<table>
<thead>
<tr>
<th>Title</th>
<th>A parameter bound on distance-biregular graphs (Algebraic Combinatorics)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Bang, Sejeong</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (2005), 1440: 24-27</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2005-07</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/47543</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
A parameter bound on distance-biregular graphs

Sejeong Bang*
Faculty of Mathematics, Graduate School, Kyushu University
6-10-1 Hakozaki, Higashiku, Fukuoka 812-8581 Japan e-mail: sjbang@math.kyushu-u.ac.jp.

Abstract

In this note we consider distance-biregular graphs with valencies $(\sigma + 1, \delta + 1)$ with $\sigma < \delta$. We show that bigger valency δ is bounded by a function of smaller valency σ.

Definition 0.1 Let $\Gamma = (V(\Gamma), E(\Gamma))$ be a bipartite connected graph with the vertex set $V(\Gamma)$ and the edge set $E(\Gamma)$. Let D be a diameter of Γ. Then Γ is called a distance-biregular if for any pair of vertices $u, v \in V(\Gamma)$ with $d(u, v) = i$, the numbers $c_i(u, v)$ and $b_i(u, v)$ are depend only on $d(u, v) = i$ and the partition the vertex u belongs to, where

$$
c_i(u, v) := |\Gamma_{i-1}(u) \cap \Gamma_1(v)|,
$$

$$
b_i(u, v) := |\Gamma_{i+1}(u) \cap \Gamma_1(v)|.
$$

Remark 0.2 (i) The vertices in the same partition have the same intersection array. From now on, let $V(\Gamma) = V_\sigma \cup V_\delta$, where $V_\sigma = \{v \in V(\Gamma) | \deg(v) = \sigma + 1\}$ and $V_\delta = \{v \in V(\Gamma) | \deg(v) = \delta + 1\}$. (ii) For $u \in V_\sigma$ and $d(u, v) = i$, define

$$
D_\sigma := \max\{d(u, x) | x \in V(\Gamma)\}
$$

$$
c_i^\sigma := |\Gamma_{i-1}(u) \cap \Gamma_1(v)|
$$

$$
b_i^\sigma := |\Gamma_{i+1}(u) \cap \Gamma_1(v)|.
$$

In the same way, we could define D_δ, c_i^δ and b_i^δ.

Example 0.3 Bipartite distance-regular graphs are distance-biregular graphs.

Lemma 0.4 (Delorme)
For each i,

(i) $c_{2i}^\sigma c_{2i+1}^\sigma = c_{2i+1}^\delta c_{2i+1}^\delta$

(ii) $b_{2i-1}^\delta b_{2i}^\delta = b_{2i-1}^\delta b_{2i}^\delta$.

*This note is based on a joint work with Akira Hiraki(Division of Mathematical Sciences, Osaka Kyoiku University, Japan) and Jack Koolen(Department of Mathematics, Pohang University of Science and Technology, South Korea)
Proof: \(i\) Let \(d(x, y) = 2i + 1\) and \(x \in V_\sigma\). By counting the number of paths between \(x\) and \(y\) in two ways, we have

\[
c_{2i+1}^\sigma c_{2i}^\sigma \cdots c_2^\sigma = c_{2i+1}^\delta c_{2i}^\delta \cdots c_2^\delta.
\]

(ii) Consider \(\{(u, w) \in V_\sigma \times V_\delta \mid d(u, w) = 2i + 1\}\). Then

\[
\frac{v_2 b_2^\sigma b_4^\sigma \cdots b_{2i}^\delta}{c_2^\sigma \cdots c_{2i}^\sigma} = \frac{v_2 b_2^\delta b_4^\delta \cdots b_{2i}^\delta}{c_2^\delta \cdots c_{2i}^\delta}.
\]

Proposition 0.5 Let \(\Gamma\) be a distance-biregular graph with valencies \((\sigma + 1, \delta + 1)\). If \(\sigma = \delta\) then \(\Gamma\) is distance-regular.

Proof: By Lemma 0.4, for each \(i \geq 1\), we have the following

\[
(\sigma + 1 - c_{2i-1}^\sigma)(\delta + 1 - c_{2i}^\delta) = (\sigma + 1 - c_{2i-1}^\delta)(\delta + 1 - c_{2i}^\sigma);
\]

\[
c_{2i}^\sigma c_{2i+1}^\sigma = c_{2i}^\delta c_{2i+1}^\delta.
\]

As \(\sigma = \delta\) and \(c_1^\sigma = c_1^\delta = 1\) hold, \(c_i^\sigma = c_i^\delta (1 \leq i \leq D)\) and \(b_i^\sigma = b_i^\delta (0 \leq i \leq D - 1)\) must be satisfied.

By the previous proposition, we may assume that \(\sigma < \delta\) in this note.

Lemma 0.6 (Delorme)

Let \(\sigma < \delta\). Then

\(i\) \(D_\sigma\) is even;

\(ii\) \(D_\delta \leq D_\sigma \leq D_\delta + 1\).

