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Differential Calculus in Second Order Arithmetic
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1 Introduction

In this paper, we develop basic part of differential calculus within some weak subsystems
of second order arithmetic. Our work is motivated by the program of Reverse Mathemat-
ics, whose ultimate goal is to determine which set existence axioms are needed to prove
ordinary mathematical theorems.

The Reverse Mathematics program was initiated by Friedman and carried forward by
Friedman, Simpson, Tanaka, and others. They proved that many of theorems of analysis,
algebra and other branches of mathematics are either proved in RCAp or equivalent over
RCAg to particular set existence axioms such as WKLg, ACAg, e.g., [6, 7]. Here, RCAo,
WKLy and ACAg are relatively weak, important subsystems of second order arithmetic.

For differential calculus in the second order arithmetic, Hardin and Velleman [5] showed
that the mean value theorem is provable in RCAg. Though various fields of mathematics
have been developed in subsystems of second order arithmetic, differential calculus has not
been studied very much in the program of Reverse Mathematics. In this paper, we carry
out basic differential calculus and prove basic theorems such as the termwise differentiation
theorem and the inverse function theorem in these systems in RCAg.

To develop differential calculus, we define C*-functions. Here, we consider the following
two versions of Cl-functions in RCAg. By a weak Cl-function, we mean a continuous
function which is continuously differentiable, and by a strong Cl-function, a pair of a
continuous function and its continuous derivative. There is a serious difference between
them in RCAg, since we may not construct the derivative of a weak C-function in RCA,.
In fact, most of simple properties of weak C!-functions require ACAyg, in other words, RCAg
is too weak to deal with weak C!-functions. To avoid this difficulty, we adopt the notion of
strong C!-functions. Fortunately, usual C!-functions constructed in terms of polynomials,
power series and other concrete manners can be shown to be strong Cl-functions in RCAg.

From now on, we use the word ‘C!-functions’ for strong C!-functions.



Using the strong version of C!-functions, we can construct a very useful function to
develop differential calculus (Theorem 3.11). It expresses the continuous differentiability
at each point of a C!-function, and so we call it. ‘a differentiable condition function for a C!-
function.’ By this function, we can check differentiabilities of uncountably many points at
once, which allows us to imitate or modify some usual methods of basic differential calculus
in RCAg. For example, the termwise differentiation and integration theorems (Theorems
3.17 and 3.21) can be proved in RCAq. We can also prove the inverse function theorem in
RCAg. We remark that if we simply imitate the usual proofs, we need WKLy or ACAq to
construct the inverse continuous function.

Based on the above, we can develop complex analysis in second order arithmetic [10].

2 Preliminaries

2.1 Subsystems of second-order arithmetic

The language Ly of second-order arithmetic is a two-sorted language with number variables
©,9,7,... and set variables X,Y,Z,.... Numerical terms are built up from numerical
variables and constant symbols 0,1 by means of binary operations + and .. Atomic
formulas are s = ¢, s < t and s € X, where s and ¢ are numerical terms. Bounded (X
or I19) formulas are constructed from atomic formulas by propositional connectives and
bounded numerical quantifiers (Ve < t) and (3z < t), where t does not contain z. A X,
formula is of the form 3ziVzs ...zn8 with # bounded, and a II% formula is of the form
Vz132g ... 2,0 with 8 bounded. All the £2 and II? formulas are the arithmetical (3§ or
I1}) formulas. A ¥ formula is of the form 3X;VXy ... Xpp with ¢ arithmetical, and a
H}l formula is of the form VX13X5 ... Xnp with ¢ arithmetical.

Definition 2.1. The system of RCAg consists of

(1) the ordered semiring azioms for (w, -+, 0,1, <),

(2) AJ-CA :

Va(p(z) <> ¢(z)) = IXVa(z € X © ¢(z)),

where @(z) is 39, P(z) is Y, and X does not occur freely in o(z),

(3) XY induction scheme:

@(0) A Vz(p(z) = (@ + 1)) = Yop(a),

where @(x) is a X9 formula.

The acronym RCA stands for recursive comprehension axiom. Roughly speaking, the

set existence axioms of RCAg are strong enough to prove the existence of recursive sets.
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Definition 2.2. ACA; is the system which consists of RCAg plus ACA (arithmetical com-
prehension azioms) :
IXVn(n € X + ¢(n)),

where p(z) is arithmetical and X does not occur freely in @(x).

If X and Y are set variables, we use X C Y and X = Y as abbreviations for the
formulas Va(n € X - n € Y) and Vn{n € X <+ n € Y). We define N to be the unique set
X such that Vn(n € X).

Within RCAg, we define a pairing map (m,n) = (m + n)% + m. We can prove within
RCAg that for all m, n, i, j in N, (m, n) = (4,7) if and only if m =14 and n = j. Moreover,

using A(I’—CA, we can prove that for any X and Y, there exists a set X x Y C N such that
VnneX xY o In<ndy<nl@ac XAycYA(zy =n)).

For X and Y, a funetion f : X — Y is defined to be a set F' C X X Y such that
VavyVy1 ((z,90) € FA(z,y1) € F = yo = 1) and Vz € Xy € Y(z,y) € F. We write
flz) =1y for (z,y) € F.

Within RCAg, the universe of functions is closed under composition, primitive recursion
(i.e., given f: X = Y and g : Nx X xY — Y, there exists a unique & : Nx X — Y defined
by h(0,m) = f(m), h{n + 1,m) = g(n,m, k{n,m)) and the least number operator (ie.,
given f : N x X — N such that for all m € X there exists n € N such that f(n,m) = 1,
there exists a unique g : X — N defined by g(m) =the least n such that f(n,m) = 1).
Especially, if (M, S) is an w-model of RCAg, then (M, .S) contains all recursive functions

on w.

Theorem 2.1. The following is provable in RCAy. If w(z,y) is £% and YnImep(n,m)
holds, then there exists o function from N to N such that Yne{n, f(n)) holds.

