On Strongly Closed Subgraphs with Diameter Two and Q-Polynomial Property

Hiroshi Suzuki
Division of Natural Sciences, College of Liberal Arts, International Christian University

1 Introduction

Let $\Gamma = (X, R)$ be a distance-regular graph (DRG) of diameter D with vertex set X and edge set R. For vertices x and y, $\vartheta(x, y)$ denotes the distance between x and y, i.e., the length of a shortest path connecting x and y. For a vertex $u \in X$ and $j \in \{0, 1, \ldots, D\}$, let

$$\Gamma_j(u) = \{x \in X \mid \vartheta(u, x) = j\} \text{ and } \Gamma(u) = \Gamma_1(u).$$

For two vertices u and $v \in X$ with $\vartheta(u, v) = j$ let

- $C(u, v) = \Gamma_{j-1}(u) \cap \Gamma(v)$,
- $A(u, v) = \Gamma_j(u) \cap \Gamma(v)$, and
- $B(u, v) = \Gamma_{j+1}(u) \cap \Gamma(v)$.

The cardinalities $c_j = |C(u, v)|$, $a_j = |A(u, v)|$ and $b_j = |B(u, v)|$ depend only on $j = \vartheta(u, v)$, and they are called the intersection numbers of Γ. The number $k = b_0 = |\Gamma(u)|$ is called the valency of Γ.

A subset Y of the vertex set X is said to be strongly closed if

$$C(u, v) \cup A(u, v) \subset Y \quad \text{for all } u, v \in Y.$$

We often identify a subset of X with the induced subgraph on it. In particular, when Y is strongly closed, Y is referred to as a strongly closed subgraph of Γ.

A parallelogram of length \(j \geq 2 \) is a four-vertex configuration \((w, x, y, z)\) such that

\[
\partial(w, x) = \partial(y, z) = j - 1 = \partial(x, z), \\
\partial(x, y) = \partial(z, w) = 1 \text{ and } \partial(w, y) = j.
\]

A distance-regular graph \(\Gamma \) of diameter \(D \) is called a regular near polygon if there is no parallelogram of length 2 and that

\[a_i = c_i a_1 \text{ for } i = 1, 2, \ldots, D - 1. \]

In addition, if \(a_D = c_D a_1 \), then \(\Gamma \) is called a regular near 2D-gon.

Recently, in [7] P. Terwilliger and C. Weng showed that if \(\theta_1 \) is the second largest eigenvalue of a regular near polygon with diameter \(D \geq 3 \), valency \(k \) and intersection numbers \(a_1 > 0, c_2 > 1 \), then

\[
\theta_1 \leq \frac{k - a_1 - c_2}{c_2 - 1}. \tag{1.1}
\]

Equality is attained above if and only if \(\Gamma \) is \(Q \)-polynomial with classical parameters with respect to \(\theta_1 \).

Every regular near polygon contains a strongly closed subset \(Y \) such that the induced subgraph on \(Y \) is strongly regular, i.e., distance-regular of diameter 2. We noticed that the inequality in (1.1) and its equality condition are closely related to the existence of tight vectors that we defined in [4]. In this exposition, we shall explain the relation, apply the theory to parallelogram-free distance-regular graphs, and give a generalization of the results of Terwilliger and Weng above.

2 Terwilliger Algebra and Tight Vectors

Let \(\Gamma = (X, R) \) be a distance-regular graph of diameter \(D \). For \(i \in \{0, 1, \ldots, D\} \) let \(A_i \) denote the \(i \)-th adjacency matrix in \(\text{Mat}_X(C) \) whose \((x, y)\)-entry is defined by

\[
(A_i)_{x,y} = \begin{cases}
1 & \text{if } \partial(x, y) = i, \\
0 & \text{otherwise}.
\end{cases}
\]

Let \(E_0, E_1, \ldots, E_D \) be primitive idempotents corresponding to the eigenvalues \(\theta_0 > \theta_1 > \cdots > \theta_D \) of \(A \).