Let \(g = 2n + 2\) be the girth of a distance biregular graph \(\Gamma\). Note that \(c_{n+1}^\sigma > c_n^\sigma = 1\) and \(c_{n+1}^\delta > c_n^\delta = 1\) are satisfied.

Theorem 0.7 (Delorme)

\[
\max\{D_\sigma, D_\delta\} \leq \frac{g}{2} \min\{\sigma, \delta\} + 1.
\]

Proof:

\[
\max\{D_\sigma, D_\delta\} \leq \min\{(\sigma - c_{n+1}^\sigma + 2)n + 2, (\delta - c_{n+1}^\delta + 2)n + 2\}
\]

\[
\leq \min\{\sigma, \delta\} n + 2
\]

\[
\leq \frac{g}{2} \min\{\sigma, \delta\} + 1.
\]
We denote by Σ (resp. Δ) the graph with vertices the vertices of degree $\sigma + 1$ (resp. $\delta + 1$) and two vertices are adjacent if and only if they are at distance 2 in Γ. Note that Σ (resp. Δ) is a distance-regular graph of order $(\delta, \frac{\sigma + 1}{c_\delta^\sigma} - 1)$ (resp. $(\sigma, \frac{\delta + 1}{c_\sigma^\delta} - 1)$). In other words,

$$\Gamma^{\Sigma}_1(x) \simeq \left(\frac{\sigma + 1}{c_\sigma^\sigma} \right) \cdot K_\delta.$$

Let N be a matrix whose rows and columns are indexed by $V(\Delta)$ and $V(\Sigma)$ respectively. Then we obtain

$$c_\delta^\sigma A_\Delta = NN^T - (1+\delta)I; \quad (1)$$
$$c_\sigma^\delta A_\Sigma = N^TN - (1+\sigma)I. \quad (2)$$

Lemma 0.8 (Hoffman-Delsarte)

Let Γ be a distance-regular graph with diameter D. Let $\theta_0 > \theta_1 > \cdots > \theta_D$ be the eigenvalues of Γ. Then the maximal clique in Γ has at most

$$\left(1 - \frac{\theta_0}{\theta_D} \right)$$

vertices.

Theorem 0.9 Let $D_\sigma = D_\delta$. Then every maximal clique in Σ has exactly

$$\left(1 - \frac{\theta_0^{(\Sigma)}}{\theta_D^{(\Sigma)}} \right)$$

vertices.

Theorem 0.10 Let $D_\sigma = D_\delta$. Then every maximal clique in Σ has exactly

$$\left(1 - \frac{\theta_0^{(\Sigma)}}{\theta_D^{(\Sigma)}} \right)$$

vertices.

Proof: Let $N \in M_{|V_\delta| \times |V_\delta|}(\mathbb{R})$. Then

$$N^TN = c_\delta^\sigma A_\Sigma + (1+\sigma)I \in M_{|V_\delta| \times |V_\delta|}(\mathbb{R})$$
$$NN^T = c_\sigma^\delta A_\Delta + (1+\delta)I \in M_{|V_\delta| \times |V_\delta|}(\mathbb{R}).$$

As $\sigma < \delta$, $|V(\Sigma)| > |V(\Delta)|$. By the fact $\text{rank}(NN^T) = \text{rank}(N) = \text{rank}(N^TN)$ (i.e., the matrix N^TN has an eigenvalue 0) and the equation (2), the graph Σ has an eigenvalue

$$-\frac{1+\sigma}{c_\sigma^\delta}.$$
Therefore the following holds:

\[-\frac{1 + \sigma}{c_2^\sigma} \leq \theta_D^{(\Sigma)} \leq -\frac{1 + \sigma}{c_2^\sigma}.

Theorem 0.11 (Hiraki and Koolen)

Let Γ be a distance-regular graph of order (s, t) with $s > 1$. If $-(t + 1)$ is an eigenvalue of Γ then

\[t < 4^{R-1}. \]

Theorem 0.12

Let Γ be a distance-biregular graph with valencies $\sigma + 1$ and $\delta + 1$. Let $\sigma < \delta$, $D_\sigma = D_\delta$ and the girth $g \geq 8$. Then there is a function f of σ such that

\[\delta \leq f(\sigma). \]

Proof: Recall that Σ is distance-regular graph of order (σ, δ). By Theorem 0.11

\[\delta < 4^D_{\Sigma^{-1}}. \]

Now we will show that

\[\frac{4D_\Delta}{h_\Delta} - 1 \leq F(\sigma). \]

Note that the following hold:

\[\frac{1}{h_\Delta} \leq \frac{2}{h - 1} = \frac{4}{g - 4} \]

\[D_\Delta \leq \frac{g\sigma + 2}{4}. \]

Hence

\[\frac{4D_\Delta}{h_\Delta} - 1 \leq \frac{4(g\sigma + 2) - g + 4}{g - 4} \leq 9\sigma. \]

Therefore $\delta < \sigma^{9\sigma}$ holds.

References
