A parameter bound on distance-biregular graphs

Sejeong Bang*

Faculty of Mathematics, Graduate School, Kyushu University 6-10-1 Hakozaki, Higashiku, Fukuoka 812-8581 Japan e-mail: sjbang@math.kyushu-u.ac.jp.

Abstract

In this note we consider distance-biregular graphs with valencies $(\sigma + 1, \delta + 1)$ with $\sigma < \delta$. We show that bigger valency δ is bounded by a function of smaller valency σ .

Definition 0.1 Let $\Gamma = (V(\Gamma), E(\Gamma))$ be a bipartite connected graph with the vertex set $V(\Gamma)$ and the edge set $E(\Gamma)$. Let D be a diameter of Γ . Then Γ is called a distance-biregular if for any pair of vertices $u, v \in V(\Gamma)$ with d(u, v) = i, the numbers $c_i(u, v)$ and $b_i(u, v)$ are depend only on d(u, v) = i and the partition the vertex u belongs to, where

$$c_i(u, v) := |\Gamma_{i-1}(u) \cap \Gamma_1(v)|,$$

 $b_i(u, v) := |\Gamma_{i+1}(u) \cap \Gamma_1(v)|.$

Remark 0.2 (i) The vertices in the same partition have the same intersection array. From now on, let $V(\Gamma) = V_{\sigma} \cup V_{\delta}$, where $V_{\sigma} = \{v \in V(\Gamma) \mid deg(v) = \sigma + 1\}$ and $V_{\delta} = \{v \in V(\Gamma) \mid deg(v) = \delta + 1\}$. (ii) For $u \in V_{\sigma}$ and d(u, v) = i, define

$$D_{\sigma} := \max\{d(u, x) \mid x \in V(\Gamma)\}$$

$$c_{i}^{\sigma} := |\Gamma_{i-1}(u) \cap \Gamma_{1}(v)|$$

$$b_{i}^{\sigma} := |\Gamma_{i+1}(u) \cap \Gamma_{1}(v)|.$$

In the same way, we could define D_{δ} , c_{i}^{δ} and b_{i}^{δ} .

Example 0.3 Bipartite distance-regular graphs are distance-biregular graphs.

Lemma 0.4 (Delorme) For each i, (i) $c_{2i}^{\sigma}c_{2i+1}^{\sigma} = c_{2i}^{\delta}c_{2i+1}^{\delta}$ (ii) $b_{2i-1}^{\sigma}b_{2i}^{\sigma} = b_{2i-1}^{\delta}b_{2i}^{\delta}$.

^{*}This note is based on a joint work with Akira Hiraki(Division of Mathematical Sciences, Osaka Kyoiku University, Japan) and Jack Koolen(Department of Mathematics, Pohang University of Science and Technology, South Korea)

Proof: (i) Let d(x, y) = 2i + 1 and $x \in V_{\sigma}$. By counting the number of paths between x and y in two ways, we have

$$c_{2i+1}^{\sigma}c_{2i}^{\sigma}\cdots c_{2}^{\sigma}=c_{2i+1}^{\delta}c_{2i}^{\delta}\cdots c_{2}^{\delta}.$$

(ii) Consider $|\{(u,w) \in V_{\sigma} \times V_{\delta} \mid d(u,w) = 2i+1\}|$. Then

$$\frac{v_\sigma b_0^\sigma b_1^\sigma \cdots b_{2i}^\sigma}{c_2^\sigma \cdots c_{2i}^\sigma c_{2i+1}^\sigma} = \frac{v_\delta b_0^\delta b_1^\delta \cdots b_{2i}^\delta}{c_2^\delta \cdots c_{2i}^\delta c_{2i+1}^\delta}.$$

Proposition 0.5 Let Γ be a distance-biregular graph with valencies $(\sigma + 1, \delta + 1)$. If $\sigma = \delta$ then Γ is distance-regular.

Proof: By Lemma 0.4, for each $i \ge 1$, we have the following

$$(\delta + 1 - c_{2i-1}^{\sigma})(\sigma + 1 - c_{2i}^{\sigma}) = (\sigma + 1 - c_{2i-1}^{\delta})(\delta + 1 - c_{2i}^{\delta});$$

$$c_{2i}^{\sigma}c_{2i+1}^{\sigma} = c_{2i}^{\delta}c_{2i+1}^{\delta}.$$

As $\sigma=\delta$ and $c_1^\sigma=1=c_1^\delta$ hold, $c_i^\delta=c_i^\sigma$ $(1\leq i\leq D)$ and $b_i^\delta=b_i^\sigma$ $(0\leq i\leq D-1)$ must be satisfied.

By the previous proposition, we may assume that $\sigma < \delta$ in this note.

Lemma 0.6 (Delorme)

Let $\sigma < \delta$. Then

- (i) D_{σ} is even;
- (ii) $D_{\delta} \leq D_{\sigma} \leq D_{\delta} + 1$.

Let g=2n+2 be the girth of a distance biregular graph Γ . Note that $c_{n+1}^{\sigma}>c_{n}^{\delta}=1$ and $c_{n+1}^{\delta}>c_{n}^{\sigma}=1$ are satisfied.