Proof. We reason within RCAg. Write

ez, y) = 320(x, 9, 2)

where 0 is £3. By A comprehension, we define projection functions p; and py as follows:
pi{{n1,n2)) = n; for all ny,ny € N. Again using A(l’ comprehension, there exists a function
g from N2 to N such that

8(n, pr(m), pa(m)) > g(n,m) = 1.

Then Yn3mg(n,m) = 1, hence by the least number operator there exists a function h
from N to N such that g(n,h{n)) = 1. Define a function f as f(n) = p1(g(n)), then
Vnp(n, f(n)) holds. This completes the proof. |



The following theorem will be useful in showing that ACA is needed in order to prove

various theorems of ordinary mathematics.

Theorem 2.2 ([8] Theorem IIIL.1.3). The following assertions are pairwise equivalent
over RCAp.

1. For all one-to-one function f from N to N, there exists a set X C N such that X is
the range of f.

2. ACAg.

For details of the definitions of these three subsystems, see [8] I

2.2 Real number system and Euclidian space

Next, we construct the real number system. We first define Z and Q. Define an equivalence
relation =z on N2 as (m,n) =g (p,¢) < m+q=n+p, and by A comprehension, define
Z, a set of integers, as (m,n) € Z <> Yk < (m,n) {(p1{k), p2(k)) #z (m,n), i.e., Z is a set of
least number elements of equivalence classes of =z. We define +z as (I1,lz)+z{m1,mo) :=
(n1,m2) < (I1,12), (m1,me), (n1,n2) € ZA (i + ma,ly +ma) =z (n1,n2), and define -z
similarly. We can also define | - |z and <z naturally. Similarly, we can define Q, +g, -,

etc.

Definition 2.3 (Real number system). The following definitions are made in RCAg.
A real number is an infinite sequence of rational numbers & = {qn}nen (i-e. a function
from N to Q) which satisfies |gx — qilo <o 2% for all | > k. Here, each g, is said to be
n-th approzimation of . Define {prn}nen =g {@n}nen s V& |pr — tilg <@ 2kl We can
also define +r, ‘r, | - [ and <g naturally. We usually write o € R if o is a real number.

For details of the definition of the real number system, see [8] II or [9].

Imitating the definition of R, we define Fuclidean space R™. We define Q" as a set of
rational numbers of length n, i.e. q € Q™ if and only if 9 = (g1,...,4,) and each ¢; is a
rational number. We define addition and scalar multiplication naturally, and see Q™ as a

(countable) vector space. We also define || - [gr as

lalier = vVau® + -+ +an®.

Definition 2.4 (Euclidian space). The following definitions are made in RCAp. An

element of R™ is an infinite sequence of elements of Q™ a = {qr}ren which salisfies
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lax — aill <gr 27% for alll > k. Then, each a; = {qri}ren is a real number. (Here,
ar = (ar1,- -+ »Qn)-) We define || - |re, the norm of R™ as the following:

la||lge = 1 612 + - + a2
Here, of course the real number field R is the 1-dimensional Buclidean space RE.

Remark 2.3. In this paper, to avoid too many subscript, we use the intuitive ezpression
such as q = (q1,... ,qn) even if the dimension of Buclidean space n may be nonstandard.

A sequence of sels of natural numbers is defined to be a set X C N x N. By AY
comprehension, we define Xz as m € X; < (k,m) € X and write X = {Xi}tren If
X = a; € R, i.e, each X}, is formed an element of R™, then X = {ag}tren s said to
be a sequence of points of R*. We say that a sequence {az}rcn converges to b, written
b= 1imkw,oo ar, if

Ve >0 3k Vi Hb — ak+z-l| < E.

The next theorem show that R” is ‘weakly’ complete.
Theorem 2.4. The following is provable in RCAg. Let {az}ren be a sequence of points
of R™. If there exists a sequence of real numbers {re}ren such that limg_oori = 0 and
VkYi ||lag — agsil| < T, then {ax}ren is convergent, i.e., there exists b such that b =
limg o0 Ak -
Proof. This theorem is a generalization of nested interval completeness [8, Theorem I1.4.8],

and modifying its proof, we can easily prove this theorem. O

Next, we define an open or closed set. It is coded by the countable open basis of R".
Definition 2.5 (open and closed sets). The following definitions are made in RCAq.

1. A (code for an) open set U in R" is a set U C Nx Q" x Q. A point x € R" is said
to belong to U (abbreviated x € U) if

In Ja Ir (|x—al <rA(n,a,r) eU).
2. A (code for a) closed set C' in R™ is a set C TN x Q" x Q. A point x € R™ is said
to belong to C (abbreviated x € C) if
¥n Va Vr ((n,a,r) € C = ||x —a] <r).
The following lemma is very useful to construct open or closed sets.

Lemma 2.5 ([8] Lemma IL.5.7). For any X% (or 113) formula o(X), the following is
provable in RCAg. Assume that for all x,y € R, x =y and ¢(x) imply o(y). Then there
exists an open (or closed) set U C R™ such that for all x € R", x € U if and only if p(x).



3 Differential calculus

3.1 Continuous functions

In this section, we define continuous functions and show some basic results for continuous
functions. We first define continuous functions as a certain code given by the countable

open basis of R”.

Definition 3.1 (continuous functions). The following definition is made in RCAq. A
(code for a) continuous partial function f from R™ to R is a set of quintuples ' C N x
Q" x QF x Q@ x QF which is required to have certain properties. We write (a,7)F(b,s) as

an abbreviation for Im((m,a,r,b,s) € F). The property which we require are:
1. if (a,r)F(b,s) and (a,r)F(¥,s'), then [b— V| < s+ ';
2. if (a,r)F(b,s) and ||la’ — a|| + 7' < r, then (a/,7}F(b, s);
3. if (a,7)F(b,s) and [b—b|+s < s, then (a,r)F(¥,s').

A point x € R™ is said to belong to the domain of f, abbreviated x € dom(f), if
and only if for all € > 0 there ezists (a,r)F(b,s) such that |x —af < r end s <e. If
x € dom(f), we define the value f(x) to be the unique y € R such that [y — bl < s for all
(a,r)F(b,s) with |x — a|| <r. The ezistence of f(x) is provable in RCAq.

