Tridiagonal pairs and the quantum affine algebra $U_q(\widehat{sl_2})$

Tatsuro Ito

Kanazawa University Kanazawa Japan

Paul Terwilliger

University of Wisconsin Madison Wisconsin

Leonard pairs

We recall the notion of a Leonard pair. To do this, we first recall what it means for a matrix to be **tridiagonal**.

The following matrices are tridiagonal.

$$\begin{pmatrix}
2 & 3 & 0 & 0 \\
1 & 4 & 2 & 0 \\
0 & 5 & 3 & 3 \\
0 & 0 & 3 & 0
\end{pmatrix},
\begin{pmatrix}
2 & 3 & 0 & 0 \\
0 & 4 & 2 & 0 \\
0 & 2 & 1 & 0 \\
0 & 0 & 1 & 5
\end{pmatrix}$$

Tridiagonal means each nonzero entry lies on either the diagonal, the subdiagonal, or the superdiagonal.

The tridiagonal matrix on the left is **irreducible**. This means each entry on the subdiagonal is nonzero and each entry on the superdiagonal is nonzero.

Overview

In this talk, I will first recall the notion of a **Leonard pair** and discuss how these objects are related to certain classical orthogonal polynomials.

I will then define a generalization of a Leonard pair called a **Tridiagonal pair**.

I will then show how certain tridiagonal pairs are related to finite dimensional modules for the quantum affine algebra $U_q(\widehat{sl_2})$.

2

The Definition of a Leonard Pair

We now define a Leonard pair. From now on \mathbb{K} will denote a field.

Definition Let V denote a vector space over \mathbb{K} with finite positive dimension. By a **Leonard pair** on V, we mean a pair of linear transformations $A:V\to V$ and $A^*:V\to V$ which satisfy both conditions below.

- 1. There exists a basis for V with respect to which the matrix representing A is irreducible tridiagonal and the matrix representing A^* is diagonal.
- 2. There exists a basis for V with respect to which the matrix representing A^* is irreducible tridiagonal and the matrix representing A is diagonal.

Example of a Leonard pair

For any nonnegative integer d the pair

$$A = \begin{pmatrix} 0 & d & 0 & & 0 \\ 1 & 0 & d - 1 & & \\ & 2 & \cdot & \cdot & \cdot \\ & & \cdot & \cdot & \cdot & 1 \\ 0 & & & d & 0 \end{pmatrix},$$

$$A^* = diag(d, d-2, d-4, ..., -d)$$

is a Leonard pair on the vector space \mathbb{K}^{d+1} , provided the characteristic of \mathbb{K} is 0 or an odd prime greater than d.

Reason: There exists an invertible matrix P such that $P^{-1}AP = A^*$ and $P^2 = 2^dI$.

5

Tridiagonal pairs

We now consider a generalization of a Leonard pair called a **tridiagonal pair**.

A tridiagonal pair is defined as follows.

As before, V will denote a vector space over \mathbb{K} with finite positive dimension.

As before, we consider a pair of linear transformations $A:V\to V$ and $A^*:V\to V$.

Why Leonard pairs are of interest

There is a natural correspondence between Leonard pairs and a family of orthogonal polynomials consisting of the following types:

q-Racah, q-Hahn, dual q-Hahn, q-Krawtchouk, dual q-Krawtchouk, quantum q-Krawtchouk, affine q-Krawtchouk, Racah, Hahn, dual-Hahn, Krawtchouk, Bannal/Ito, orphans $(char(\mathbb{K}) = 2 \text{ only})$.

This family coincides with the terminating branch of the Askey scheme of orthogonal polynomials

6

Definition of a Tridiagonal pair

We say the pair A, A^* is a **Tridiagonal pair** on V whenever (1)–(4) hold below.