Let \(Y \) be a nonempty subset of \(X \). \(E_i^* = E_i^*(Y) \in \text{Mat}_X(C) \) \((i = 0, 1, \ldots, D)\) is defined by

\[
(E_i^*)_{x,y} = \begin{cases}
1 & \text{if } x = y \text{ and } \partial(x, Y) = i, \\
0 & \text{otherwise},
\end{cases}
\]
and $E^* = E_0^*$. Then the Terwilliger algebra with respect to Y is a semisimple subalgebra of $\text{Mat}_X(C)$ defined by:

$$T = T(Y) = \langle A, E_0^*, E_1^*, \ldots, E_D^* \rangle.$$

Let $V = C^X$, and $W = E^*V$. For $x \in X$, let \hat{x} denote the element of V with a 1 in the x-coordinate and 0 in all other coordinates. Then W is the vector subspace of V spanned by the set $\{\hat{y} \mid y \in Y\}$.

Let $w(Y) = \max\{\partial(y, y') \mid y, y' \in Y\}$ denote the width of Y. Then we have the following.

Proposition 1 ([4, Proposition 9.2]) For $0 \neq v \in W$,

$$|\{i \mid i \in \{0, 1, \ldots, D\}, E_i v = 0\}| \leq w(Y). \quad (2.2)$$

Now a nonzero vector $v \in W$ is said to be **tight** (with respect to Y), if equality is attained in (2.2), i.e.,

$$|\{i \mid i \in \{0, 1, \ldots, D\}, E_i v = 0\}| = w(Y).$$

3 Strongly Closed, Strongly Regular Case

In this section, we review a result to guarantee the existence of strongly closed strongly regular subgraph Y, and inequalities related to the existence of tight vectors with respect to Y.

Proposition 2 ([10, Theorem 1], [3, Theorem 1.1]) Let $\Gamma = (X, R)$ be a distance-regular graph of diameter $D \geq 3$. Suppose $b_1 > b_2$ and $a_2 \neq 0$. Then the following are equivalent.

(i) For every pair of vertices x and y with $\partial(x, y) = 2$, there is a strongly closed subgraph containing x and y of diameter 2.

(ii) There is no parallelogram of length 2 or 3.

Moreover, if the conditions are satisfied, then strongly closed subgraphs guaranteed to exist are strongly regular.

Let Y be a strongly closed subset of X. Suppose the induced subgraph on Y is strongly regular, i.e., $w(Y) = 2$.

Set $\bar{A} = E^*AE^*$. Then there are three distinct eigenvalues η_0, η_1, η_2 of \bar{A} on W, and they satisfy

$$\eta_0 = c_2 + a_2 > \eta_1 > -1 > \eta_2.$$
Let 1_Y denote the characteristic vector of Y defined by

$1_Y = \sum_{y \in Y} \hat{y} \in W$.\[1\]

Let W_0, W_1, and W_2 be the eigenspaces of \tilde{A} in W corresponding to eigenvalues η_0, η_1, and η_2, respectively.

Then $W_0 = \langle 1_Y \rangle$, and

$W = W_0 \oplus W_1 \oplus W_2$.\[2\]

Note that if $v \in W_1 \oplus W_2$, then $E_i v = 0$. Hence an eigenvector v of \tilde{A} in $W_1 \oplus W_2$ is tight if $E_i v = 0$ for some $i > 0$ as $w(Y) = 2$.

Proposition 3 ([4, Proposition 11.7]) Let $v \in W_j$ ($j = 1$ or 2) be an eigenvector of \tilde{A},

1. For $i \in \{0, 1, \ldots, D\}$,

$$\frac{\|E_i v\|^2}{\|v\|^2} = \frac{m_i(k - \theta_i)((1 + \eta_j)(1 + \theta_i) + b_1)}{kb_1|X|} \geq 0.$$\[3\]

2. The following hold.

$$\theta_1 \leq -1 - \frac{b_1}{1 + \eta_2}, \text{ and } \theta_D \geq -1 - \frac{b_1}{1 + \eta_1}.$$\[4\]

3. The following are equivalent.

(a) v is tight.

(b) One of the following holds.