Let U be an open or closed subset of R™, and V' be an open or closed subset of R. Then
f is said to be a continuous function from U to V if and only if for allx € U, x € dom(f)
and f(x)eV.

Definition 3.2. The following definition is made in RCAg. A continuous partial func-
tion from R"™ to R™ is a (code for a) finite sequence of continuous partial functions
f=(f1,...,fm) such that f1,..., fr are continuous partial functions from R to R.

Let U be an open or closed subset of R™, and V be an open or closed subset of R™.
Then f is said to be a continuous function from U to V if and only if for allx € U and

for all1 <i<n, x €dom(f;) andy = (fi(x) ... fm(x)) € V.

Remark 3.1. Imitating definition 8.1, we can define another code for a continuous partial
function from R™ to R™. A (code for a) continuous partial function £ from R™ to R™ is

a set of quintuples FC N x Q" x Q1 x Q x Q7T which is required:
1. if (a,7)F(b,s) and (a,r)F(b',s'), then |b—b'| < s+5;

2. if (a,r)F(b,s) and ||Ja’ —a| +7' <r, then (@, 7)YF(b,s);
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3. if (a,7)F(b,s) and |b—b/||+s < ¢, then (a,r)F(b’',s).

We can easily and effectively construct a code for £ from codes for fi,... , fm. Conversely

we can easily and effectively construct codes for fi,..., fm from a code for f.

First, there exist a code for an identity function, a constant function, a norm function,

and so on. We can construct other elementary continuous functions by next theorem.

Theorem 3.2 ([8] I11.6.3 and I1.6.4.). The following is provable in RCAq. There exists
a (code for a) continuous function of sum, product and quotient of two R-valued continuous
functions. Also there ezists a (code for a) continuous function of a composition of two

continuous functions.
The next two theorems show the basic properties of continuous functions.
Theorem 3.3. The following assertions are provable in RCAo.

1. Let U be an open subset of R™, V be an open subset of R™ and f be a continuous
function from U to R™. Then we can effectively construct an open set W = fton

U, the inverse image of V.

2. Let C be a closed subset of R®, V be an open subset of R™ and f be a continuous
function from C to R™. Then we can effectively construct an open set W C R™ such
thaet WNC = f~H{V)nC.

We write such W as W = f~1(V).
Proof. Immediate from Lemma 2.5. 0

The next theorem is very useful to show that constructing some continuous functions

requires ACAg.
Theorem 3.4. The following assertions are pairwise equivalent over RCAg.
1. ACAg.

2. If f is a continuous function from (0,1) to R such that limg_, 1o f(z) = 0, then there

exists a (code for a) continuous function f from [0,1) to R such that

£l — flz) ifxe(0,1),
/(@) {U ife=0.



Proof. We reason within RCAg. 1 — 2 is obvious. We show 2 — 1. By Theorem 2.2, we
show that for all one-to-one function A from N to N, there exists a set X such that X is
the range of h. Let h be a one-to-one function from N to N. Then lim, e A(n) = o0.

Define {an}nen as

11

h(n)+1 h{n+1)+1

Qp = T 1 .
ntl  ni2

Then we define a continuous function f from (0,1) to R such that
1 1
o= (=4 25) + G

for each n and z € [;};2, n_lﬁ:I Then, f(1/(n+1)) = 1/(h(n) +1) for all n € N, and

limg_0 f(z) = 0. Hence by 2, we can expand f into f such that

f(w):{ flz) itz e(0,1),

0 ifz=0.

Now we construct the range of k. Let F' be a code for f, and let ¢(k, 1) be a X formula
which expresses that there exist (a,r,b, s) such that (a,7)F(b,s), |a| +1/(l +1) <r and
|| + s < 1/(k + 1). Then by conditions of a code for a continuous function, VEk3lp(k, 1)
holds. Hence, there exists a function hg from N to N such that Vke(k, ho(k)) holds. This
implies

Ym € N m > ho(n) = n < h(m).
By A} comprehension, define a set X C Nasn € X < dm < ho(n) n = h(m). Then
clearly, X is the range of h. This completes the proof of 2 — 1. O

3.2 (Cl-functions

We first define a weak Cl-functions as a continuously differentiable continuous function.

Definition 3.3 (weak Cl-functions). The following definition is made in RCAg. Let U
be an open subset of R, and let f be a continuous functions from U to R. Then f is said
to be weak C! if and only if
DN
VeeU aeR a= lim M

'z z —z

and
VeceUVe>0W>0VyeUlz—y| <d— o —ayl <e

holds. Here, cy = limgs_, _f_(j%)i:_%(z_)
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Theorem 3.5. The following assertions are pairwise equivalent over RCAg.
1. ACAq.

2. If f is @ weak Cl-function from (—1,1) to R, then there exists a (code for a) contin-

wous function f' which is the derivative of f.

Proof. We reason within RCAg. We can easily prove 1 — 2 by arithmefical comprehension.
For the converse, we assume 2. By Theorem 2.2, we show that for all one-to-one function

h from N to N, there exists a set X such that X is the range of h. Let h be a one-to-one

function from N to N. Then lim,_,o0 2(n) = co. Define {annen and {b, }nen such that

1 1
Rn)+1 ~ AlntD+1

An = i 1 i
Al ni2
1 1 1 1 1
bn = bry “““ bt ” «
2\h(n)+1 hAn+1)+1/\n+1 n+2

Then &, < 1/(n+ 1) — 1/{(n + 2), hence by Theorem 3.16.1, Y72 by is convergent for all
n € N. Using these, we define a continuously differentiable function from (—1,1) to R.
Define a continuous function fy from (~1,0) U {0, 1) such that
2
a 1 {n+1)+1 oo . 1 -1
—4 (:z:-i- m) + Z;ﬁ—ﬁ(—}m — e b Mz {n_-lbl’m}’

fﬂ(x) = o 1 o(nt1)~1 0 b i 1 1
7($‘m> + GG TL T 2oken Dk H’G[m=m]
for each n. Here, if |z] < 1/(n + 1), then |fo{z)| < 1/(n + 1). Hence, we can extend fo

into f from (—1,1) to R such that

folz) ifxs#£0,
flz) = o , s

0 ifz =10
To extend fy into f, we need to construct a code for f. Let Fy be a code for fp and let
@(a,r,b,5) be a 59 formula which expresses (a,7)Fo(b,s)VIm €N |a|+7 < 1/(m+1) <
|b] — 5. Write

ola,r, b, s) = Imb{(m, a,r,b,s)

where 6§ is £5. By AY comprehension, define F as (m,a,r,b,s) € F + 8(m,a,r,b,s).
Then clearly f is coded by F.