- 1. Each of A, A^* is diagonalizable on V.
- 2. There exists an ordering V_0,V_1,\ldots,V_d of the eigenspaces of A such that

$$A^*V_i\subseteq V_{i-1}+V_i+V_{i+1} \qquad (0\leq i\leq d),$$
 where $V_{-1}=0,\ V_{d+1}=0.$

3. There exists an ordering $V_0^*, V_1^*, \dots, V_\delta^*$ of the eigenspaces of A^* such that

$$\begin{split} AV_i^* &\subseteq V_{i-1}^* + V_i^* + V_{i+1}^* & \quad \text{ (0 } \leq i \leq \delta\text{),} \\ \text{where } V_{-1}^* &= \text{0, } V_{\delta+1}^* = \text{0.} \end{split}$$

4. There is no subspace $W\subseteq V$ such that $AW\subseteq W$ and $A^*W\subseteq W$ and $W\neq 0$ and $W\neq V$.

A comment

Referring to our definition of a tridiagonal pair,

it turns out $d=\delta$; we call this the **diameter** of the pair.

Leonard pairs and Tridiagonal pairs

We mentioned a tridiagonal pair is a generalization of a Leonard pair.

A Leonard pair is the same thing as a tridiagonal pair for which the eigenspaces V_i and V_i^* all have dimension 1.

9

. .

An open problem

Problem Classify the tridiagonal pairs.

For the rest of this talk we focus on a special case of tridiagonal pair said to have **geometric type**.

We will show these tridiagonal pairs are related to $U_q(\widehat{sl_2})$.

We hope this will lead to a classification of the tridiagonal pairs of geometric type.

Tridiagonal pairs of geometric type

Let A,A^* denote a tridiagonal pair on V with diameter d.

Let the eigenspaces V_i, V_i^* $(0 \le i \le d)$ be as in the definition.

Let q denote a nonzero scalar in \mathbb{K} which is not a root of unity.

We say A,A^* has q-geometric type whenever for $0 \le i \le d$, the eigenvalue of A for V_i is q^{2i-d} and the eigenvalue of A^* for V_i^* is q^{d-2i} .

Tridiagonal pairs of geometric type and $U_q(\widehat{sl_2})$

For the rest of this talk, A,A^* denotes a tridiagonal pair on V of diameter d and q-geometric type.

Using A, A^* we will construct two actions of $U_q(\widehat{sl_2})$ on V.

We use the following notation.

Decompositions of ${\it V}$

By a **decomposition of** V, we mean a sequence U_0,U_1,\ldots,U_d consisting of nonzero subspaces of V such that

$$V = U_0 + U_1 + \dots + U_d$$
 (direct sum).

We do not assume each of U_0, U_1, \dots, U_d has dimension 1.

13

14

Six Decompositions of V

We are about to define six decompositions of ${\cal V}\,.$

In order to keep track of these decompositions we will give each of them a name.

Our naming scheme is as follows.

Let Ω denote the set consisting of the four symbols $0, D, 0^*, D^*$.

Each of the six decompositions will get a name [u] where u is a two-element subset of Ω .

We now define the six decompositions.

Six Decompositions of V, cont.

Lemma For each of the six rows in the table below, and for $0 \le i \le d$, let U_i denote the ith subspace described in that row. Then the sequence U_0, U_1, \ldots, U_d is a decomposition of V.

name	ith subspace of the decomposition
[0D]	V_i
[0*D*]	V_i^*
[0*D]	$(V_0^* + \cdots + V_i^*) \cap (V_i + \cdots + V_d)$
[0*0]	$(V_0^* + \cdots + V_i^*) \cap (V_0 + \cdots + V_{d-i})$
$[D^*0]$	$(V_{d-i}^* + \dots + V_d^*) \cap (V_0 + \dots + V_{d-i})$
$[D^*D]$	$(\tilde{V}_{d-i}^* + \cdots + \tilde{V}_d^*) \cap (V_i + \cdots + V_d)$

How the six decompositions are related

Let U_0,U_1,\ldots,U_d denote any one of the six decompositions of V. Then for $0\leq i\leq d$ the sums $U_0+\cdots+U_i$ and $U_i+\cdots+U_d$ are given as follows.