(i) $\theta_1 = -1 - \frac{b_1}{1 + \eta_2}$, or

(ii) $\theta_D = -1 - \frac{b_1}{1 + \eta_1}$.\[5\]

Proof. The inequality in Proposition 3 (1) can be obtained by simple computation, and both (2) and (3) follow from (1) as $\theta_2 \geq \eta_1 > 1$ and $\theta_D \leq \eta_2 < -1$.

Suppose $\Gamma = (X, R)$ is a regular near polygon of diameter $D \geq 3$. Then it is known that Γ does not contain parallelograms of any length. In addition, assume that $\alpha_1 > 0$ and $\alpha_2 > 1$. Then by Proposition 2 there is a strongly
closed subset Y such that the induced subgraph on Y is strongly regular. It is called a quad, and it has the following intersection array.

$$
\begin{array}{ccc}
c_i & a_i & b_i \\
\hline
* & 1 & c_2 \\
0 & a_1 & c_2 a_1 \\
c_2(a_1+1) & (c_2-1)(a_1+1) & * \\
\end{array}
$$

Hence in this case the eigenvalues can be expressed in a very simple form.

$$\eta_0 = c_2(a_1+1) > \eta_1 = a_1 > \eta_2 = -c_2.$$

Now the inequalities of Proposition 3 (2) yield

$$\theta_1 \leq -1 - \frac{b_1}{1-c_2}, \text{ and } \theta_D \geq -1 - \frac{b_1}{1+a_1}.$$

The first inequality can also be expressed as

$$\theta_1 \leq -1 - \frac{b_1}{1-c_2} = \frac{k-a_1-c_2}{c_2-1}. \quad (3.3)$$

4 A Theorem of Terwilliger and Weng

Theorem 4 (Terwilliger–Weng [7]) Let Γ denote a regular near polygon with diameter $D \geq 3$, valency k and intersection numbers $a_1 > 0$, $c_2 > 1$. Let θ_1 denote the second largest eigenvalue of Γ. Then

$$\theta_1 \leq \frac{k-a_1-c_2}{c_2-1}. \quad (4.4)$$

Moreover, the following (i) - (iii) are equivalent.

(i) Equality is attained in (4.4).

(ii) Γ is Q-polynomial with respect to θ_1.

(iii) Γ is a dual polar graph or a Hamming graph.

The inequality in (4.4) is nothing but the one in (3.3). Terwilliger and Weng obtained it using a so-called balanced condition and showed that Γ satisfies the Q-polynomial property if equality is attained.

In view of Proposition 3, the theorem above asserts under the same assumption that the following are equivalent.

(i) There is a tight vector in W_2.

A
(ii) Γ is Q-polynomial with respect to θ_1.

The following theorem identifies typical tight vectors in W_1 and W_2.

Theorem 5 Let $\Gamma = (X, R)$ be a distance-regular graph with diameter $D \geq 3$, and an intersection number $a_2 > 0$. Let Y be a strongly closed subset of X of width 2. Then the induced subgraph on Y is strongly regular with eigenvalues $\eta_0 = c_2 + a_2 > \eta_1 > -1 > \eta_2$, and the following are equivalent.

(i) There is a nonzero vector $v \in E^*V$ such that $E_0v = E_i v = 0$ for some $i \in \{1, 2, \ldots, D\}$.

(ii) Either one of the following holds.

(a) For every $x, y \in Y$ with $\partial(x, y) = 2$, $E_1u = 0$ and $\theta_1 = -1 - b_1/(1 + \eta_2)$, where

$$u = \sum_{z \in A(y, x)} \hat{z} - \sum_{w \in A(x, y)} \hat{w} - \eta_2(\hat{x} - \hat{y}),$$

or

(b) For every $x, y \in Y$ with $\partial(x, y) = 2$, $E_Du = 0$ and $\theta_D = -1 - b_1/(1 + \eta_1)$, where

$$u = \sum_{z \in A(y, x)} \hat{z} - \sum_{w \in A(x, y)} \hat{w} - \eta_1(\hat{x} - \hat{y}).$$

The conditions in (ii) are related to a balanced condition in the following theorem.