Next, we show that f is weak C*. Define o as above, then

1 1 : -1 -1
—ap (.’L"i—m) -{-Z—(—y——h L) lfiI;'E [m,n—”:l,
Oy = 0 ifz=0,

1 1 : 1 1



131

We can easily check the condition of continuously differentiability, hence f is weak cl.
By 2, there exists a continuous function g from {—~1,1) to R such that g(x) = a,. Note
that this continuous function g is similar to the continuous function we constructed in the
proof of Theorem 3.4. Hence, we can construct the range of & as in the proof of Theorem

3.4. This completes the proof of 2 — 1. |

Theorem 3.5 pointed out the difficulty of constructing the derivative of a weak Cl-
function. To avoid this difficulty, we mainly consider the following (strong) Cl-functions
to develop differential calculus. We first define Cl-function in R, and similarly we define

CT and C*-function in R.
Definition 3.4 (C!,C",C*®-functions). The following definitions are made in RCAg.

1. Let U be an open subset of R, and let f , f' be continuous functions from U to R.
Then a pair (f, ') is said to be C if and only if
I —
Vze U lim M = fl(=).
2z Tz —x
9. Let U be an open subset of R, and let {f'(“)}nST be a finite sequence of continuous

functions from U to R. Then {f(”)}ns,, is said to be C if and only if for all n less
than r, (f(”),f(m'l)) is CL.

3. Let U be an open subset of R, and let {f(") }nen be an infinite sequence of continuous
functions from U to R. Then {f},en is said to be C if and only if for all7 € N,
{f(n)}nﬁr 8 Cr‘

We usually write fo as f when {f™}n<, is C or {f™ Y en is C°, and if (f, f') is Ct,
{f™ Y, < is O or {f™1,cn is C®, f is said to be Cl, C” or C™.

The next lemma shows that the uniqueness of the derivative is provable in RCAg.

Lemma 3.6. The following is provable in RCAq. Let U be an open subset of R, and let
f,g be C or C®-functions from U to R. IfVz € U f(z) = g(z), then for all k < 1 or
ke NvVse U f&(z) = g®(a).

Proof. Immediate from II3-induction. g

To develop differential calculus, we have to begin with the mean value theorem. For-
tunately, the mean value theorem for Cl-functions is easily provable in RCAg using the

intermediate value theorem([8] Theorem I1.6.6).
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Lemma 3.7. The following is provable in RCAq. Let U be an open subset of R, and let f
be a Cl-function from U to R. Let K be a positive real number. If {a,b] C U and for all

z € [a,b] |f(z)] < K, then
f(b) — f(a)

< K.
b—a -

Theorem 3.8 (mean value theorem). The following is provable in RCAg. Let [a, b] be
an interval of R and let f be a continuous function from [a,b] to R. If f is Ct on (a,b),
i.e. there exists a continuous function from (a,b) to R such that (f,f') is Cl, then there

erists ¢ € (a,b) such that

f)—fa) _
b—a Fe).
Proof. The proof is an easy direction from Lemma 3.7 and the intermediate value theorem.

O

Remark 3.9. We can prove stronger version of Theoremn 3.8. In fact, mean value theorem
for a differentiable function (a continuous function which is differentiable at each point)
can be proved in RCAy. See Hardin and Velleman [5].

Next, we define C” and C™-function in R™.

Definition 3.5 (C" and C®-functions from U C R" to R™). The following definitions
are made in RCAg. Let U be an open subset of R*. The notation a = (a1,...,a,) € N”

is a multi-indez and |a| = a1 + -+« + an.

1. A C"-function from U to R is a finite sequence of continuous functions {fa}ja|<r from
U to R which satisfies the following: for all a = {a1,... ,an) such that o] <7 —1,

(f(a.l,...,ai,...,an)vf(a,1,... ,ai-{«l,...,an)) is Ct as a function of z;, i.e.,

. f [UUY: TN Y X -+ te; _f i o)\ X
VX €U Fanosit, o (%) = ligg =00 . ;) e

where e; is the unit vector along z;.

2. A C®-function from U to R is an infinite sequence of continuous functions { fo}acnn
from U ta R such that for all T € N, {fa}|q<, s @ C"-function.

3. A C" or C®¥-function from U to R™ is a finite sequence of C" or C*® functions

f={fi,...,fm) from U to R.

I {fa}joj<r 1sC" or {fa}laleN" is C®, then f is said to be C" or C*°. As usual, we write
3a1+---+anf

0%zy ... 0%, ’

f(al,... ,an)



Theorem 3.10. The following is provable in RCAqg. Let U be an open subset of R*, and
let f be a Cl-function from U to R. If its derivatives fy; and fy,; are also C', i.e., there
exist finite sequences {(fz;)a}aj<1 and {(fmj)aha[gl which satisfy the condition for Ct,
then

8.’17j - 8.’17,‘ )
Proof. Straightforward imitation of the usual proof. O

To prove basic properties of Cl-functions in RCAg, we construct following differentiable
condition functions. A differentiable condition function for a C!-function f expresses the
condition of differentiability at each point of dom(f). It also expresses the continuity of
the derivative f’. Hence using a differentiable condition function, we can easily prove basic

properties of Cl-functions in RCAg.