Theorem 0.7 (Delorme)

$$\max\{D_{\sigma}, D_{\delta}\} \leq \frac{g}{2}\min\{\sigma, \delta\} + 1.$$

Proof:

$$\begin{split} \max\{D_{\sigma},D_{\delta}\} & \leq & \min\{(\sigma-c_{n+1}^{\sigma}+2)n+2,(\delta-c_{n+1}^{\delta}+2)n+2\} \\ & \leq & \min\{\sigma,\delta\}n+2 \\ & \leq & \frac{\mathsf{g}}{2}\min\{\sigma,\delta\}+1. \end{split}$$

We denote by Σ (resp. Δ) the graph with vertices the vertices of degree $\sigma+1$ (resp. $\delta+1$) and two vertices are adjacent if and only if they are at distance 2 in Γ . Note that Σ (resp. Δ) is a distance-regular graph of order $(\delta, \frac{\sigma+1}{c_2^{\sigma}}-1)$ (resp. $(\sigma, \frac{\delta+1}{c_2^{\sigma}}-1)$). In other words,

$$\Gamma_1^{(\Sigma)}(x)\simeq \left(rac{\sigma+1}{c_2^\sigma}
ight)*K_\delta.$$

Let N be a matrix whose rows and columns are indexed by $V(\Delta)$ and $V(\Sigma)$ respectively. Then we obtain

$$c_2^{\delta} A_{\Delta} = NN^T - (1+\delta)I; \qquad (1)$$

$$c_2^{\sigma} A_{\Sigma} = N^T N - (1 + \sigma) I. \tag{2}$$

Lemma 0.8 (Hoffman-Delsarte)

Let Γ be a distance-regular graph with diameter D. Let $\theta_0 > \theta_1 > \cdots > \theta_D$ be the eigenvalues of Γ . Then the maximal clique in Γ has at most

$$\left(1-\frac{\theta_0}{\theta_D}\right)$$

vertices.

Theorem 0.9 Let $D_{\sigma} = D_{\delta}$. Then every maximal clique in Σ has exactly

$$\left(1 - \frac{\theta_0^{(\Sigma)}}{\theta_{D_{\sigma/2}}^{(\Sigma)}}\right)$$

vertices.

Theorem 0.10 Let $D_{\sigma} = D_{\delta}$. Then every maximal clique in Σ has exactly

$$\left(1 - \frac{\theta_0^{(\Sigma)}}{\theta_{D_{\Sigma}}^{(\Sigma)}}\right)$$

vertices.

Proof: Let $N \in M_{|V_{\delta}| \times |V_{\sigma}|}(\mathbb{R})$. Then

$$\begin{array}{lcl} N^T N & = & c_2^{\sigma} A_{(\Sigma)} + (1+\sigma)I & \in M_{|V_{\sigma}| \times |V_{\sigma}|}(\mathbb{R}) \\ N N^T & = & c_2^{\delta} A_{(\Delta)} + (1+\delta)I & \in M_{|V_{\delta}| \times |V_{\delta}|}(\mathbb{R}). \end{array}$$

As $\sigma < \delta$, $|V(\Sigma)| > |V(\Delta)|$. By the fact $rank(NN^T) = rank(N) = rank(N^TN)$ (i.e., the matrix N^TN has an eigenvalue 0) and the equation (2), the graph Σ has an eigenvalue

$$-\frac{1+\sigma}{c_{\sigma}^{\sigma}}$$
.

Therefore the following holds:

$$-\frac{1+\sigma}{c_2^\sigma} \leq \theta_{D_\Sigma}^{(\Sigma)} \leq -\frac{1+\sigma}{c_2^\sigma}.$$

Theorem 0.11 (Hiraki and Koolen)

Let Γ be a distance-regular graph of order (s,t) with s>1.

If -(t+1) is an eigenvalue of Γ then

$$t < s^{\frac{4D}{h} - 1}.$$

Theorem 0.12 Let Γ be a distance-biregular graph with valencies $\sigma + 1$ and $\delta + 1$. Let $\sigma < \delta$, $D_{\sigma} = D_{\delta}$ and the girth $g \geq 8$. Then there is a function f of σ such that

$$\delta \leq f(\sigma)$$
.

Proof: Recall that Σ is distance-regular graph of order (σ, δ) . By Theorem 0.11

$$\delta < \sigma^{\frac{4D_{\Delta}}{h_{\Delta}}-1}$$
.

Now we will show that

$$\frac{4D_{\Delta}}{h_{\Delta}} - 1 \le F(\sigma).$$

Note that the following hold:

$$\frac{1}{h_{\Delta}} \leq \frac{2}{h-1} = \frac{4}{g-4}$$

$$D_{\Delta} \leq \frac{g\sigma + 2}{4}.$$

Hence

$$\frac{4D_{\Delta}}{h_{\Delta}} - 1 \leq \frac{4(\mathsf{g}\sigma + 2) - \mathsf{g} + 4}{\mathsf{g} - 4} \leq 9\sigma.$$

Therefore $\delta < \sigma^{9\sigma}$ holds.

References

- [1] C. Delorme, Distance Biregular bipartite Graphs, European journal of Combinatorics 15 (1994), 223-238
- [2] Akira Hiraki and Jack Koolen, A Higman-Haemers Inequality for Thick Regular Near Polygons, Journal of algebraic combinatorics 20 (2004), 87-92