Theorem 6 (Terwilliger [5]) Let $\Gamma = (V, R)$ be a distance-regular graph of diameter $D \geq 3$. Let

$$E_i = \frac{1}{|X|} \sum_{j=0}^{D} q_i(j) A_j$$

be a primitive idempotent such that $q_i(j) \neq q_i(0)$ for every $j = 1, \ldots, D$. Then the following are equivalent.

(i) Γ is Q-polynomial with respect to E_i.

(ii) The following two 'balanced' conditions are satisfied.

(a) For all $x, y \in X$ with $\partial(x, y) = 2$,

$$\sum_{z \in A(y, x)} E_i \hat{z} - \sum_{w \in A(x, y)} E_i \hat{w} \in \langle E_i (\hat{x} - \hat{y}) \rangle.$$
(b) For all \(x, y \in X \) with \(\partial(x, y) = 3 \),
\[
\sum_{z \in C(y, x)} E_i \hat{z} - \sum_{w \in C(x, y)} E_i \hat{w} \in (E_i (\hat{x} - \hat{y}))
\]

In view of Theorem 6, there is a tight vector in \(W_2 \) if and only if \(\Gamma \) satisfies (ii)(a), the first half of the condition for \(\Gamma \) to be \(Q \)-polynomial.

5 Parallelogram Free DRGs

Recall that every regular near polygon is parallelogram-free. If we assume that \(\Gamma \) is of parallelogram free, we can prove a bit more. Before we state our result, we review the definition of a distance-regular graph with classical parameters. Such graph is always \(Q \)-polynomial. See [1].

Definition 1 Let \(\Gamma \) denote a distance-regular graph with diameter \(D \geq 3 \). We say \(\Gamma \) has classical parameters \((D, q, \alpha, \beta) \) whenever the intersection numbers are given by
\[
c_i = \begin{bmatrix} i \end{bmatrix} \left(1 + \alpha \begin{bmatrix} i - 1 \end{bmatrix} \right) \quad (0 \leq i \leq D),
\]
\[
b_i = \left(\left[D \right] - \begin{bmatrix} i \end{bmatrix} \right) \left(\beta - \alpha \begin{bmatrix} i \end{bmatrix} \right) \quad (0 \leq i \leq D),
\]
where
\[
\begin{bmatrix} j \end{bmatrix} := 1 + q + q^2 + \cdots + q^{j-1}.
\]

Now we assume the following.

Hypothesis 1 Let \(\Gamma = (X, R) \) be a parallelogram-free distance-regular graph with diameter \(D \geq 3 \). Suppose \(a_2 > 0 \) and \(b_1 > b_2 \).

Then by Proposition 2, \(\Gamma \) contains a strongly closed subset \(Y \) such that the induced subgraph on \(Y \) is strongly regular. Let
\[
\eta_0 = c_2 + a_2 > \eta_1 > \eta_2
\]
be its distinct eigenvalues.

Theorem 7 Under Hypothesis 1, the following hold.
(i) \(\theta_1 \leq -1 - \frac{b_1}{1 + \eta_2} \), and \(\theta_D \geq -1 - \frac{b_1}{1 + \eta_1} \).

(ii) Suppose \(\theta \in \{\theta_1, \theta_D\} \) attains one of the bounds above. Let \(q = b_1/(\theta + 1) \). Then the following hold.

(a) The intersection numbers of \(\Gamma \) are such that
\[
qc_i - b_i - q(qc_i - b_i) - 1
\]
is independent of \(i \) (\(1 \leq i \leq D \)).

(b) \(c_3 \geq (c_2 - q)(q^2 + q + 1) \).

(c) If \(\theta = \theta_1 \), then \(q + 1 \geq c_2 \) and \(q^2 + q + 1 \geq c_3 \), and if \(\theta = \theta_D \), then
\[
q + 1 \leq -a_1.
\]

(d) The equality holds in (b) if and only if \(\Gamma \) is \(Q \)-polynomial with classical parameters \((D, q, \alpha, \beta)\) with suitable choices of real numbers \(\alpha \) and \(\beta \).

If \(\Gamma \) is a regular near polygon, then \(\eta_2 = -c_2 \) and \(q = c_2 - 1 \). Hence by (b), \(c_3 \geq q^2 + q + 1 \) and by (c), \(q^3 + q + 1 \geq c_3 \). Therefore \(\Gamma \) is \(Q \)-polynomial with classical parameters by (d).