Theorem 3.11. The following is provable in RCAg. Let U be an open subset of R*, and
let f be a Ct-function from U to R. Then there exists a continuous function ey from U xU
to R such that
1) : Vx e U ef(x,x) =
k3
@ vy €U ) = F09 = 3 Fua (s — 72) + e, 3)ly = x-
i=1
(Here, fy, = %.) Moreover, we can find a code for ey effectively. We call this ey
differentiable condition function for f.
Remark 3.12. Theorem 3.11 is not trivial. Actually, for 3.11.27, we want to define e
as
fly) -7z f"(:c if x #
oz Ys
® ED IS R
0 fz=y,
and of course this es is a continuous function in the usual sense. However, Theorem 3.4
points out that RCAy cannot guarantee the existence of a code for a continuous function

which is defined like as above, hence it is not easy to construct (a code for) es.

Proof of Theorem 8.11. We reason within RCAg. Define a (code for a) closed set A C R
as A = {(x,x)|x € U}. By Theorem 3.2, we can construct a continuous function g from

U to R and a continuous function e‘} from [J x U \ A to R such that

gx) = Y ()l
t==1
el}(x, y) = ) =) _IE;V:Z:;({% (x)(ys — iEi).
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Let E} be a code for €Y, and let G be a code for g. Let ¢(a,n,b, s) be a Y formula which
expresses the following (i) or (ii) holds:

(@) (ar)EY b s);

(i) &= 0 and there exists (mg, ag, 70, by, s0) € G such that [la — (ao,a0)| +7 < 7o and

s > 2nsg.

Write
(‘P(aa 7, b, 3) = 3m9(m, a,r, b, S)

where § is ¥3. By AY comprehension, define By as (m,a,r,b,s) € Ey <> 6(m,a,r,b,s),
i.e., (a,7)E(b, s) holds if and only if (i) or (ii) holds. Then Ey is a code for a continuous
(partial) function. To show this, we have to check the conditions of & code for a continuous
function. It is clear that E; satisfies conditions 2 and 3 of definition 3.1. We must check
condition 1. Assume (a,7)Ey(b,s) and (a,r)Es(V,s'). If (a,r,b,s) and (a,r,V,s') satisfy
(i), then clearly condition 1 holds. If (a,r,b,s) and (a,r,b',s') satisfy (ii), then we can
show condition 1 holds easily by G holding condition 1. Now we consider the case (a,r, b, s)
satisfies (i) and (a,r, b, s') satisfies (ii). By condition 2, it is sufficient that we only check
the case {(x/,¥)| |(x,¥') —all <} CU x U\ A holds. Let {mp,ae,7g,bp, sg) be an

element of G such that [ja— (ag, ag)l| +r < rp and s’ > 2nsg. Here, (mg, ag, 7o, b0, 50) € G

implies

(4) vz €U |lz—aofl <70 — | Y [fa(x)] — bo| < s0.
i=1

Write

a = (a%a¥)(e R" x R");

a%t = (a,‘{,,.. ,a'ﬁ);
ay = (Q“g,..- ,CI/Z);
z; = (a,:g,..v ,azf,a?+1:"' 7a£)'

Here a® # a¥, zyg = a”, z, = a¥ and each z; satisfies ||z; — ag|| < rp. Then,

IA

le3((a%,a%))|
1 (2e) = f(2i1) — fo,(a%) (o} — o))

(5) |€7(a) — )
(6) le(a) - ¥|

IA

l[a¥ a7



On the other hand, using Theorem 3.8, for all 1 <4 < n, if af 5 oY, there exists 0 <6 < 1

such that
o) = IEt) _ f 1400~ i),
(Here, “(Zi—l + Q(Zz - Zi—-l)) - ag“ < 7‘0.) Then,
|f(2:) — f(zi1) — fz,(a%)(a] —a])]
@ Jor = a|
LB T8 e

a; -~ a

[ foi(2i1 + 6(z: — 2i1)) — fa,(2%)]
[fo, (i1 + 0(2; — 2i-1)) — bo| + | fz;(2%) — bo-
Hence by (4) and (7), forall 1 <4 <n,

®) |f(zi) — f(zi 1) — fo,(a")(ad — af)]
a¥ —a®||

(If a¥ = o, then clearly (8) holds.) From (6) and (8),
é |f (2) = f(Zs-1) — foi(a%) (0] — aF))|

Ja¥ — a”}

I

IA

< 2sp.

) lef(a) — V]

IA

n

< 2250

i=1

< d.

By (5) and (9), |b— ¥'| < s + s’ holds. This means E; satisfies condition 1.

Let e be a continuous function which is coded by E¢. Ther, (i) provides U x U\ A C
dom(ey) and (ii) provides A C dom(ey), hence U x U C dom(ey). Clearly ey holds (1)
and (2), and this completes the proof. - a

Remark 3.13. IfU is an open subset of R and £ = (f1,..., fm) is a Cl-function from
U to R™, then we define the differentiable condition function for f as ef = (ef,,... ,efm).
Then

Vx € U es(x,x) = 0;

W,y €U £y) = £ = 3 (X)(as — 23) + exx,¥)lly — x].
=1

(Here, £z, = (f1241+ - - fma;).)

Remark 3.14. Conversely, let U be an open subset of R", f, f' be continuous function
from U to R and e; be a continuous function from U x U toR. If f, [ ey satisfy (1) and
(2), then clearly (£, ') is Ct.
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Corollary 3.15. The following assertions are provable in RCAg.

1. Let U be an open subset of R and let k be a real number. If f and g are C" or C>
functions from U to R, then kf, f+g, fg,1/f are all C" or C*® functions from U to
R. Moreover, (kfY = kf', (f+0) = f'+4', (fa) = f'g+fd and (1/§) = ~F'/(/?)
hold.

2. (chain rule) Let U be an open subset of R™ and let V' be an open subset of R™. If
£ = (fi,...,fm) is a continuous function from U to V, g is a continuous function
from V to R and both f and g are C™ or C*°, then go f is a C" or C function
from U to R and satisfies

200D x )- (f( NZE ).