name	$U_0 + \cdots + U_i$	$U_i + \cdots + U_d$
[0D]	$V_0 + \cdots + V_i$	$V_i + \cdots + V_d$
[0*D*]	$V_0^* + \cdots + V_i^*$	$V_i^* + \cdots + V_d^*$
[0*D]	$V_0^* + \cdots + V_i^*$	$V_i + \cdots + V_d$
[0*0]	$V_0^* + \cdots + V_i^*$	$V_0 + \cdots + V_{d-i}$
$[D^*0]$	$V_{d-i}^* + \dots + V_d^*$	$V_0 + \cdots + V_{d-i}$
$[D^*D]$	$V_{d-i}^* + \dots + V_d^*$	$V_i + \cdots + V_d$

17

The q-Weyl Relations

We have

$$\frac{qAB - q^{-1}BA}{q - q^{-1}} = I,$$

$$\frac{qBA^* - q^{-1}A^*B}{q - q^{-1}} = I,$$

$$\frac{qA^*B^* - q^{-1}B^*A^*}{q - q^{-1}} = I,$$

$$\frac{qB^*A - q^{-1}AB^*}{q - q^{-1}} = I.$$

The linear transformations B, B^*, K, K^*

We now define four linear transformations from V to V

We call these B, B^*, K, K^* .

Each of these transformations is diagonalizable.

To define them, we list their eigenspaces and the corresponding eigenvalues as follows.

name	ith sbspace is eigspace	Corresp. eigval
\overline{B}	[0*0]	q^{2i-d}
B^*	$[D^*D]$	q^{d-2i}
K	[0*D]	q^{2i-d}
K^*	[<i>D</i> *0]	q^{2i-d}

18

The q-Weyl Relations, cont.

We have

$$\frac{qK^{-1}A - q^{-1}AK^{-1}}{q - q^{-1}} = I,$$

$$\frac{qBK^{-1} - q^{-1}K^{-1}B}{q - q^{-1}} = I,$$

$$\frac{qKA^* - q^{-1}A^*K}{q - q^{-1}} = I,$$

$$\frac{qB^*K - q^{-1}KB^*}{q - q^{-1}} = I.$$

q-Weyl Relations cont.

We have

$$\frac{qAK^* - q^{-1}K^*A}{q - q^{-1}} = I,$$

$$\frac{qK^{*-1}B - q^{-1}BK^{*-1}}{q - q^{-1}} = I,$$

$$\frac{qA^*K^{*-1} - q^{-1}K^{*-1}A^*}{q - q^{-1}} = I,$$

$$\frac{qK^*B^* - q^{-1}B^*K^*}{q - q^{-1}} = I.$$

Tridiagonal pairs of geometric type and $U_q(\widehat{sl_2})$

We now use A, A^*, B, B^*, K, K^* to get two actions of $U_q(\widehat{sl_2})$ on V.

Before proceeding we recall the definition of $U_q(\widehat{sl_2})$.

The q-Serre relations

We have

$$A^{3}A^{*} - [3]_{q}A^{2}A^{*}A + [3]_{q}AA^{*}A^{2} - A^{*}A^{3} = 0,$$

$$A^{*3}A - [3]_{q}A^{*2}AA^{*} + [3]_{q}A^{*}AA^{*2} - AA^{*3} = 0,$$

$$B^{3}B^{*} - [3]_{q}B^{2}B^{*}B + [3]_{q}BB^{*}B^{2} - B^{*}B^{3} = 0,$$

$$B^{*3}B - [3]_{q}B^{*2}BB^{*} + [3]_{q}B^{*}BB^{*2} - BB^{*3} = 0,$$

where

$$[n]_q = \frac{q^n - q^{-n}}{q - q^{-1}},$$
 $n = 0, 1, \dots$

22

The algebra $U_q(\widehat{sl_2})$

Definition The quantum affine algebra $U_q(\widehat{sl_2})$ is the unital associative \mathbb{K} -algebra with generators e_i^\pm , $K_i^{\pm 1}$, $i \in \{0,1\}$ and the following relations:

$$\begin{split} K_i K_i^{-1} &= K_i^{-1} K_i = 1, \\ K_0 K_1 &= K_1 K_0, \\ K_i e_i^{\pm} K_i^{-1} &= q^{\pm 2} e_i^{\pm}, \\ K_i e_j^{\pm} K_i^{-1} &= q^{\mp 2} e_j^{\pm}, \quad i \neq j, \\ [e_i^+, e_i^-] &= \frac{K_i - K_i^{-1}}{q - q^{-1}}, \\ [e_0^{\pm}, e_1^{\mp}] &= 0, \end{split}$$

$$\begin{split} (e_i^\pm)^3 e_j^\pm - [3]_q (e_i^\pm)^2 e_j^\pm e_i^\pm + [3]_q e_i^\pm e_j^\pm (e_i^\pm)^2 \\ - e_j^\pm (e_i^\pm)^3 = 0, \qquad i \neq j. \end{split}$$

We call $e_i^{\pm},~K_i^{\pm 1},~i\in\{0,1\}$ the Chevalley generators for $U_q(\widehat{sl_2})$.

21

Another presentation of $U_q(\widehat{sl_2})$

In order to state our main results we introduce a second presentation of $U_q(\widehat{sl_2})$.

25

Two actions for $U_q(\widehat{sl_2})$

Theorem Let A, A^* denote a tridiagonal pair on V of geometric type. Let the maps B, B^*, K, K^* be as above.

Then V is an irreducible $U_q(\widehat{sl_2})$ -module on which the alternate generators act as follows.

Also, V is an irreducible $U_q(\widehat{sl_2})$ -module on which the alternate generators act as follows.

Alternate presentation of $U_q(\widehat{sl_2})$

theorem The quantum affine algebra $U_q(\widehat{sl_2})$ is isomorphic to the unital associative K-algebra with generators y_i^\pm , $k_i^{\pm 1}$, $i \in \{0,1\}$ and the following relations:

$$\begin{aligned} k_i k_i^{-1} &= k_i^{-1} k_i &= 1, \\ k_0 k_1 \text{ is central,} &= \frac{q y_i^+ k_i - q^{-1} k_i y_i^+}{q - q^{-1}} &= 1, \\ \frac{q k_i y_i^- - q^{-1} y_i^- k_i}{q - q^{-1}} &= 1, \\ \frac{q k_i y_i^- - q^{-1} y_i^- k_i}{q - q^{-1}} &= 1, \\ \frac{q y_i^- y_i^+ - q^{-1} y_i^+ y_i^-}{q - q^{-1}} &= 1, \\ \frac{q y_i^+ y_j^- - q^{-1} y_j^- y_i^+}{q - q^{-1}} &= k_0^{-1} k_1^{-1}, \qquad i \neq j, \\ (y_i^\pm)^3 y_j^\pm - [3]_q (y_i^\pm)^2 y_j^\pm y_i^\pm + [3]_q y_i^\pm y_j^\pm (y_i^\pm)^2 \\ &- y_j^\pm (y_i^\pm)^3 &= 0, \qquad i \neq j. \end{aligned}$$

We call y_i^{\pm} , $k_i^{\pm 1}$, $i \in \{0,1\}$ the alternate generators of $U_q(\widehat{sl_2})$.

26

In conclusion

From the previous theorem we readily obtain the following.

Corollary Let V denote a vector space over \mathbb{K} with finite positive dimension.

Let A,A^* denote a tridiagonal pair on V of geometric type.

Then there exists a unique $U_q(\widehat{sl_2})$ -module structure on V such that y_1^- acts as A and y_0^- acts as A^* .

Moreover there exists a unique $U_q(\widehat{sl_2})$ -module structure on V such that y_0^+ acts as A and y_1^+ acts as A^* .

Both $U_q(\widehat{sl_2})$ -module structures are irreducible.

THE END