)$-dimensional.
Define $P_q(n, e+1)$ as the line graph of $L\mathcal{G}_q(n, e, e+1)$, that is its vertices are the lines of $L\mathcal{G}_q(n, e, e+1)$ and two lines are adjacent iff they have exactly one point in common.

Theorem 1 (i) $P_q(n, e+1)$ is cospectral with $G_q(n, e+1)$,
(ii) $P_q(n, e + 1)$ is distance-regular iff $n = 2e + 1$.
(iii) $P_q(2e + 1, e + 1)$ is not isomorphic to the Grassmann graph $G_q(2e + 1, e + 1)$.
(i) Let N be the point-line incidence matrix. Then $NN^T - \begin{bmatrix} n-e \end{bmatrix} I$ is the adjacency matrix of the point graph. As the point graph is clearly $G_q(n, e)$, we know the spectrum of NN^T. Now except for the zero eigenvalue the spectrum of NN^T is the same as the $N^T N$. This implies that $P_q(n, e + 1)$ is cospectral with $G_q(n, e + 1)$ as $NN^T - \begin{bmatrix} e+1 \end{bmatrix} I$ is the adjacency matrix for $P_q(n, e + 1)$.
(ii) If $n < 2e + 1$, then there is $e + 1$-dimensional space L which intersects H in a $(e - 1)$-dimensional space M. Now in $P_q(n, e + 1)$ the distance between L and M is 2 and it is easy to see that they have $\begin{bmatrix} 2 \\ 1 \end{bmatrix}^{e+1}$ common neighbours where in the Grassmann graph $c_2 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}^2$.

If $n = 2e + 1$, then it is possible to check that it is distance-regular. An easy way to see this is true we use a result by Fiol and Garriga which states that if a graph has the same spectrum as a distance-regular graph Γ with diameter d is distance-regular iff for all vertices x we have $k_d(x) = k_d(\Gamma)$. And this is easily checked.

(iii) Let $n = 2e + 1$. Let K be an $(e + 2)$-dimensional space which intersects H in $e + 1$ dimensions. Now the $(e + 1)$-dimensional subsapces of K which are not contained in H forms a maximal clique of size $\begin{bmatrix} e+2 \\ 1 \end{bmatrix} - 1$ in $P_q(2e + 1, e + 1)$, whereas the Grassmann graph $G_q(2e + 1, e + 1)$ has maximal cliques of sizes $\begin{bmatrix} e+2 \\ 1 \end{bmatrix}$ and $\begin{bmatrix} e+1 \\ 1 \end{bmatrix}$.

This shows the theorem.
(i) By looking at maximal cliques in $P_q(2e + 1, e + 1)$, it is easy to see that it is not vertex-transitive. The group $P\Gamma L(2e + 1)_{2e}$ is an automorphism group of the graph. It was shown by M. Tagami that this is the full automorphism group.

(ii) For large q and e we were able to show that the local graph of a line of type 1 is not cospectral to the local graph of a line of type 2. We suspect that this is always the case. This implies, for example, that the Terwilliger Algebra depends on the base vertex for $P_q(2e + 1, e + 1)$.