3
(Here 3 = 905, 5m)")

Proof. We reason within RCAg. We only prove 2. (We can prove 1 easily.) For all x € U,
1<i<mnand Az € R\ {0}, define Ay; (1< j<m)as

Ay; = [i(x+ Azes) - fi(x)
= Amgg(x) + |Azles, (x,x + Aze;).

where e; is the unit vector along #; and each ey, is the differentiable condition function

for f;. Then
Ayl = 4FZ(A%')Q
=1

m 2
= [A:UI\J Z ([2x| gf-? (x) +eg(x,x + Awei))

j=1

i
Define € as

. o5
Choe(B2) 1= D05 L(E(0))es;(xx + Aves)
j=1 "

+eq(f(x), f(x + Amei))\} Z ([23;] ng (x) + ey, (x,x + Axe,))

where e4 is the differentiable condition function for g. Then

(10) Jim ei¢(Az) =0,
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(11) gof(x+ Aze)—gof(x) = Zijg—;(f(x))+][Ay||eg(f(x),f(x+A:uei))
j=1

803 52 (1) 52 () + |Aclel(A0).
j=1 :

(10) and (11) show that 3777, g%% is the first derivative of g o f along z;, and this
completes the proof. d

3.3 Series

In this section, we prove the termwise differentiation and integration theorems. We also
construct some 7 or C*™-functions by series in RCAg. Especially, we construct power
series, which are elementary examples of analytic functions. The next theorem is the core

of this section.

Theorem 3.16 ([8] Theorem 11.6.5). Let {an}nen be a (code for a) sequence of non-
negative real numbers whose series Y .o o is convergent. Then the following is provable
in RCAq. Let U be an open subset of RY, and let {fu}nen be a (code for a) sequence of

continuous functions from U to R which satisfies the following:
vx € UVneN |fo(x)] < an.

Then there exists a (code for a) continuous function f from U to R such that

vx €U f(x) =) falx).

n=0
We prove the termwise differentiation theorem, and construct a power series, an ele-

mentary example of analytic functions.

Theorem 3.17 (termwise differentiation). The following is provable in RCAg. Let U
be an open interval of R, and let 350 a, and > oo by be nonnegative convergent series.
Let {(fn, f})Inen be a sequence of Cl-functions from U to R which satisfies the following
conditions:

Ve e U ¥n €N |fo(2)] < an,

Yz e U VYneN |f (@) < by.

Then there ezists a Cl-function (f, f') from U to R such that

F=Y tu £=)_1n
n=0

n=0
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Proof. We reason within RCAg. By Theorem 3.16.77, there exist continuous functions f

and f' from U to R which satisfy the following condition:
F=3 fu 1= In
n=0 =0
Let ef, be a differentiable condition function for {fy, f1). By Theorem 3.8, for all n and

for all ¢ # y in U, there exists z € U such that

y—x

Hence, for all n € N, if z # y, then there exists z and

el = |PU=EE g
= |ful2) = fr (@)
Then forall n € N,
(12) ]ef'n (may)l < 2b,.

(Clearly, (12) holds if z = y.) Then by Theorem 3.16.77, ey = 3 ey, exists and ey
holds

Ve e U es(z,x) =0
v,y €U f{y) — f(z) = (y — 2)f'(z) + |y — 2les (2, 9).

This means (f, f) is C* and this completes the proof. (i

Let {an}nen be a sequence of real numbers, and let r be a positive real number. If the
series > .o0 o lan|r™ is convergent, then for all @ € R and for all z such that |z —af < 7,
3% o an(@ — @)™ is absolutely convergent and |a,(x — a)”| < |a,|r". Define an open set
U and a sequence of continuous functions {fn}nen from U to Ras U = {z| |z — a| < r}
and f,(z) = a,(z — a)". Then by Theorem 3.16.7? there exists a continuous function f
from U to R such that

f(=)

I

> fal@)
n=0

Z an{z — a)".



Definition 3.6 (analytic functions). The following definition is made in RCAq. Let U
be an open subset of R, and let {f } ey be a C®-function from U to R. Then {f™3, en
is said to be analytic if and only if { f('”) tnen satisfies the following condition:

oo ‘(n)
VzeUIE>0VyelU ]:E—y|<5—>f(y)=zf n'(z)(y—w)”_
n=0 :

IF {f™}nen is analytic, then f is said to be analytic.

Theorem 3.18. The following is provable in RCAg. Let {an}tnen be a sequence of real
numbers, and let r be a positive real number such that - o lan|r™ is convergent. Define
an open set U as U = {z| |z — a|] < r} and define a continuous function f from U to R
as f(z) = Yo gan(w — a)™. Then we can construct a sequence of continuous functions

{f(n)}ngN to ezpand f into an analytic function {f(n)}ngN.
Proof. Obvious. !
The next lemma is very useful to construct continuous, C", C* or analytic functions.

Lemma 3.19. The following is provable in RCAg. Let {Up}nen be a (code for a) sequence
of open subsets of R, and let { fn}nen be a (code for a) sequence of continuous, C” or C*°-
functions. Here, each f, is from Uy, to R. If {fo}nen satisfies

vx R Vi, j €N (x € U;NU; — fi(x) = fi(x)),
then there ezists a continuous, C" or C®-function f from U = oo o Uy, to R such that
¥x € UvVne N (X < Un — fn(x) = f(X))

(We usually write f = |U;Lg fa-) Moreover, ifl = 1 and ecach frn is analytic, then f is

analytic.

Proof. We reason within RCAg. We first prove the continuous case. Let F,, be a code for
fn. Let @(a,r, b, s) be a £ formula which express there exists n such that 3(m',a',7') €
Up la—a'| +r <r"and (a,r)F,.(b, s) holds. Write

o(a,r,b,s) = Imb(m,a,rb,s)

where 0 is 3. By A? comprehension, define F' as (m,a,r,b, s) € F + H(m,a,nb,s).
Then clearly F is a code for a continuous (partial) function and f is from U to R which

satisfies
vxeUVneN (x € U, — fo(x) = f(x))-
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This completes the proof of the continuous case.