As a by-product, we obtained the following result as well.

Proposition 8 Let \(\Gamma = (X, R) \) be a parallelogram-free distance-regular graph with diameter \(D \geq 3 \) and intersection numbers \(a_2 = s - 1 > 0 \), \(b_1 = b_2 \). Suppose for all \(x, y \in X \) with \(\partial(x, y) = 2 \),
\[
\sum_{z \in A(x, y)} E_i z - \sum_{w \in A(x, y)} E_i w \in \langle E_i(x - y) \rangle.
\]
Then \(\Gamma \) is a regular near \(2D \)-gon and \(c_3 \geq 1 - q^3 \), where \(q = -s = -(a_1 + 1) \). If equality holds, then \(\Gamma \) is a classical distance-regular graph with parameters
\[
(D, q, \alpha, \beta) = (D, -s, \frac{s}{1 - s}, \frac{k(1 + s)}{1 - (-s)^D}).
\]
If \(D = 3 \), then \(\Gamma \) is a generalized hexagon. No examples are known if \(D > 3 \).
6 Examples

1. If Γ contains a strongly closed subgraph isomorphic to (the collinearity graph of) a generalized quadrangle, θ_D attains the bound if and only if $\theta_D = -k/(a_1 + 1)$.

2. Dual polar graphs and Hamming graphs are the only Q-polynomial regular near polygons of diameter $D \geq 4$ with intersection numbers $c_2 > 1$ and $a_1 > 0$ and these are distance-regular graphs having classical parameters with $\alpha = 0$ and $a_1 \neq 0$. These graphs are Q-polynomial with respect to θ_1 and attain both of the bounds.

3. Let Γ be a parallelogram-free Q-polynomial distance-regular graph of diameter $D \geq 4$ with $a_2 > 0$. Then Γ has classical parameters (D, q, α, β) and Γ is either a regular near polygon or $q < -1$. Distance-regular graphs having classical parameters (D, q, α, β) with $q < -1$ are said to be of negative type. These graphs satisfy the bound for θ_D.

Finally we include a table of the list of known parallelogram-free Q-polynomial distance-regular graphs taken from [1]. There is a series of excellent articles on parallelogram-free distance-regular graphs by C. Weng and others. See [2, 6, 8, 9, 10, 11]. We hope that our observations may shed light on the classification of this class of distance-regular graphs.

Known Parallelogram-Free Q-DRGs

<table>
<thead>
<tr>
<th>Name</th>
<th>Diam.</th>
<th>b</th>
<th>$\alpha + 1$</th>
<th>$\beta + 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$H(D, q)$</td>
<td>D</td>
<td>1</td>
<td>1</td>
<td>q</td>
</tr>
<tr>
<td>$DP(D, q, e)$</td>
<td>D</td>
<td>q</td>
<td>1</td>
<td>$q^e + 1$</td>
</tr>
<tr>
<td>$U(2D, r)$</td>
<td>D</td>
<td>$-r$</td>
<td>$\frac{1+r^2}{1-r}$</td>
<td>$\frac{1-(-r)^{D+1}}{1-r}$</td>
</tr>
<tr>
<td>$Her_D(r)$</td>
<td>D</td>
<td>$-r$</td>
<td>$-r$</td>
<td>$-(-r)^D$</td>
</tr>
<tr>
<td>$GH(q, q^3)$</td>
<td>3</td>
<td>$-q$</td>
<td>$\frac{1}{1-q}$</td>
<td>$q^2 + q + 1$</td>
</tr>
<tr>
<td>M_{24}</td>
<td>3</td>
<td>-2</td>
<td>-3</td>
<td>11</td>
</tr>
<tr>
<td>M_{23}</td>
<td>3</td>
<td>-2</td>
<td>-1</td>
<td>6</td>
</tr>
<tr>
<td>$ExtTGolay$</td>
<td>3</td>
<td>-2</td>
<td>-2</td>
<td>9</td>
</tr>
</tbody>
</table>
References

The content of this exposition is included in the following.