To prove the C" or C*° case, by Lemma 3.6, for all @ = (ay, ... L Qn)s
Harttan f; 8ax+'-‘+anf.
1w - ] ) i _ j i
x€R VZ,,Q €N (XG Uanj - 6a1$1...8a"”'$n( ) 5“1:61...8“":% X)>

Then we can use the continuous case to construct
Heittan £ _ U gort +anfn
dMgy ... dumgx, et fuxy ... 0%z,

‘We can easily check the condition for C" or C*.

For the analytic case, we can also check the condition for analytic easily, and this

completes the proof. O
Example 3.7. The following analytic functions can be constructed in RCAg.

1. Define s(n) as

(-1)%  if n is even,
s(n) =
0 if n is odd

and define {afn}nEN; {bn}neN and {C'n}néN as

1 b s(n+3) . zs(n)

Ay == e =
Y R nt 7" n!

Then for all m € N, 3720 lan|m™, Yoo o bajm™ and 302 4 jca|m™ are convergent.
Define Up, = {z] |z| < m}. On Un, define exp,(z) = Y.negan”, sinp(z) =
3% 0 bz and cosm{z) = 300 o cpz™. Then by Corollary 3.18, expy,(z), sinm(z)
and cosy,(x) are analytic functions from Un, to R. Hence by Lemma 3.19, analytic
functions exp = U en 8XPm, Sin = U, Sinm and cos = |J,,cycosm from R to R

can be constructed.

2. Define {dn}nen as dn = n- (~1)""! and define t(m) as t(m) = 1 — 1/m. Then
for all m € N, 3°°  [dn|t(m)™ is convergent. Define Upn = {z] |z — 1] < t(m)}.
On Uy, define log,, () = Y20 qan(z — 1)™. Then by Corollary 3.18, log,,(z) ds
an analytic function from Uy, to R. Hence by Lemma 3.19, an analytic function

log = U, en 108, from (0,2) to R can be constructed.

Next, we define Riemann integral and prove the termwise integration theorem. A

modulus of uniform continuity plays a key role to integrate a continuous function.



Definition 3.8 (modulus of uniform continuity). The following definition is made
in RCAg. Let U be an open or closed subset of R, and let £ be a continuous function from
U to R™. A modulus of uniform continuity on U for £ is a function h from N to N such
that for alln € N and for all x,y € U, if |[x — y|| < 27%), then ||f(x) — f(y)]| <27™

A modulus of uniform continuity for f guarantees rather strong uniform continuity of

f than usual sense.

Definition 3.9 (Riemann integral: [8] Lemma IV.2.6). The following definition is
made in RCAg. Let f be a continuous function from [a,b] to R. Then, define the Rietnann
integral | : f(x)dx as

b n
dr = 1 Wag — Tg—
[ 1@de= g 3 6o o)
if this limit exists. Here, A is a partition of [a,b], i.e. A = {a=mp <x1 <+ < @p = b},
Tpoq < & < zp and [A] =max{zr — 231 |1 <k < n}.

Lemma 3.20. The following is provable in RCAg. Let f be a continuous function from

[a,B] to R which has a modulus of uniform continuity. Then f: f(z)dz exists.
Proof. Obvious. [

Theorem 3.21 (termwise integration). The following is provable in RCAg. Let 37 o om
be nonnegative convergent series, and let {fn}nen be a sequence of continuous functions

from [a,b] to R which satisfies the following:
Vo € [a,b] Yn € N |fo{z)| < an-

Then by Theorem 3.16.27, there ezists a continuous function f = S0 o fn from [a,b] to
R.
If each fn has a modulus of uniform continuily, then f =32, fn has a modulus of

uniform continuity and {fn}nen and f satisfy the following:

b © b

13 f@ydn =" [ fa(#) do.
(1%) / mm;éﬂ

(By Lemma 3.20, [, ; f(z)dz and f; fo(z) da exist.)

Proof. We reason within RCAg. Let iy be a modulus of uniform continuity for f,. Let

% 5 ot = o Define k(n) as the following:

k
(o-5om) <aa-a)
=0 k

k(n) = min {k
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(Here, () is the k-th approximation of a.) Then

(14) Z o < 2772,

i=E(n)+1

Now define h as
h(n) = max{hi(n+2 +1)| i < k(n)}.

Then for all z,y € [a,b], |z —y| < 2-Mn) implies
(13) Vi < k(n) |f(z) — flw)] <2720

Hence by (14) and (15), for all n € N, if | — y| < 277", then

(=) - )l < z (i@ + 5@ + Zlf(w) fW)l
i=k(n)+1
k(n)
< Z zaz_’_zz—n —2—1
i=k(n)+1 =0
< 2.277"2 gl
= 2

This means h is a modulus of uniform continuity for f.

To prove (13), for all n € N,

k{n)

/ f(z) d:r— f;(m)dm
2= () @

~ / (f(a) Zﬁ (@) da

= /b i fi(ex) dz

@ z’vk(n)+1
< / Z a;(z)dz
¢ f=k(n)+1

< |Jb—af27"7 2

This implies {13), and this completes the proof.



3.4 Inverse function theorem and implicit function theorem

In this section, we prove the inverse function theorem and the implicit function theorem

in RCAg. Differentiable condition functions again play a key role.

Theorem 3.22 (inverse function theorem and implicit function theorem). The fol-

lowing assertions are provable in RCAg.

1. Let U be an open subset of R™, and let f be a C" (r > 1) or C®-function from U to
R™. Let a be a point of U such that [f'(a)| 5 0. Then, there exist open subsets of
R*V, W and a C" or C®-function g from W to V such thata €V, f(a) € W and

vxeV g(f(X)) =X,
VweWw  flgly))=vy

9. Let U be an open subset of R*xR™, and let F be a C” (r > 1) or C®-function from U
toR™. Leta = (aj,as) be a point of U such that F(a) = 0 and {Fy, ;. oo m(2)] # 0.
Then there ezist open subsets V C R®, W C R™ and a C” or C®-function f from
W toV such that a; € V, ag € W and

f(al) = az,

Vv eV F(v,f(v))=0.
Here, |t'(a)| and |Fa, 1. 20.m (@) are the Jacobians, i.e.,

/ 3fz)
f = det ,
(o) = de ( ).

oF;
Fg;n ~Tntm = det .
(Fopiiznim (@)l (8mn+j>1<z1<m

Proof. We reason within RCAg. We first prove 1. By Theorem 3.3 and Corollary 3.15, we

may assume the following condition:
=f(a)=0
vxe U |[f'(x)] > 0;
8f; _{ 1 ifi=3j,

Oz; 0 ifi#j.
Define u from U to R as u(x) = x — f(x). Then u is C!, hence we can construct the

differentiable condition function ey for u. Then for all x,y € U,

u(y -— U(X) Zumz(x)(yz - mz) + eu(x Y)Hy XH
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Hence
fuly) —u@)| < (En: flug, () + Heu(x,Y)li> lly — x||.
=1

Here, 57 [Ju.,(0)[| = 0 and [leu(0,0)}| = 0. Hence by continuity of S |lug, |l and

lleu]l, we can get € > 0 such that
Wo:={xeR"| [x—-0}<e}CT,

vx e Wo 3 e (Il < 7

f=1

1
Vx,y € Wo |leus, (x, ¥l < T

Then for all x,x € Wy,

(16) [ay) —uG] < gly = x;

an) ly—xl = [u()+ ) - ulx) — £
< J8y) ~ 19 + fuly) = ()]
< ) = £G -+ 5hy = x|

Hence

(18) Iy - x| < 21867) — €G-

Define open sets V and W as

W o= {XER” lix—0|]<g},
V o= THW)NWs.

Claim 3.22.1. For ally € W, there exists a unique x € V such that f(x) = y.

To prove this claim, let y be a point of W. Define vy from Wy to R™ as vy(x) =
y +u(x). Then by (16}, for all x',x" € W,

(19) vy () = vy G < 3 = ¥
Especially,
(20) vy () = 1l = oy ()~ vy Ol < 31 < 5.

On the other hand, y € W implies ||y | < /2. Hence by (20),

(21) vx' € Wy vy (x))] < e.



(19) and (21) mean that hy is a contraction map from Wy to Wy. Hence by contraction
mapping theorem (particular version of [8] Theorem IV.8.3), there exists a unique x € Wp
such that hy(x) = x. This implies f(x) =y and then x € V. This completes the proof of

the claim.

Next, we construct a code for the local inverse function. Let F be a code for f.
Let ¢(b,s,a,r) be a £$ formula which expresses that ||[b| +s < €/2 and there exists
(m/,a,r", b, s') € F such that [[b—b/|| +s < s’ and |la— &'|| + 45" < r. Write

(b, s,a,7) = Imb(m, b, s, a,r)

where 8 is £3. By A% comprehension, define G as (m, b, s,a,7) € G <> §(m,b, 5,2, r).
Claim 3.22.2. G is a code for a continuous (partial) function (in the sense of remark
3.1).

We can easily check that the condition 2 and 3 holds. We must check the condition 1.
Assume (b, s)G(a1,71) and (b, s)G(ag,73). By the previous claim, we can take a unique
ag € V such that f(ag) = b. By the definition of G, there exist (a';,7,b's, s7) (6 = 1,2)
such that (a';, 7 )F(b', s1), b — b + s < s} and |ja; —a;|| +4s} < (i=1,2). Then

lif(a0) — £(a’3)]| = IIb — £(&')]| < |Ib — b'il| +|b's — £(a's)]| < 2.
Hence by (18),
llao — asl| < 4s;.
This implies ||ag — a;|| < 7i (i = 1,2) and then |la; — az|| < 71 + 2. This completes the

proof of the claim.

Claim 3.22.3. Let g be the continuous function coded by G. Then for ally € W, y €
dom(g).

For all y € W and for all § > 0, we need to show that there exists (b, s,a,r) such that
(b,s)G(a,r), |b—y| < s and r < 4. Take x € V such that f(x) = y. Then there exists
(@',7',b',s') such that (a,7)F(b’, '), [a’ —x[| <’ and b’ —y|} <s' < §/8. Then, there

exists n such that the following conditions holds:

fyn =0 +27 < s

lyoll 274 < 2.
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Here, y, is a n~th approximation of y. These conditions can be expressed by %9 formula,

hence we can take n = ng which satisfies them. Define (b,s,a,r) as

b = ¥ay

s g-moti,
a = a}

r = Bbs.

Then [la — a'|| + 4s' < r, hence (b,s)G(a,r). Also [[b —y|| < s and r < ¢ hold. This

completes the proof of the claim.

Claim 3.22.4. g is the local inverse of £, i.e.,

(22) vxeV  g(f(x) =x,
(23) vyeW  f(aly) =y

We first show (22). Let x € V and y = f(x). To prove x = g(y), we need to
show that (b, s)G(a,r) and ||y — b| < s imply ||x — a|| < 7. Assume (b,s)G(a,r) and
|y —b]| < s. Then by the definition of G, there exist (a’, 7, b’, s') such that (a’,»)F(b', s"),
Ib~b'l|+s < s and |ja—a’|| +4s’ <r. Then

If(x) — £ = [y —f@@)]
<y = b+ b b + b’ —f(2)]
< 24
Hence by (18),
lx —a'|| < 4s'.

Therefore
lx—al| < [x — 2| + [la' — aff < .
(23) is immediate from (22) since f is bijective on V. This completes the proof of the

claim.

Now we expand g into a C™ or C®°-function. We can easily define the derivatives of g.

For example, define the first derivatives as

(7).~ ((52)
dz; 1<ij<n Oz; 1<i,i<n

-1




It remains to prove that g and their derivatives surely satisfy the conditions for C" or
C*. Using the differentiable condition function for f, this can be achieved as usual. This
completes the proof of 1.

We can imitate the usual proof to show the implication 1 — 2. O

Mathematics in RCAg is concerned with constructive mathematics. The constructive
proof of implicit function theorem is in Bridges, Calude, Pavlov and Stefinescu [4]. For
details of constructive mathematics, see Bishop and Bridges [1].

The inverse function theorem for Banach spaces is provable in WKLy plus a certain

version of Baire category theorem [2]. See also [3].
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